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Abstract
In this paper, we investigate the existence of positive solutions for the new class of
boundary value problems via ψ -Hilfer fractional differential equations. For our
purpose, we use the α –ψ Geraghty-type contraction in the framework of the
b-metric space. We give an example illustrating the validity of the proved results.
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1 Introduction
One of the critical techniques of the solving differential equations is using the method of
successive approximations, which is the basic of the metric fixed point theory. More pre-
cisely, Banach’s contraction mapping principle, the first metric fixed point theorem, is ob-
tained by the abstraction of the method of successive approximations. Roughly speaking,
starting from the arbitrary initial point, we construct a sequence by recursively applying
the given operator. Then, if the obtained sequence converges to a limit, this limit forms a
fixed point and solution of the differential equation.

The pioneer result of metric fixed point theory was given by Banach in the framework
of complete norm spaces. After then, the praiseworthy fixed point theorem of Banach
has been characterized in different structures, such as standard metric spaces, partial
metric spaces, quasimetric spaces, fuzzy-metric spaces, modular metric spaces, and b-
metric spaces. In this paper, we consider our results in a b-metric space, which is a natural
and novel extension of the standard metric spaces. Roughly speaking, the difference of b-
metric from the standard metric is the triangle inequality. In the b-metric notion, instead
of the triangle inequality, the following inequality is used:

d(v, z) ≤ c
[
d(v, t) + d(t, z)

]
for all v, t, z and some c ≥ 1.
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In the last few decades, the natural extension of differential equations, fractional dif-
ferential equations, have been investigated densely in the setting of the standard met-
ric spaces. As it is well known, there are several distinct fractional derivative types, such
as Caputo, Hadamard, Grunwald–Letnikov, Hilfer, Riemann–Liouville, Riesz, Atangana–
Baleanu, and so on. Among these different types of fractional derivatives, we focus on the
Hilfer fractional derivative; see, for example, [1–28]. By using this definition we will in-
vestigate the existence of positive solutions for certain boundary value problems in the
context of b-metric spaces.

2 Preliminaries
In this section, we recall some notations and definitions of the fractional differential equa-
tion. Throughout this paper, we assume that all considered sets are nonempty and denote
R

+ = [0,∞).
Let [a, T] ⊂R

+ with (0 < a < T < ∞), and let C[a, T] be the Banach space of continuous
functions y : [a, T] →R with the norm

‖y‖C[a,T] = max
{∣∣y(t)

∣∣ : a ≤ t ≤ T
}

.

The weighted space C1–ξ ;δ[a, T] of continuous functions is defined as [22]

C1–ξ ;δ[a, T] =
{

y : (a, T] →R;
[
δ(t) – δ(a)

]1–ξ y(t) ∈ C[a, T]
}

, 0 ≤ ξ < 1.

Obviously, C1–ξ ;δ[a, T] is a Banach space endowed with the norm

‖y‖c1–ξ ;δ = max
t∈[a,T]

∣∣[δ(t) – δ(a)
]1–ξ y(t)

∣∣.

Definition 2.1 ([22]) Let ι > 0, y ∈ L1[a, b], and let δ ∈ C1[a, b] be an increasing function
with δ′(t) 
= 0 for all t ∈ [a, b]. Then the left-sided δ-Riemann–Liouville fractional integral
of a function y is defined by

Iι,δ
a+ y(t) =

1
�(ι)

∫ t

a
δ′(s)

(
δ(t) – δ(s)

)ι–1y(s) ds,

where � is the Euler gamma function defined by �(ι) =
∫ ∞

0 sι–1e–s ds, ι > 0.

Definition 2.2 ([11]) Let n – 1 < ι < n (n = [ι] + 1), and let y, δ ∈ Cn[a, b] be two functions
with an increasing δ and δ′(t) 
= 0 for all t ∈ [a, b]. Then the left-sided δ-Riemann–Liouville
fractional (δ-Caputo) derivative of a function y of order ι is defined by

Dι,δ
a+ y(t) =

(
1

δ′(t)
d
dt

)n

In–ι,δ
a+ y(t)

and

CDι,δ
a+ y(t) = In–ι,δ

a+

(
1

δ′(t)
d
dt

)n

y(t),

respectively.
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Definition 2.3 ([22]) Let n – 1 < ι < n (n ∈N), and let y, δ ∈ Cn[a, T] be two functions such
that δ is increasing and δ′(t) 
= 0 for all t ∈ [a, T]. Then the left-sided δ-Hilfer fractional
derivative of a function y of order ι and type 0 ≤ β ≤ 1 is defined by

Dι,β ,δ
a+ y(t) = Iβ(n–ι);δ

a+

(
1

δ′(t)
d
dt

)n

I(1–β)(n–ι);δ
a+ y(t)

= Iβ(n–ι);δ
a+ Dξ ;δ

a+ y(t) (ξ = ι + nβ – ιβ). (1)

In this paper, we consider the case n = 1, because 0 < ι < 1.

Lemma 2.4 ([17]) Let ι > 0 and 0 ≤ ξ < 1. Then I ι,δ
a+ is bounded from C1–ξ ;δ[a, b] into

C1–ξ ;δ[a, b].

Now we introduce the spaces

Cι,β
1–ξ ;δ[a, T] =

{
y ∈ C1–ξ ;δ[a, T], Dι,β ;δ

a+ y ∈ C1–ξ ;δ[a, T]
}

, 0 ≤ ξ < 1,

and

Cξ
1–ξ ;δ[a, T] =

{
y ∈ C1–ξ ;δ[a, T], Dξ ;δ

a+ y ∈ C1–ξ ;δ[a, T]
}

, 0 ≤ ξ < 1. (2)

Lemma 2.5 ([22]) Let ξ = ι + β – ιβ , where ι ∈ (0, 1), β ∈ [0, 1], and let y ∈ Cξ
1–ξ ;δ[a, T].

Then

Iξ ;δ
a+ Dξ ;δ

a+ y = Iι;δ
a+ Dι,β ;δ

a+ y

and

Dξ ;δ
a+ Iι;δ

a+ y = Dβ(1–ι);δ
a+ y.

Lemma 2.6 ([22]) Let ι > 0, 0 ≤ ξ < 1, and y ∈ C1–ξ [a, T], β ∈ [0, 1]. Then

Dι,β ,δ
a+ Iι,δ

a+ y(t) = y(t).

Lemma 2.7 ([17]) Let t > a. Then for ι ≥ 0 and ξ > 0, we have

Iι,δ
a+

[
δ(t) – δ(a)

]ξ–1 =
�(ξ )

�(ι + ξ )
(
δ(t) – δ(a)

)ι+ξ–1, t > a

and

Dι,δ
a+

[
δ(t) – δ(a)

]ι–1 = 0 for ι ∈ (0, 1).

Lemma 2.8 ([22]) Let ξ = ι + β – ιβ , where ι ∈ (0, 1), β ∈ [0, 1], let y ∈ Cξ
1–ξ ;δ[a, T], and let

I1–ξ ;δ
a+ y ∈ C1

1–ξ ,δ[a, T]. Then we have

Iξ ;δ
a+ Dξ ,δ

a+ y(t) = y(t) –
I1–ξ ;δ

a+ y(a)
�(ξ )

(
δ(t) – δ(a)

)ξ–1.
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Lemma 2.9 ([22]) Let ι > 0, 0 ≤ ξ < ι, and y ∈ C1–ξ ,δ[a, T] (0 < a < T < ∞). If ξ < ι, then
Iι;δ

a+ : C1–ξ ,δ[a, T] → C1–ξ ,δ[a, T] is continuous on [a, T] and satisfies

Iι;δ
a+ y(a) = lim

t→a+
Iι;δ

a+ y(t) = 0.

Definition 2.10 ([18]) Let ι > 0, and let κ be an increasing function having a continuous
derivative κ ′ on (a, b). The left-sided κ-Riemann–Liouville fractional integral of a function
h with respect to κ on [a, b] is defined by

Iι,κ
a+ h(
) =

1
�(ι)

∫ 


a
κ ′(ς )

[
κ(
) – κ(ς )

]ι–1h(ς ) dς , 
 > a, ι > 0,

provided that Iι,κ
a+ exists. Note that when κ(
) = 
, we obtain the well-known classical

Riemann–Liouville fractional integral.

Definition 2.11 ([18, 21]) Let ι > 0, let n be the smallest integer greater than or equal to
ι, and let h ∈ Lp[a, b], p ≥ 1. Let κ ∈ Cn[a, b] be an increasing function such that κ ′(
) 
= 0
for all 
 ∈ [a, b]. The left-sided κ-Riemann–Liouville fractional differential of h of order ι

is given by

Dι;κ
a+ h(
) =

(
1

κ ′(
)
d

d


)n

In–ι,κ
a+ h(
), n – 1 < ι < n, n ∈N.

Definition 2.12 ([9, 11]) Let n–1 < ι < n, h ∈ Cn[a, b], and let κ ∈ Cn[a, b] be an increasing
function such that κ ′(
) 
= 0 for all 
 ∈ [a, b]. The left-sided κ-Caputo fractional differential
of h of order ι is given by

CDι;κ
a+ h(
) = In–ι,κ

a+ Dn,κh(
),

where Dn,κ := ( 1
κ ′(
)

d
d


)n, and n = [ι] + 1.

Definition 2.13 ([12]) Let c ≥ 1, and let M be a set. The distance functiond : M×M →R
+

is called b-metric if for all 
,ς , ζ ∈ M, the following are fulfilled:
(bM1) d(
,ς ) = 0 if and only if ς = 
;
(bM2) d(
,ς ) = d(ς ,
);
(bM3) d(
, ζ ) ≤ c[d(
,ς ) + d(ς , ζ )].

The triple (M, d, c) is called a b-metric space.

Let 
 be the set of all increasing and continuous functions φ : R+ → R
+ satisfying the

property φ(c
) ≤ cφ(
) ≤ c
 for c > 1 and φ(0) = 0. We denote by F the family of all non-
decreasing functions λ : R+ → [0, 1

r2 ) for some r ≥ 1.

Definition 2.14 ([7]) For b-metric space (M, d, r), an operator T : M → M is called a gen-
eralized α–δ-Geraghty mapping whenever there exists α : M × M →R

+ such that

α(
,ς )φ
(
r3d(T
, Tς )

) ≤ λ
(
φ
(
d(
,ς )

))
φ
(
d(
,ς )

)

for 
,ς ∈ M, where λ ∈F and φ ∈ 
.
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Definition 2.15 ([13]) For M ( 
= ∅), let T : M → M and α : M × M → R
+ be given map-

pings. We say that T is orbital α-admissible if for 
 ∈ M, we have

α(
, T
) ≥ 1 �⇒ α
(
T
, T2


) ≥ 1. (3)

Theorem 2.16 ([7]) Let (M, d) be a complete b-metric space, and let T : M → M be a
generalized α–δ-Geraghty mapping such that

(i) T is α-admissible;
(ii) there exists 
0 ∈ M such that α(
0, T
0) ≥ 1;

(iii) If {
n} ⊆ M with 
n → 
 and α(
n,
n+1) ≥ 1, then α(
n,
) ≥ 1.
Then T has a fixed point.

Theorem 2.17 ([10]) Let ξ = ι + β – ιβ , where ι ∈ (0, 1) and β ∈ [0, 1]. If f : (a, T] →R is a
function such that f ∈ C1–ξ ,δ[a, T], then y ∈ Cξ

1–ξ ,δ(a, T] satisfies the problem

HDι,β ;δ
a+ y(t) = f

(
t, y(t)

)
, t ∈ (a, T], a > 0, (4)

y(T) = w ∈R,

if and only if y satisfies the integral equation

Af (t) := y(t) =
(δ(T) – δ(a))1–ξ

(δ(t) – δ(a))1–ξ

[
w –

1
�(ι)

∫ T

a
δ′(s)

(
δ(T) – δ(s)

)ι–1f (s, y(s)) ds
]

+
1

�(ι)

∫ t

a
δ′(s)

(
δ(t) – δ(s)

)ι–1f (s) ds. (5)

3 Main results
Let M = Cξ

1–ξ ,δ (a, T] := C(K), where K = (a, T], and d : M × M →R
+ is given by

d(ζ , w) =
∥
∥(ζ – w)2∥∥∞ = sup

ϑ∈(a,T]

(
ζ (ϑ) – w(ϑ)

)2.

Then (M, d) is a complete b-metric space with r = 2.

Theorem 3.1 Suppose that
(i) f : K×R

+ →R
+ satisfies the following inequality;

∣∣f
(
ϑ , ζ (ϑ)

)
– f

(
ϑ , w(ϑ)

)∣∣

≤ ι�(ι)(δ(ϑ) – δ(a))1–ξ

4
√

2(δ(T) – δ(a))ι+1–ξ

√
φ
(∥∥(ζ – w)2

∥∥∞
)
λ
(
φ
(∥∥(ζ – w)2

∥∥∞
))

,

where φ ∈ 
 and λ ∈F ;
(ii) For A defined in relation (5) there exist ζ0 ∈ C(K) and τ : R2 →R with

τ
(
ζ0(ϑ), Aζ0(ϑ)

) ≥ 0, ϑ ∈K;

(iii) For ϑ ∈K and ζ , w ∈ C(K), τ (ζ (ϑ), w(ϑ)) ≥ 0 implies

τ
(
Aζ (ϑ), Aw(ϑ)

) ≥ 0;
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(iv) If {ζn} ⊆ C(K) with ζn → ζ and τ (ζn, ζn+1) ≥ 0, then τ (ζn, ζ ) ≥ 0.
Then problem (4) has at least one solution.

Proof By Theorem 2.17, ζ ∈ C(K) is a solution of (4) if and only if a solution of the integral
equation (5). Define O : C(K) → C(K) by

Oy(t) =
(δ(T) – δ(a))1–ξ

(δ(t) – δ(a))1–ξ

[
w –

1
�(ι)

∫ T

a
δ′(s)

(
δ(T) – δ(s)

)ι–1f
(
s, y(s)

)
ds

]

+
1

�(ι)

∫ t

a
δ′(s)

(
δ(t) – δ(s)

)ι–1f
(
s, y(s)

)
ds. (6)

We find a fixed point of O. Now let ζ , w ∈ C(K) be such that τ (ζ (κ), w(κ)) ≥ 0. Using (i),
we get

∣
∣Oζ (κ) – Ow(κ)

∣
∣

=
∣∣
∣∣
(δ(T) – δ(a))1–ξ

(δ(t) – δ(a))1–ξ

[
w –

1
�(ι)

∫ T

a
δ′(s)

(
δ(T) – δ(s)

)ι–1f
(
s, ζ (s)

)
ds

]

+
1

�(ι)

∫ t

a
δ′(s)

(
δ(t) – δ(s)

)ι–1f
(
s, ζ (s)

)
ds

–
(δ(T) – δ(a))1–ξ

(δ(t) – δ(a))1–ξ

[
w –

1
�(ι)

∫ T

a
δ′(s)

(
δ(T) – δ(s)

)ι–1f
(
s, w(s)

)
ds

]

–
1

�(ι)

∫ t

a
δ′(s)

(
δ(t) – δ(s)

)ι–1f
(
s, w(s)

)
ds

∣∣
∣∣

=
1

�(ι)
(δ(T) – δ(a))1–ξ

(δ(t) – δ(a))1–ξ

∣
∣∣
∣

[∫ T

a
δ′(s)

(
δ(T) – δ(s)

)ι–1(f
(
s, w(s)

)
– f

(
s, ζ (s)

))
ds

]

+
1

�(ι)

∫ t

a
δ′(s)

(
δ(t) – δ(s)

)ι–1(f
(
s, ζ (s)

)
– f

(
s, w(s)

))
ds

∣∣
∣∣

≤ 1
�(ι)

(δ(T) – δ(a))1–ξ

(δ(t) – δ(a))1–ξ

[∫ T

a
δ′(s)

(
δ(T) – δ(s)

)ι–1∣∣f
(
s, w(s)

)
– f

(
s, ζ (s)

)∣∣ds

+
∫ t

a
δ′(s)

(
δ(t) – δ(s)

)ι–1∣∣f
(
s, ζ (s)

)
– f

(
s, w(s)

)∣∣ds
]

≤ 1
�(ι)

(δ(T) – δ(a))1–ξ

(δ(t) – δ(a))1–ξ

ι�(ι)(δ(t) – δ(a))1–ξ

4
√

2(δ(T) – δ(a))ι+1–ξ

×
√

φ
(∥∥(ζ – w)2

∥
∥∞

)
λ
(
φ
(∥∥(ζ – w)2

∥
∥∞

))

×
(∫ T

a
δ′(s)

(
δ(T) – δ(s)

)ι–1 ds +
∫ t

a
δ′(s)

(
δ(t) – δ(s)

)ι–1 ds
)

≤ 1
�(ι)

(δ(T) – δ(a))1–ξ

(δ(t) – δ(a))1–ξ

ι�(ι)(δ(t) – δ(a))1–ξ

4
√

2(δ(T) – δ(a))ι+1–ξ

×
√

φ
(∥∥(ζ – w)2

∥∥∞
)
λ
(
φ
(∥∥(ζ – w)2

∥∥∞
))

×
(

2
ι

(
δ(T) – δ(a)

)ι

)
,
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and hence

∣∣Oζ (κ) – Ow(κ)
∣∣2

≤ 1
8
φ
(∥∥(ζ – w)2∥∥∞

)
λ
(
φ
(∥∥(ζ – w)2∥∥∞

))
.

Define α : C(K) × C(K) →R
+ by

α(ζ , w) =

⎧
⎨

⎩
1, τ (ζ (ϑ), w(ϑ)) ≥ 0,ϑ ∈K,

0, otherwise.

So for ζ , w ∈ C(K) with τ (ζ (ϑ), w(ϑ)) ≥ 0, we have

α(ζ , w)8d(Oζ , Ow) ≤ 8d(Oζ , Ow) ≤ λ
(
φ
(
d(ζ , w)

))
φ
(
d(ζ , w)

)
, λ ∈K.

From (iii) we have

α(ζ , w) ≥ 1 ⇒ τ
(
ζ (ϑ), w(ϑ)

) ≥ 0 ⇒ τ
(
O(ζ ), O(w)

) ≥ 0

⇒ α
(
O(ζ ), O(w)

) ≥ 1

for ζ , w ∈ C(K). Thus O is α-admissible. By (ii) there exists ζ0 ∈ C(K) with α(ζ0, Oζ0) ≥ 1.
By (iv) and Theorem 2.16 we find out ζ ∗ with ζ ∗ = Oζ ∗, which is a positive solution of
(4). �

Example 3.2 Consider the δ-Caputo fractional integral BVP

⎧
⎨

⎩
D

1
2 ,0;et

1+ y(t) = f (t, y(t)), t ∈ (1, 2],

y(2) = w ∈R,
(7)

Cβ(1–ι)
1–ξ ;δ [1, 2] = C0

1
2 ;et [1, 2] =

{
f : (1, 2] ×R

2 →R;
(
et – e

) 1
2 f ∈ C[1, 2]

}

with ι = 1
2 , β = 0, ξ = 1

2 , δ(t) = et , (a, T] = (1, 2]. Clearly, f ∈ C 1
2 ;et [1, 2]. Then u and w satisfy

the following condition:

∣∣f (x, u) – f (x, w)
∣∣ ≤

√
π (et – ea)

8
√

2(e2 – ea)

√
∥∥(u – w)2

∥∥∞
sin2 ‖(u – w)2‖∞

4
.

Setting φ(x) = x and λ(t) = sin2 t
4 , we obtain

∣∣f (x, u) – f (x, w)
∣∣ ≤ ι�(ι)(δ(t) – δ(a))1–ξ

4
√

2(δ(T) – δ(a))ι+1–ξ

√
φ
(∥∥(u – w)2

∥∥∞
)
λ
(
φ
(∥∥(u – w)2

∥∥∞
))

.

Hence all assumptions of Theorem 3.1 hold. Therefore problem (7) has a solution on K.

In [23] the authors investigated the existence, uniqueness, and continuous dependence
of global solution to the following singular fractional differential equation involving the
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left generalized Caputo fractional derivative with respect to another function δ:

cDι;δ
0+ u(t) = f

(
t, u(t)

)
, t ∈ (0, b], b > 0, (8)

u(0) = u0 ∈R,

where 0 < ι ≤ 1, and cDι;δ
0+ is the δ-Caputo fractional derivative introduced by Almeida [11],

f : (0, b] ×R→R is given function with limt→0+ f (t, ·) = ∞, and u0 is a constant.

Lemma 3.3 ([23]) Assume that:
(A1) f : (0, b] ×R→R is a continuous with limt→0+ f (t, u) = ∞, and there exists a

constant 0 < k < ι such that [δ(t) – δ(0)]kf (t, u) is a continuous function on
[0, b] × R.

(A2) For the k above, there exists constant L > 0 such that

[
δ(t) – δ(0)

]k(f (t, u1) – f (t, u2)
) ≤ l|u1 – u2|

for all t ∈ [0, b] and u1, u2 ∈R.
Then the function u ∈ C[0, b] is a solution to Cauchy problem (8) if and only if u satisfies
the Volterra integral equation

Au(t) := u(t) = u0 +
1

�(ι)

∫ t

0
δ′(s)

(
δ(t) – δ(s)

)ι–1f
(
s, u(s)

)
ds, t ∈ (0, b]. (9)

Theorem 3.4 Suppose that the conditions (A1) and (A2) from Lemma 3.3 hold, moreover
(i) f : K×R

+ →R
+ satisfies the following condition:

∣
∣f

(
ϑ , ζ (ϑ)

)
– f

(
ϑ , w(ϑ)

)∣∣

≤ ι�(ι)
2
√

2(δ(T) – δ(a))ι

√
φ
(∥∥(ζ – w)2

∥
∥∞

)
λ
(
φ
(∥∥(ζ – w)2

∥
∥∞

))
,

where φ ∈ 
,K = (0, b] and λ ∈F ;
(ii) For A defined in relation (9) there exist ζ1 ∈ C(K) and τ : R2 →R with

τ
(
ζ1(ϑ), Aζ1(ϑ)

) ≥ 0, ϑ ∈K;

(iii) For ϑ ∈K and ζ , w ∈ C(K), τ (ζ (ϑ), w(ϑ)) ≥ 0 implies

τ
(
Aζ (ϑ), Aw(ϑ)

) ≥ 0;

(iv) If {ζn} ⊆ C(K) with ζn → ζ and τ (ζn, ζn+1) ≥ 0, then τ (ζn, ζ ) ≥ 0.
Then problem (8) has at least one solution.

Proof By Lemma 3.3, ζ ∈ C(K) is a solution of (8) if and only if it is a solution of the integral
equation (9). Define O : C(K) → C(K) by

Oζ (κ) = ζ0 +
1

�(ι)

∫
κ

0
δ′(s)

(
δ(κ) – δ(s)

)ι–1f
(
s, ζ (s)

)
ds, κ ∈ (0, b]. (10)
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We find a fixed point of O. Now let ζ , w ∈ C(K) be such that τ (ζ (κ), w(κ)) ≥ 0. Using (i),
we get

∣
∣Oζ (κ) – Ow(κ)

∣
∣

=
1

�(ι)

∣∣
∣∣

∫
κ

0
δ′(s)

(
δ(κ) – δ(s)

)ι–1f
(
s, ζ (s)

)
ds

–
1

�(ι)

∫
κ

0
δ′(s)

(
δ(κ) – δ(s)

)ι–1f
(
s, w(s)

)
ds

∣∣
∣∣

=
1

�(ι)

∫
κ

0
δ′(s)

(
δ(κ) – δ(s)

)ι–1∣∣f
(
s, w(s)

)
– f

(
s, ζ (s)

)∣∣ds

≤ 1
�(ι)

∫
κ

a
δ′(s)

(
δ(κ) – δ(s)

)ι–1∣∣f
(
s, w(s)

)
– f

(
s, ζ (s)

)∣∣ds

≤ 1
�(ι)

ι�(ι
(δ(t) – δ(a))ι

√
φ
(∥∥(ζ – w)2

∥∥∞
)
λ
(
φ
(∥∥(ζ – w)2

∥∥∞
))

×
∫

κ

0
δ′(s)

(
δ(κ) – δ(s)

)ι–1 ds

=
1

2
√

2

√
φ
(∥∥(ζ – w)2

∥
∥∞

)
λ
(
φ
(∥∥(ζ – w)2

∥
∥∞

))
,

and hence

∣∣Oζ (κ) – Ow(κ)
∣∣2

≤ 1
8
φ
(∥∥(ζ – w)2∥∥∞

)
λ
(
φ
(∥∥(ζ – w)2∥∥∞

))
.

Put α : C(K) × C(K) →R
+ by

α(ζ , w) =

⎧
⎨

⎩
1, τ (ζ (ϑ), w(ϑ)) ≥ 0,ϑ ∈K,

0, otherwise.

So for ζ , w ∈ C(K) with τ (ζ (ϑ), w(ϑ)) ≥ 0, we have

α(ζ , w)8d(Oζ , Ow) ≤ 8d(Oζ , Ow) ≤ λ
(
φ
(
d(ζ , w)

))
φ
(
d(ζ , w)

)
, λ ∈F .

From (iii) we have

α(ζ , w) ≥ 1 ⇒ τ
(
ζ (ϑ), w(ϑ)

) ≥ 0 ⇒ τ
(
O(ζ ), O(w)

) ≥ 0

⇒ α
(
O(ζ ), O(w)

) ≥ 1

for ζ , w ∈ C(K). Thus O is α-admissible. By (ii) there exists ζ0 ∈ C(K) with α(ζ0, Oζ0) ≥ 1.
By (iv) and Theorem 2.16 we find out ζ ∗ with ζ ∗ = Oζ ∗, which is a positive solution of
(8). �



Afshari and Karapınar Advances in Difference Equations        (2020) 2020:616 Page 10 of 11

Example 3.5 We fix a kernel δ : [0, 1] →R and consider the following equation:

⎧
⎨

⎩
D

1
2 ;δ
1+ y(t) = 1

4
√

2 [δ(t) – δ(0)]– 1
2 (1 + 1

3 y)e–‖y2‖∞ , t ∈ (0, 1],

y(0) = 2,
(11)

where α = 1
2 , f (t, y(t)) = 1

4
√

2 [δ(t) – δ(0)]– 1
2 (1 + 1

3 y)e–‖y2‖∞ for (t, y) ∈ (0, 1] × R, and
limt→0+ f (t, ·) = ∞. Setting k = 1

2 , the function

[
δ(t) – δ(0)

] 1
2 f

(
t, y(t)

)
=

1
4
√

2

(
1 +

1
3

y
)

e–‖y2‖∞

is continuous on [0, 1]. So hypothesis (A1) from Lemma 3.3 is satisfied.
For y1(t), y2(t) ∈R (t ∈ (0, 1]) we have

∣
∣f

(
t, y1(t)

)
– f

(
t, y2(t)

)∣∣ =
1

12
√

2
[
δ(t) – δ(0)

]– 1
2
∣
∣y1(t) – y2(t)

∣
∣e–‖(y1–y2)2‖∞ .

Considering δ(t) =
√

t + 1 for t ∈ (0, 1] we get

∣
∣f

(
t, y1(t)

)
– f

(
t, y2(t)

)∣∣ =
1

12
√

2
[
√

t + 1 – 1]– 1
2
∣
∣y1(t) – y2(t)

∣
∣e–‖(y1–y2)2‖∞ .

So, hypothesis (A2) from Lemma 3.3 is also satisfied with L = 1
12

√
2 e–‖(y1–y2)2‖∞ and k = 1

2 .
Therefore we can apply Lemma 3.3.

For all y1(t), y2(t) satisfying in the condition

∣∣e–‖y12‖∞ – e–‖y22‖∞ ∣∣ ≤ e–‖(y1–y2)2‖∞ ,

we have

∣∣f
(
x, y1(t)

)
– f

(
x, y2(t)

)∣∣ ≤
√

π

8
√

2(δ(T) – δ(a))ι

√
∥∥(y1 – y2)2

∥∥∞
e–‖(y1–y2)2‖∞

4
.

Setting φ(x) = x and λ(t) = e–t

4 , we obtain

∣∣f
(
x, y1(t)

)
– f

(
x, y2(t)

)∣∣ ≤ ι�(ι)
2
√

2(δ(T) – δ(a))ι

√
φ
(∥∥(y1 – y2)2

∥∥∞
)
λ
(
φ
(∥∥(y1 – y2)2

∥∥∞
))

.

Hence all assumptions of Theorem 3.4 hold. Therefore problem (11) has a solution on K.
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