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Abstract
In this article, we are concerned with the existence of mild solutions and approximate
controllability of Hilfer fractional evolution equations with almost sectorial operators
and nonlocal conditions. The existence results are obtained by first defining Green’s
function and approximate controllability by specifying a suitable control function.
These results are established with the help of Schauder’s fixed point theorem and
theory of almost sectorial operators in a Banach space. An example is also presented
for the demonstration of obtained results.
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1 Introduction
In current times, the rising interest of researchers in fractional calculus reflects the pop-
ularity of this branch [1–3, 5–13, 15, 19, 30–32]. Differential equations of fractional order
are widely applicable in the areas of physics, chemistry, electromagnetics, and mechanics.
Fractional differential equations (FDEs) have been used widely in the identification of dif-
ferent physical systems, in control theory, in simulating viscoelastic materials, and in the
modeling of different complex phenomena [22–29, 39, 42]. The concept of exact control-
lability and approximate controllability of FDEs is an active field of investigation because
of its major applications in physical sciences. Under some admissible control inputs, exact
controllability steers the system to arbitrary final state, while approximate controllability
steers the system to the small neighborhood of arbitrary final state. In the published works,
there are numerous articles focussing on the exact or approximate controllability of sys-
tems represented by FDEs, neutral FDEs, FDEs with impulsive inclusions, and FDEs with
delay functions [4, 18, 40, 44].

In particular, approximate controllability of Hilfer FDEs under different conditions has
been discussed widely. Mahmudov et al. [36] investigated the exact controllability of Hilfer
FDEs in a Hilbert space under the assumption that a linear system of the given equation is
approximate controllable. In 2017, Yang et al. [41] discussed the approximate controllabil-
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ity of Hilfer FDEs with nonlocal conditions in a Banach space with the help of semigroup
theory, fixed point techniques, and multivalued analysis. Later on, Debbouche et al. [14]
and Du et al. [17] studied the approximate controllability of Hilfer FDEs and semilinear
Hilfer FDEs with impulsive control inclusions in Banach spaces, respectively. In 2018, Lv
and Yang [34] investigated the approximate controllability of neutral Hilfer FDEs by ap-
plying the techniques of stochastic analysis theory and semigroup operator theory in a
Hilbert space. In recent works, Lv and Yang [35], with the help of Banach contraction prin-
ciple, discussed the approximate controllability for a class of Hilfer FDEs of order 1 < α < 2
and type 0 ≤ β ≤ 1. It is noted that, in almost all the problems discussed above, a linear
operator generates the strongly continuous semigroup of bounded linear operators.

In [37] Periago and Straub formulated theory to analyze almost sectorial operators. Here
authors also mentioned the suitable assumptions required to establish the existence of
mild solutions and classical solutions of FDEs with almost sectorial operator. There are
numerous works focussing on the existence of mild solutions and analytical solutions
of fractional evolution equations with almost sectorial operators [16, 33, 43]. Recently,
Jaiswal et al. [21] proved the existence of mild solutions of Hilfer FDEs with almost sec-
torial operators. We found that in the available literature, approximate controllability of
Hilfer FDEs with almost sectorial operators has not been discussed yet. Thus, motivated
by the above-discussed works, we consider here the following system of Hilfer FDEs for
investigating proposed results:

⎧
⎨

⎩

HDν,μ
0+ v(t) = Av(t) + Υ w (t) + Ψ (t, v(t),

∫ t

0 q(t, s)ϕ(t, s, v(s)) ds), t ∈ J,

I (1–ν)(1–μ)
0+ v(0) =

∑m

k =1 ck v(tk ),
(1.1)

where HDν,μ
0+ is the Hilfer fractional derivative of order 0 < ν < 1 and type 0 ≤ μ ≤ 1. A :

D(A) ⊂ V −→ V is an almost sectorial operator in Banach spaceV and J = [0, b], b > 0. The
control function w (t) takes value in L2(J,W). L2(J,W) denotes the space of admissible
control functions for Banach space W . Υ is a bounded linear operator from W into V .
Ψ : J× V × V −→ V is a continuous linear mapping, 0 < t1 < t2 < · · · < tm < b , m ∈ N, and
ck are real numbers such that ck �= 0. The characteristics functions q(t, s) : Δ −→ R and
ϕ : Δ× V −→ V , Δ = (t, s) ∈ [0, b] × [0, b] are specified in the next section.

2 Preliminaries
Let us consider V and W as real Banach spaces with respective norms ‖·‖V and ‖·‖W .
C(J,V) denotes the Banach space formed by all continuous functions from J into V with
corresponding norm function ‖w‖ = supt∈J‖w (t)‖. L2(J,W) denotes the Banach space of
all W-valued Bochner square integrable functions defined on J w.r.t. norm function

‖w‖ =
(∫ b

0

∥
∥w (t)

∥
∥2 dt

) 1
2

, w ∈L2(J,W).

Definition 2.1 ([20]) Hilfer fractional derivative of a continuously differentiable function
f of order 0 < ν < 1 and 0 ≤ μ≤ 1 is defined as

Dν,μ
0+ f (t) = Iν(1–μ)

0+
d
dt

I (1–ν)(1–μ)
′+ f (t) = Iν(1–μ)

0+ Dν+μ–νμ
0+ f (t),
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where Iν(1–μ)
0+ is a Riemann–Liouville fractional integral and Dν+μ–νμ

0+ is a Riemann–
Liouville fractional derivative.

Definition 2.2 ([38]) For α > 0, the Riemann–Liouville fractional integral of a continu-
ously differentiable f of order α is defined as follows:

Iα
0+ f (t) =

1
	(α)

∫ t

0
(t – s)α–1f (s) ds.

Almost sectorial operator ([21, 37]) Let 0 < β < π and –1 < γ < 0. We define So
β = {ω ∈

C\ {0} : |argω| < β} and Sβ = S̄o
β = {ω ∈C\ {0} : |argω| ≤ β}∪ {0}. A closed linear operator

A : D(A) ⊂ V −→ V is called an almost sectorial operator if the following hold:
1. σ (A) is contained in Sω .
2. ∀β ∈ (ω,π ) there exists a constant Mβ > 0 such that ‖R(z,A)‖L(V) ≤Mβ |z|γ ,

where R(z,A) = (zI – A)–1 is the resolvent operator of A for z ∈ ρ(A).

Let us define �γ
ω as a family of almost sectorial operators.

Proposition 2.1 ([21]) Let T (t) be the compact semigroup defined in [37] and A ∈�
γ
ω for

–1 < γ < 0 and 0 < ω < π
2 . Then following holds for T (t):

(i) T (t) is analytic and dn

dtn T (t) = (–A)nT (t), t ∈ So
π
2 –ω . (ii) T (t + s) = T (t)T (s) ∀t, s ∈

So
π
2 –ω . (iii) ‖T (t)‖L(V) ≤ c0t

–γ–1, t > 0; where c0 > 0 is a constant. (iv) Let �T = {v ∈ V :
limt−→0+ T (t)v = v}, then D(Aθ ) ⊂�T if θ > 1 + γ .

Let us define the operator families {Sν(t)}t∈So
π
2 –ω

and {Qν(t)}t∈So
π
2 –ω

as follows:

Sν(t) =
∫ ∞

0
Mν(ξ )T

(
t
νξ

)
dξ ,

Qν(t) =
∫ ∞

0
νξMν(ξ )T

(
t
νξ

)
dξ ,

where Mν(θ ) is a Wright-type function defined as follows:

Mν(θ ) =
∑

n∈N

(–θ )n–1

	(1 – νn)(n – 1)!
, θ ∈C.

Proposition 2.2 ([21]) (i) For each fixed t ∈ So
π
2 –ω , Sν(t) and Qν(t) are bounded linear op-

erators in V . Also

∥
∥Sν(t)

∥
∥ ≤ CS t

–ν(1+γ ),
∥
∥Qν(t)

∥
∥ ≤ CP t

–ν(1+γ ), t > 0,

where CS and CP are constants depending only on ν and γ . (ii) Sν(t) and Qν(t) are contin-
uous in the uniform operator topology for t > 0.
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Lemma 2.1 ([2, 20]) The mild solution for the system of equations Eq. (1.1) is defined as
follows:

v(t) = Sν,μ(t)
m∑

k =1

ck v(tk )

+
∫ t

0
Kν(t – s)

{

Υ w (s) + Ψ

(

s, v(s),
∫ s

0
q(s, ζ )ϕ

(
s, ζ , v(ζ )

)
dζ

)}

ds,

(2.1)

where Sν,μ(t) = Iμ(1–ν)
0+ Kν(t) and Kν(t) = tν–1Qν(t).

Proposition 2.3 ([21]) (i) For every fixed t ∈ So
π
2 –ω , Sν,μ(t) and Kν(t) are bounded linear

operators on V . For t > 0,

∥
∥Kν(t)v

∥
∥ ≤ CP t

–1–νγ ‖v‖,
∥
∥Sν,μ(t)v

∥
∥ ≤ 	(–γ ν)

	(μ(1 – ν) – νγ )
CP t

μ(1–ν)–νγ–1‖v‖.

(ii) Sν,μ(t) and Kν(t) are strongly continuous operators.

Let MS = supt∈J′ ‖Sν,μ(t)‖, J′ = (0, b]. Assume that
∑m

k =1|ck | ≤ 1
MS

.
We have

∥
∥
∥
∥
∥

m∑

k =1

ck Sν,μ(tk )

∥
∥
∥
∥
∥

≤ MS .
1

MS
< 1.

By the operator spectrum theorem, O = (I –
∑m

k =1 ck Sν,μ(tk ))–1 exists bounded and
D(O) = V .

By the Neumann series expression, O can be expressed as O =
∑∞

n=0[
∑m

k =1 ck Sν,μ(tk )]n.
Therefore

‖O‖ ≤ 1
1 –

∑m

k =1 |ck |MS
.

By Lemma 2.1 mild solutions of Eq. (1.1) are given by

v(t) = Sν,μ(t)v̂ +
∫ t

0
Kν(t – s)

{

Υ w (s) + Ψ

(

s, v(s),
∫ s

0
q(s, ζ )ϕ

(
s, ζ , v(ζ )

)
dζ

)}

ds,

where v̂ =
m∑

k =1

ck v(tk ).

At t = tk ,

v(tk ) = Sν,μ(t)v̂ +
∫ tk

0
Kν(tk – s)

{

Υ w (s) + Ψ

(

s, v(s),
∫ s

0
q(s, ζ )ϕ

(
s, ζ , v(ζ )

)
dζ

)}

ds,

m∑

k =1

ck v(tk ) =
m∑

k =1

ck Sν,μ(t)v̂ +
m∑

k =1

ck

∫ tk

0
Kν(tk – s)

×
{

Υ w (s) + Ψ

(

s, v(s),
∫ s

0
q(s, ζ )ϕ

(
s, ζ , v(ζ )

)
dζ

)}

ds
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�⇒ v̂

[

I –
m∑

k =1

ck Sν,μ(tk )

]

=
m∑

k =1

ck

∫ tk

0
Kν(tk – s)

×
{

Υ w (s) + Ψ

(

s, v(s),
∫ s

0
q(s, ζ )ϕ

(
s, ζ , v(ζ )

)
dζ

)}

ds

�⇒ v̂ =
m∑

k =1

ck O
∫ tk

0
Kν(tk – s)

×
{

Υ w (s) + Ψ

(

s, v(s),
∫ s

0
q(s, ζ )ϕ

(
s, ζ , v(ζ )

)
dζ

)}

ds.

Thus the mild solutions of Eq. (1.1) are defined as follows:

v(t) =
m∑

k =1

ck Sν,μ(t)O
∫ tk

0
Kν(tk – s)

×
{

Υ w (s) + Ψ

(

s, v(s),
∫ s

0
q(s, ζ )ϕ

(
s, ζ , v(ζ )

)
dζ

)}

ds

+
∫ t

0
Kν(t – s)

{

Υ w (s) + Ψ

(

s, v(s),
∫ s

0
q(s, ζ )ϕ

(
s, ζ , v(ζ )

)
dζ

)}

ds.

Now we introduce the Green’s function G(t, s) as follows:

G(t, s) =
m∑

k =1

χtk (s)Sν,μ(t)OKν(tk – s) + χt(s)Kν(t – s),

where

χtk (s) =

⎧
⎨

⎩

ck , s ∈ [0, tk ),

0, s ∈ [tk , b),
χt(s) =

⎧
⎨

⎩

1, s ∈ [0, t),

0, s ∈ [t, b).

The mild solutions of Eq. (1.1) in terms of the Green’s function are expressed as

v(t) =
∫ b

0
G(t, s)

{

Υ w (s) + Ψ

(

s, v(s),
∫ s

0
q(s, ζ )ϕ

(
s, ζ , v(ζ )

)
dζ

)}

ds, t ∈ J. (2.2)

In addition to the above-mentioned propositions and lemma, we assume here the follow-
ing assumptions to establish the proposed results:

(A1) For each t ∈ J′, Ψ : J′ × V × V −→ V is a Caratheodory function.
(A2) There exist ψ1 ∈ L1(J,R+) and a continuous function ψ2 such that, for v1, v2 ∈ V

and t ∈ J, Ψ (t, v1, v2) ≤ψ1(t)‖v1‖ + ψ2(t)‖v2‖.
(A3) ϕ(t, s, ·) : V −→ V is a Caratheodory function and there exists w : Δ−→R with

w̄ = sup
t∈J

∫ t

0
w (t, s) ds < ∞ such that

∥
∥ϕ(t, s, v)

∥
∥ ≤ w (t, s)‖v‖, v ∈ V .
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(A4) q(t , s) is bounded on J = [0, b] with q∗ = sup{q(t , s) : 0 ≤ s ≤ t} < ∞.
(A5) There exists κ ∈ L1(J,R+) such that ‖Υ w (t)‖ ≤ κ(t), ∀t ∈ J and w ∈L2(J,W).

3 Existence result
For J = [0, b] and J′ = [0, b), we introduce

Y =
{

v ∈ C
(
J

′,V
)

: lim
t−→0

t
(1+νγ )(1–μ)v(t) exists and is finite

}

with the norm defined as ‖v‖Y = supt∈J′ {t(1+νγ )(1–μ)‖v(t)‖}.
Let y(t) = t(1+νγ )(1–μ)v(t). Then v ∈ Y iff y ∈ C (J,V) and ‖v‖Y = ‖y‖.
We define

Bδ(J) =
{

y ∈ C (J,V) : ‖y‖ ≤ δ
}

and BY
δ

(
J

′) =
{

v ∈ Y : ‖v‖Y ≤ δ
}

.

Define an operator P : Bδ(J) −→ Bδ(J) such that

Py(t) =

⎧
⎨

⎩

0, t = 0,

t(1+νγ )(1–μ)Πv(t), t ∈ J′ = (0, b],

where Π : C (J′,V) −→ C (J′,V) is defined as

Πv(t) =
∫ b

0
G(t, s)

{

Υ w (s) + Ψ

(

s, v(s),
∫ s

0
q(s, ζ )ϕ

(
s, ζ , v(ζ )

)
dζ

)}

ds.

Let us denote N1 = supt∈J′ {ψ1(t)}, N2 = supt∈J′ {ψ2(t)}, m̂ = supt∈J′ {κ(t)}, and ∧o =
∑m

k =1 |ck |
1–

∑m
k =1 |ck |MS

.

Lemma 3.1 Let A ∈�
γ
ω for –1 < γ < 0 and 0 < ω < π

2 . Assume that assumptions (A1)–(A5)
and Proposition 2.3 hold. Then the operator {Py : y ∈ Bδ(J)} is bounded and continuous if
CP (N1 + N2w̄q∗)(1 + MS∧o)b–νγ < 1.

Proof For y ∈ Bδ(J), we have

‖Py‖ =
∥
∥
∥
∥t

(1+νγ )(1–μ)
∫ b

0
G(t, s)

{

Υ w (s) + Ψ

(

s, v(s),
∫ s

0
q(s, ζ )ϕ

(
s, ζ , v(ζ )

)
dζ

)}

ds
∥
∥
∥
∥

≤
∥
∥
∥
∥
∥
t

(1+νγ )(1–μ)
m∑

k =1

ck Sν,μ(t)O
∫ tk

0
Kν(tk – s)

×
{

Υ w (s) + Ψ

(

s, v(s),
∫ s

0
q(s, ζ )ϕ

(
s, ζ , v(ζ )

)
dζ

)}

ds

∥
∥
∥
∥
∥

+
∥
∥
∥
∥t

(1+νγ )(1–μ)
∫ t

0
Kν(t – s)

×
{

Υ w (s) + Ψ

(

s, v(s),
∫ s

0
q(s, ζ )ϕ

(
s, ζ , v(ζ )

)
dζ

)}

ds
∥
∥
∥
∥

≤ MS ∧o CP t
(1+νγ )(1–μ)

∫ tk

0
(tk – s)–1–νγ {

ψ1(s)‖v‖ + ψ2(s)w̄q
∗‖v‖ + κ(s)

}
ds
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+ CP t
(1+νγ )(1–μ)

∫ t

0
(t – s)–1–νγ {

ψ1(s)‖v‖ + ψ2(s)w̄q
∗‖v‖ + κ(s)

}
ds

≤ CP δ
(
N1 + N2w̄q

∗)(1 + MS∧o)
b–νγ

(–νγ )
+ CP M̂ (1 + MS∧o)

b (1+νγ )(1–μ)–νγ

(–νγ )

≤ CP δ
(
N1 + N2w̄q

∗)(1 + MS∧o)b–νγ

+ CP M̂ (1 + MS∧o)b (1+νγ )(1–μ)–νγ as (–νγ ) > 0.

If possible, suppose ‖Py‖ > δ.
This implies

CP
(
N1 + N2w̄q

∗)(1 + MS∧o)b–νγ +
CP M̂ (1 + MS∧o)b (1+νγ )(1–μ)–νγ

δ
> 1.

Applying limδ−→∞ on both sides, we have

CP
(
N1 + N2w̄q

∗)(1 + MS∧o)b–νγ > 1,

which is a contradiction.
So our supposition is wrong. Therefore ‖Py‖ ≤ δ. This implies the boundedness of op-

erator P .
Now, to show that P : Bδ(J) −→ Bδ(J) is a continuous operator, let yn and y ∈ Bδ(J) with

limn−→∞ yn = y , n ∈N.
By the continuity of function Ψ w.r.t. to the second and third variable

Ψ

(

t, vn(t),
∫ t

0
q(t, s)ϕ

(
t, s, vn(s)

)
ds

)

−→ Ψ

(

t, v(t),
∫ t

0
q(t, s)ϕ

(
t, s, v(s)

)
ds

)

as n −→ ∞.

For t ∈ J,

∥
∥Pyn(t) – Py(t)

∥
∥

≤ Ms ∧o t
(1+νγ )(1–μ)

∫ tk

0

∥
∥Kν(tk – s)

∥
∥

∥
∥
∥
∥Ψ

(

s, vn(s),
∫ s

0
q(s, ζ )ϕ

(
s, ζ , vn(ζ )

)
dζ

)

– Ψ

(

s, v(s),
∫ s

0
q(s, ζ )ϕ

(
s, ζ , v(ζ )

)
dζ

)∥
∥
∥
∥ds

+ t
(1+νγ )(1–μ)

∫ t

0

∥
∥Kν(t – s)

∥
∥

∥
∥
∥
∥Ψ

(

s, vn(s),
∫ s

0
q(s, ζ )ϕ

(
s, ζ , vn(ζ )

)
dζ

)

– Ψ

(

s, v(s),
∫ s

0
q(s, ζ )ϕ

(
s, ζ , v(ζ )

)
dζ

)∥
∥
∥
∥ds

≤ Ms ∧o t
(1+νγ )(1–μ)CP

∫ tk

0
(tk – s)–1–νγ

∥
∥
∥
∥Ψ

(

s, vn(s),
∫ s

0
q(s, ζ )ϕ

(
s, ζ , vn(ζ )

)
dζ

)

– Ψ

(

s, v(s),
∫ s

0
q(s, ζ )ϕ

(
s, ζ , v(ζ )

)
dζ

)∥
∥
∥
∥ds
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+ t
(1+νγ )(1–μ)CP

∫ t

0
(t – s)–1–νγ

∥
∥
∥
∥Ψ

(

s, vn(s),
∫ s

0
q(s, ζ )ϕ

(
s, ζ , vn(ζ )

)
dζ

)

– Ψ

(

s, v(s),
∫ s

0
q(s, ζ )ϕ

(
s, ζ , v(ζ )

)
dζ

)∥
∥
∥
∥ds.

Since

t
(1+νγ )(1–μ)

∥
∥
∥
∥Ψ

(

s, vn(s),
∫ s

0
q(s, ζ )ϕ

(
s, ζ , vn(ζ )

)
dζ

)

– Ψ

(

s, v(s),
∫ s

0
q(s, ζ )ϕ

(
s, ζ , v(ζ )

)
dζ

)∥
∥
∥
∥ ≤ 2δ

(
N1 + N2w̄q

∗), which is finite,

by the Lebesgue dominated convergence theorem and the continuity of function Ψ ,

∥
∥Pyn(t) – Py(t)

∥
∥ −→ 0 as n −→ ∞.

This completes the proof of Lemma 3.1. �

Lemma 3.2 Let A ∈ �
γ
ω for –1 < γ < 0 and 0 < ω < π

2 . If assumptions (A1)–(A5) and
Proposition 2.3 are satisfied, the operator {Py : y ∈ Bδ(J)} is equicontinuous for t ∈ J.

Proof For y ∈ Bδ(J) and 0 ≤ t1 < t2 < b ,

∥
∥Py(t2) – Py(t1)

∥
∥

=
∥
∥t

(1+νγ )(1–μ)
2 Πv(t2) – t

(1+νγ )(1–μ)
1 Πv(t1)

∥
∥

=
∥
∥
∥
∥t

(1+νγ )(1–μ)
2

∫ b

0
G(t2, s)

{

Υ w (s) + Ψ

(

s, v(s),
∫ s

0
q(s, ζ )ϕ

(
s, ζ , v(ζ )

)
dζ

)}

ds

– t
(1+νγ )(1–μ)
1

∫ b

0
G(t1, s)

{

Υ w (s) + Ψ

(

s, v(s),
∫ s

0
q(s, ζ )ϕ

(
s, ζ , v(ζ )

)
dζ

)}

ds
∥
∥
∥
∥.

≤
∥
∥
∥
∥
∥
t

(1+νγ )(1–μ)
2

m∑

k =1

ck Sν,μ(t2)O
∫ tk

0
Kν(tk – s)

×
{

Υ w (s) + Ψ

(

s, v(s),
∫ s

0
q(s, ζ )ϕ

(
s, ζ , v(ζ )

)
dζ

)}

ds

– t
(1+νγ )(1–μ)
1

m∑

k =1

ck Sν,μ(t1)O
∫ tk

0
Kν(tk – s)

×
{

Υ w (s) + Ψ

(

s, v(s),
∫ s

0
q(s, ζ )ϕ

(
s, ζ , v(ζ )

)
dζ

)}

ds

∥
∥
∥
∥
∥

+
∥
∥
∥
∥t

(1+νγ )(1–μ)
2

∫ t1

0
Kν(t2 – s)

×
{

Υ w (s) + Ψ

(

s, v(s),
∫ s

0
q(s, ζ )ϕ

(
s, ζ , v(ζ )

)
dζ

)}

ds

– t
(1+νγ )(1–μ)
1

∫ t1

0
Kν(t1 – s)
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×
{

Υ w (s) + Ψ

(

s, v(s),
∫ s

0
q(s, ζ )ϕ

(
s, ζ , v(ζ )

)
dζ

)}

ds
∥
∥
∥
∥

+
∥
∥
∥
∥t

(1+νγ )(1–μ)
2

∫ t2

t1

Kν(t2 – s)

×
{

Υ w (s) + Ψ

(

s, v(s),
∫ s

0
q(s, ζ )ϕ

(
s, ζ , v(ζ )

)
dζ

)}

ds
∥
∥
∥
∥

= I1 + I2 + I3.

Here,

I1 =

∥
∥
∥
∥
∥
t

(1+νγ )(1–μ)
2

m∑

k =1

ck Sν,μ(t2)O
∫ tk

0
Kν(tk – s)

×
{

Υ w (s) + Ψ

(

s, v(s),
∫ s

0
q(s, ζ )ϕ

(
s, ζ , v(ζ )

)
dζ

)}

ds

– t
(1+νγ )(1–μ)
1

m∑

k =1

ck Sν,μ(t1)O
∫ tk

0
Kν(tk – s)

×
{

Υ w (s) + Ψ

(

s, v(s),
∫ s

0
q(s, ζ )ϕ

(
s, ζ , v(ζ )

)
dζ

)}

ds

∥
∥
∥
∥
∥

.

The strong continuity of operator Sν,μ(t) yields I1 −→ 0 as t1 −→ t2.

I2 =
∥
∥
∥
∥t

(1+νγ )(1–μ)
2

∫ t1

0
Kν(t2 – s)

×
{

Υ w (s) + Ψ

(

s, v(s),
∫ s

0
q(s, ζ )ϕ

(
s, ζ , v(ζ )

)
dζ

)}

ds

– t
(1+νγ )(1–μ)
1

∫ t1

0
Kν(t1 – s)

×
{

Υ w (s) + Ψ

(

s, v(s),
∫ s

0
q(s, ζ )ϕ

(
s, ζ , v(ζ )

)
dζ

)}

ds
∥
∥
∥
∥.

Following Lemma 3.1 and assumptions (A1)–(A5), it is easy to see that

∥
∥
∥
∥

∫ t1

0
Kν(ti – s)

{

Υ w (s) + Ψ

(

s, v(s),
∫ s

0
q(s, ζ )ϕ

(
s, ζ , v(ζ )

)
dζ

)}

ds
∥
∥
∥
∥, i = 1, 2,

exists and is bounded. Thus I2 −→ 0 as t2 −→ t1.

I3 =
∥
∥
∥
∥t

(1+νγ )(1–μ)
2

∫ t2

t1

Kν(t2 – s)
{

Υ w (s) + Ψ

(

s, v(s),
∫ s

0
q(s, ζ )ϕ

(
s, ζ , v(ζ )

)
dζ

)}

ds
∥
∥
∥
∥.

After following the given assumptions and performing some steps of calculation, we have

I3 ≤ t
(1+νγ )(1–μ)
2 CP δ

(
N1 + N2w̄q

∗)(t2 – t1)–γ ν + t
(1+νγ )(1–μ)
2 CP M̂ (t2 – t1)–γ ν .

Clearly, I3 −→ 0 as t2 −→ t1.
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So, we have

∥
∥Py(t2) – Py(t1)

∥
∥ −→ 0 as t2 −→ t1.

This proves the equicontinuity of operator P y(t). �

Theorem 3.1 Let –1 < γ < 0, 0 < ω < π
2 , and A ∈�

γ
ω . The system of equations Eq. (1.1) has

at least one mild solution in BY
δ (J′) if assumptions (A1)–(A5) hold along with Lemma 3.1

and Lemma 3.2.

Proof The mild solution of Eq. (1.1) is equivalent to the fixed point of operator P :
Bδ(J) −→ Bδ(J). Here we prove that the operator P has at least one fixed point.

In the following, we show that the operator P is relatively compact in V for every t ∈ J.
We prove this by showing that there is a relatively compact set {Pεy(t) : y ∈ Bδ(J)} arbi-

trarily close to the set {Py(t) : y ∈ Bδ(J)} in V for 0 < t ≤ b .
Define the operator Pεy by

Pεy(t) = t
(1+νγ )(1–μ)

m∑

k =1

ck Sν,μ(t)O
∫ tk

0
Kν(tk – s)

×
{

Υ w (s) + Ψ

(

s, v(s),
∫ s

0
q(s, ζ )ϕ

(
s, ζ , v(ζ )

)
dζ

)}

ds

+ t
(1+νγ )(1–μ)Kν(ε)

∫ t–ε

0
Kν(t – ε – s)

×
{

Υ w (s) + Ψ

(

s, v(s),
∫ s

0
q(s, ζ )ϕ

(
s, ζ , v(ζ )

)
dζ

)}

ds.

Since Sν,μ(t) and Kν(t) are compact for t > 0, the set Pεy(t) is compact for t ∈ J′. In the
following

∥
∥Pεy(t) – Py(t)

∥
∥

≤
∥
∥
∥
∥t

(1+νγ )(1–μ)
∫ t–ε

0

{
Kν(t – ε – s)Kν(ε) – Kν(t – s)

}

×
{

Υ w (s) + Ψ

(

s, v(s),
∫ s

0
q(s, ζ )ϕ

(
s, ζ , v(ζ )

)
dζ

)}

ds
∥
∥
∥
∥

+
∥
∥
∥
∥t

(1+νγ )(1–μ)
∫ t

t–ε
Kν(t – s)

×
{

Υ w (s) + Ψ

(

s, v(s),
∫ s

0
q(s, ζ )ϕ

(
s, ζ , v(ζ )

)
dζ

)}

ds
∥
∥
∥
∥

≤
∫ t–ε

0

∥
∥Kν(t – ε – s)Kν(ε) – Kν(t – s)

∥
∥
(
N1 + N2w̄q

∗)δ ds

+ b (1+νγ )(1–μ)M̂
∫ t–ε

0

∥
∥Kν(t – ε – s)Kν(ε) – Kν(t – s)

∥
∥ds

+ CP δ
(
N1 + N2w̄q

∗) ε–νγ

(–νγ )
+ M̂ CP b (1+νγ )(1–μ) ε–νγ

(–νγ )
, (–νγ ) > 0.
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Clearly,

∥
∥Pεy(t) – Py(t)

∥
∥ −→ 0 as ε −→ 0.

We have shown that the set {Py(t) : y ∈ Bδ(J)} is arbitrarily close to the relatively compact
set {Pεy(t) : y ∈ Bδ(J)}. This implies {Py(t) : y ∈ Bδ(J′)} is relatively compact in V . Also, by
Lemma 3.1 and Lemma 3.2, the operatorP : Bδ(J′) −→ Bδ(J′) is bounded, continuous, and
equicontinuous in V . So by the Arzela–Ascoli theorem, {Py(t) : y ∈ Bδ(J′)} is a compact
operator. Hence, by Schauder’s fixed point theorem, P has at least one fixed point y∗ ∈
Bδ(J′).

Let v∗(t) = t(1+νγ )(μ–1)y∗(t). Then v∗ is a mild solution of Eq. (1.1). This completes the
proof. �

4 Approximate controllability
In this section, we discuss the approximate controllability of Eq. (1.1).

The system of equations Eq. (1.1) is said to be approximate controllable on [0, b] if, for
every desired final state vb ∈ V and ε > 0, there exists a control function w ∈ L2(J,W) such
that the mild solution ′v ′ of Eq. (1.1) satisfies

∥
∥v(b) – vb

∥
∥ < ε.

Following this, we first introduce the following two operators:

	b
0 =

∫ b

0
G(b , s)ΥΥ ∗G∗(b , s) ds,

R
(
λ,	b

0
)

=
(
λI + 	b

0
)–1, λ > 0,

(4.1)

where Υ ∗, O∗, K ∗
ν (t), and S∗

ν,μ(t) characterize the adjoint operators of Υ , O, Kν(t), and
Sν,μ(t) respectively,

G∗(b , s) =
m∑

k =1

χtk (s)S∗
ν,μ(b)O∗K ∗

ν (tk – s) + χt(s)K ∗
ν (b – s), s ∈ [0, b].

Theorem 4.1 Let A ∈ �
γ
ω for –1 < γ < 0 and 0 < ω < π

2 . Assume that assumptions (A1)–
(A5) and Proposition 2.3 hold. The system of equations Eq. (1.1) is approximate controllable
on J if λR (λ,	b

0) −→ 0 as λ−→ 0+ in the strong operator topology.

Proof By Theorem 3.1, the system of equations Eq. (1.1) has at least one mild solution
vλ ∈ Bδ given by

vλ(t) =
∫ b

0
G(t, s)

{

Υ wλ(s) +Ψ
(

s, vλ(s),
∫ s

0
q(s, ζ )ϕ

(
s, ζ , vλ(ζ )

)
dζ

)}

ds, t ∈ J, (4.2)

where we define the control function wλ as

wλ(t) = Υ ∗G∗(b , t)R
(
λ,	b

0
)
ϑ

(
v(·)) (4.3)
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with

ϑ
(
v(·)) = vb –

∫ b

0
G(b , s)Ψ

(

s, v(s),
∫ s

0
q(s, ζ )ϕ

(
s, ζ , v(ζ )

)
dζ

)

ds. (4.4)

At t = b ,

vλ(b) =
∫ b

0
G(b , s)

{

Υ wλ(s) + Ψ

(

s, vλ(s),
∫ s

0
q(s, ζ )ϕ

(
s, ζ , vλ(ζ )

)
dζ

)}

ds

= vb – ϑ
(
vλ(·)) +

∫ b

0
G(b , s)Υ wλ(s) ds

= vb – ϑ
(
vλ(·)) +

∫ b

0
G(b , s)ΥΥ ∗G∗(b , s)R

(
λ,	b

0
)
ϑ

(
vλ(·))ds

= vb –
(
λI + 	b

0
)
.

1
(λI + 	b

0)
ϑ

(
vλ(·)) + 	b

0R
(
λ,	b

0
)
ϑ

(
vλ(·))

= vb –
(
λI + 	b

0
)
R

(
λ,	b

0
)
ϑ

(
vλ(·)) + 	b

0R
(
λ,	b

0
)
ϑ

(
vλ(·))

�⇒ vλ(b) = vb – λR
(
λ,	b

0
)
ϑ

(
vλ(·)), (4.5)

(∫ b

0

∥
∥
∥
∥Ψ

(

s, vλ(s),
∫ s

0
q(s, ζ )ϕ

(
s, ζ , v(ζ )

)
dζ

)∥
∥
∥
∥

2) 1
2

≤
(∫ b

0

(
ψ1(s)‖vλ‖ + ψ2(s)w̄q

∗‖vλ‖
)2 ds

) 1
2

≤
(∫ b

0

(
ψ1(s)δ + ψ2(s)w̄q

∗δ
)2 ds

) 1
2

≤ b
1
2 δ

(
N 2

1 + N 2
2 w̄ 2

q
∗2 + 2N1N2w̄q

∗) 1
2 ,

which implies that the sequence {Ψ (·, vλ(·), ·) : λ > 0} is bounded in the Hilbert space
L2(J, W ). Therefore, there exists a subsequence of the sequence {Ψ (·, vλ(·), ·) : λ > 0} con-
verging weakly to some point �(·) ∈ L2(J, W ).

Let us write

� = vb –
∫ b

0
G(b , s)�(s) ds. (4.6)

Hence, by Eqs. (4.4) and (4.6), we have

∥
∥ϑ(vλ) – �

∥
∥ ≤

∥
∥
∥
∥

∫ b

0
G(b , s)

[

Ψ

(

s, vλ(s),
∫ s

0
q(s, ζ )ϕ

(
s, ζ , v(ζ )

)
dζ

)

– �(s)
]

ds
∥
∥
∥
∥. (4.7)

By the compactness of operators Kν(t) and Sν,μ(t) for t > 0, one gets the compactness of
Green’s function G(t, s) for t, s > 0, which implies that

∥
∥
∥
∥

∫ b

0
G(b , s)

[

Ψ

(

s, vλ(s),
∫ s

0
q(s, ζ )ϕ

(
s, ζ , v(ζ )

)
dζ

)

– �(s)
]

ds
∥
∥
∥
∥

−→ 0 as λ−→ 0+.
(4.8)
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Thus from Eq. (4.7) and Eq. (4.8) we get

∥
∥ϑ(vλ) – �

∥
∥ −→ 0 as λ−→ 0+. (4.9)

Equation (4.5) implies that

∥
∥vλ(b) – vb

∥
∥ ≤ ∥

∥λR
(
λ,	b

0
)
ϑ(vλ)

∥
∥

≤ ∥
∥λR

(
λ,	b

0
)
�

∥
∥ +

∥
∥λR

(
λ,	b

0
)∥
∥ · ∥∥ϑ(vλ) – �

∥
∥

−→ 0 as λ−→ 0+ (by the stated condition and Eq. (4.9)).

Hence the approximate controllability of Eq. (1.1). �

5 Applications
Here we investigate the proposed results for the following Cauchy problem:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

HDν,μ
0+ v(t , x) = – ∂2v(t ,x)

∂x2 + ℘w (t , x) + cos2 tv(t,x)
(20+et)

+ e– t
2

15
∫ t

0 e–s sin(v(s, x)) ds, x ∈ [0,π ], t ∈ J,

v(t, 0) = v(t,π ) = 0, t ∈ J,

I (1–ν)(1–μ)
0+ v(0, x) =

∑m

k =1 ck v(tk , x), x ∈ [0,π ],

(5.1)

in the Banach space V = C η[0,π ], 0 < η < 1, where ν = 1
4 , μ = 1

2 , ℘ > 0 and ck ∈ R,
k = 1, 2, . . . ,m, are such that

∑m

k =1 |ck | < 1
MS

. On substituting v(t , x) = v(t ), Eq. (5.1) reduces
to Eq. (1.1) with A = –∂2v

∂x2 and D(A) = {v ∈ C η+2[0,π ] such that v(t, 0) = v(t,π ) = 0}. It fol-

lows from article [37] that there exist constants ρ, ε > 0 such that A + ρ ∈ �
η
2 –1
π
2 –ε(V). The

compactness of semigroup {T(t)} follows from (Lemma 4.66) [42]. Since D(A) ∈ C 2+η[0,π ]
and C 2+η[0,π ] is embedded in C η[0,π ], the compactness of resolvent operators follows for
every η > 0.

Ψ

(

t, v(t),
∫ t

0
q(t, s)ϕ

(
t, s, v(s)

)
ds

)

=
cos2 tv(t)
(20 + et)

+
e –t

2

15

∫ t

0
e–s sin v(s) ds.

The bounded linear operator Υ : W = V −→ V is defined as Υ w (t) = ℘w (t).
Following this discussion and the definition of function Ψ and bounded operator Υ , it

is easy to verify that assumptions (A1)–(A5) hold with

N1 =
1

20 + eb
, N2 =

e –b
2

15
, w̄ =

(
1 – e–b), and q

∗ = 1.

Hence the existence and approximate controllability of Eq. (5.1) follow from Theorem 3.1
and Theorem 4.1 respectively.

6 Conclusion
In this paper, we discussed the approximate controllability of Hilfer fractional differential
equations with almost sectorial operators. We first prove the existence of mild solutions
for similar equations by applying fixed point theory. We will try to investigate the exact
controllability and stability of a similar problem in our future research work.
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