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Abstract
In this article, a hybrid technique of Elzaki transformation and decomposition method
is used to solve the Navier–Stokes equations with a Caputo fractional derivative. The
numerical simulations and examples are presented to show the validity of the
suggested method. The solutions are determined for the problems of both fractional
and integer orders by a simple and straightforward procedure. The obtained results
are shown and explained through graphs and tables. It is observed that the derived
results are very close to the actual solutions of the problems. The fractional solutions
are of special interest and have a strong relation with the solution at the integer order
of the problems. The numerical examples in this paper are nonlinear and thus handle
its solutions in a sophisticated manner. It is believed that this work will make it easy to
study the nonlinear dynamics, arising in different areas of research and innovation.
Therefore, the current method can be extended for the solution of other higher-order
nonlinear problems.

Keywords: Elzaki transformation; Adomian decomposition method; Navier–Stokes
equations; Caputo operator

1 Introduction
Leibnitz conceived of a fraction in the derivative and it was discovered that fractional
calculus (FC) is better suited to model various scientific processes than classical calculus.
The researchers are motivated because the theory of fractional calculus interprets nature’s
truth in an excellent and systematic way [1–3]. In this connection, the researchers have
also investigated that fractional calculus of non-integer-order derivatives are very useful
in describing numerous problems of scientific value, such as diffusion processes, damping
laws and rheology [4–8]. Various aspects of fractional calculus are given by Podlubny [2],
Caputo [5], Kiryakova [6], Jafari and Seifi [7, 8], Momani and Shawagfeh [9], Oldham and
Spanier [10], Diethelm et al. [11], Miller and Ross [1], Kemple and Beyer [12], Kilbas and
Trujillo [13].
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Fractional differential equations (FDEs) as a part of FC are considered to be the most
popular and important tool to describe and model various phenomena in nature such as
earthquake nonlinear oscillations, and the involvement of fractional derivatives in fluid-
dynamic traffic model eliminates the insufficiency arising in the process of continuum
traffic flow. FDEs are also used in the simulations of mathematical biology, chemical and
many other engineering and physical processes [14–24]. For engineers, physicists, and
mathematicians, nonlinear problems are important, namely because in nature most of
the physical systems are nonlinear. Nonlinear equations, however, are hard to solve and
lead to interesting phenomena. The actual or exact solutions of the evolution processes
have an important role in the study of high-order nonlinear problems.

Recently, mathematicians have had much attention for the approximate and analytical
solutions of FDEs and had developed important mathematical techniques to solve FDEs.
The well-known techniques regarding the solution of FDEs are the Adomian decomposi-
tion method (ADM) [25, 26], finite difference method (FDM) [27], the differential trans-
form method (DTM) [28, 29], the homotopy perturbation transform method (HPTM)
[30–32], the Haar wavelet method (HWM) [33, 34], the differential transform method
(DTM) [35–37], the variational iteration transform method (VIM) [38] and many others.

In 1822, Claude Louis and Gabriel Stokes were the first to develop the Navier–Stokes
(N–S) equation. The N–S model is considered to be an important model as it explained
many physical processes, such as ocean currents, weather, air flow around a wing and water
flow in pipes, which are arising in different areas of applied sciences [45]. The relation of
viscous fluid verses rigid bodies is also investigated with the help of the N–S equation and
considered to be the best tool in the field of meteorology and other related subjects [46].

Several mathematicians have used various techniques to solve the N–S equation. Kumar
et al. have introduced a modified Laplace decomposition technique for finding an analyt-
ical solution of the Navier–Stokes fractional equation [47]. The combination of fractional
complex transform (FCT) and He–Laplace transform (HLT) approach is implemented for
solving the N–S equation [48]. The fractional reduced differential transformation method
(FRDM) is also used for finding a time-fractional N–S equation numerical solution [49];
see also [50].

In the present work, we have investigated the solutions of the N–S equations of fractional
order with the help of Elzaki transform decomposition method. The proposed method is a
mixture of Elzaki transformation [39] and ADM [40, 41]. The Elzaki transformation [42–
44] and ADM [40, 41] have been used separately for the solutions linear and nonlinear
ordinary and partial differential equations (PDEs) and provide the actual solutions in the
form of convergent series. In this research work, the analytical solutions of nonlinear N–S
equations are calculated by using ETDM. The solutions are calculated for both fractional
and integer orders of the problems. The results are explained and verified with the help
of graphs and tables. It is analyzed that the present technique provides the solutions of
fractional-order problems in a very simple and straightforward procedure. The present
method allows one to calculate the solutions of other high nonlinear problems in various
branches of applied sciences.

2 Definitions and preliminaries concepts
We have provided some clear and most important concepts in this unit concerning frac-
tional calculus.
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2.1 Definition
The operator Dδ of order δ defined by Abel–Riemann (A–R) as

Dδμ(ψ) =

⎧
⎨

⎩

dm

dψm μ(ψ), δ = m,
1

�(m–δ)
d

dψm
∫ ψ

0
μ(T )

(ψ–T )δ–m+1 dT , m – 1 < δ < m,

where m ∈ z+, δ ∈ R+ and

D–δμ(ψ) =
1

�(δ)

∫ ψ

0
(ψ – T )δ–1μ(T ) dT , 0 < δ ≤ 1.

2.2 Definition
The A–R integration operator Jδ of fractional order is defined as

Jδμ(ψ) =
1

�(δ)

∫ ψ

0
(ψ – T )δ–1μ(T ) dT , T > 0, δ > 0.

Following Podlubny we may have

JδT n =
�(n + 1)

�(n + δ + 1)
T n+δ ,

DδT n =
�(n + 1)

�(n – δ + 1)
T n–δ .

2.3 Definition
The operator Dδ in Caputo sense having order δ is defined as

Dδμ(ψ) =

⎧
⎨

⎩

1
�(m–δ)

∫ ψ

0
μm(T )

(ψ–T )δ–m+1 dT , m – 1 < δ < m,
dm

dT m μ(ψ), δ = m,

having the following properties:

(a) Dδ
T Jδ

T h(T ) = h(T ),

(b) Jδ
T Dδ

T h(T ) = h(T ) –
m∑

k=0

hk(0+)T k

k!
, for T > 0, and m – 1 < δ ≤ m, m ∈ N .

3 Elzaki transform (ET)
Modified Sumudu transform or ET definition for the function f(t) is given as

E
[
h(T )

]
= H(q) = q

∫ ∞

0
h(T )e

–T
q dT , T > 0.

The Elzaki transform is a very efficient and strong technique to solve the integral equation
that the Sumudu transform method cannot match.

Integration by parts can be used in order to find ET of partial derivatives as follows.
1. E[ ∂h(ψ ,T )

∂T ] = 1
q H(ψ , q) – qh(ψ , 0).

2. E[ ∂2h(ψ ,T )
∂T 2 ] = 1

q2 H(ψ , q) – h(ψ , 0) – q ∂h(ψ ,0)
∂T .
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3. E[ ∂h(ψ ,T )
∂ψ

] = d
dψ

H(ψ , q).

4. E[ ∂2h(ψ ,T )
∂ψ2 ] = d2

dψ2 H(ψ , q).

3.1 ET of Caputo fractional derivative
Theorem 1 Let G(s) be the Laplace transform of h(T ); then ET H(q) of h(T ) is defined as

H(q) = qG
(

1
q

)

.

Theorem 2 If H(q) is the ET of the function h(T ), then

E
[
Dδh(T )

]
=

H(q)
qδ

–
n–1∑

k=0

qk–δ+2h(k)(0), n – 1 < δ ≤ n.

4 The procedure of ETDM
In this section we define the solution of ETDM for the system of fractional partial differ-
ential equations,

Dδ
T μ(ψ ,T ) + Ḡ1(μ,ν) + N1(μ,ν) – P1(ψ ,T ) = 0,

Dδ
T ν(ψ ,T ) + Ḡ2(μ,ν) + N2(μ,ν) – P2(ψ ,T ) = 0,

m – 1 < δ ≤ m,

(1)

having initial conditions

μ(ψ , 0) = g1(ψ), ν(ψ , 0) = g2(ψ), (2)

where Dδ
T = ∂δ

∂T δ is the Caputo fractional derivative of order δ, Ḡ1, Ḡ2 and N1, N2 are linear
and non-linear functions, respectively, and P1, P2 are source operators.

Taking the Elzaki transform on both sides of Eq. (1), we get

E
[
Dδ

T μ(ψ ,T )
]

+ E
[
Ḡ1(μ,ν) + N1(μ,ν) – P1(ψ ,T )

]
= 0,

E
[
Dδ

T ν(ψ ,T )
]

+ E
[
Ḡ2(μ,ν) + N2(μ,ν) – P2(ψ ,T )

]
= 0.

(3)

Using the Elzaki transform differentiation property, we obtain

E
[
μ(ψ ,T )

]
= sδ

m–1∑

k=0

s2+k–δ ∂kμ(ψ ,T )
∂kT

∣
∣
∣
∣
T =0

+ sδE
[
P1(ψ ,T )

]
– sδE

{
Ḡ1(μ,ν) + N1(μ,ν)

}
],

E
[
ν(ψ ,T )

]
= sδ

m–1∑

k=0

s2+k–δ ∂kν(ψ ,T )
∂kT

∣
∣
∣
∣
T =0

+ sδE
[
P2(ψ ,T )

]
– sδE

{
Ḡ2(μ,ν) + N2(μ,ν)

}
],

(4)

ETDM defines the infinite series solution of μ(ψ ,T ) and ν(ψ ,T ),

μ(ψ ,T ) =
∞∑

m=0

μm(ψ ,T ), ν(ψ ,T ) =
∞∑

m=0

νm(ψ ,T ). (5)
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The decomposition of the Adomian polynomials of nonlinear terms N1 and N2 is defined
as

N1(μ,ν) =
∞∑

m=0

Am, N2(μ,ν) =
∞∑

m=0

Bm. (6)

All types of nonlinearity can be represented by the Adomian polynomials as

Am =
1

m!

[
∂m

∂λm

{

N1

( ∞∑

k=0

λkμk ,
∞∑

k=0

λkνk

)}]

λ=0

,

Bm =
1

m!

[
∂m

∂λm

{

N2

( ∞∑

k=0

λkμk ,
∞∑

k=0

λkνk

)}]

λ=0

.

(7)

Substituting Eq. (5) and Eq. (7) into (4) gives

E

[ ∞∑

m=0

μm(ψ ,T )

]

= sδ

m–1∑

k=0

s2+k–δ ∂kμ(ψ ,T )
∂kT

∣
∣
∣
∣
T =0

+ sδE

× {
P1(ψ ,T )

}
– sδE

{

Ḡ1

( ∞∑

m=0

μm,
∞∑

m=0

νm

)

+
∞∑

m=0

Am

}

,

E

[ ∞∑

m=0

νm(ψ ,T )

]

= sδ

m–1∑

k=0

s2+k–δ ∂kν(ψ ,T )
∂kT

∣
∣
∣
∣
T =0

+ sδE

× {
P2(ψ ,T )

}
– sδE

{

Ḡ2

( ∞∑

m=0

μm,
∞∑

m=0

νm

)

+
∞∑

m=0

Bm

}

.

(8)

Using the Elzaki inverse on both sides of Eq. (8), we get

∞∑

m=0

μm(ψ ,T ) = E–

[

sδ

m–1∑

k=0

s2+k–δ ∂kμ(ψ ,T )
∂kT

∣
∣
∣
∣
T =0

+ sδE

× {
P1(ψ ,T )

}
– sδE

{

Ḡ1

( ∞∑

m=0

μm,
∞∑

m=0

νm

)

+
∞∑

m=0

Am

}]

,

∞∑

m=0

νm(ψ ,T ) = E–

[

sδ

m–1∑

k=0

s2+k–δ ∂kν(ψ ,T )
∂kT

∣
∣
∣
∣
T =0

+ sδE

× {
P2(ψ ,T )

}
– sδE

{

Ḡ2

( ∞∑

m=0

μm,
∞∑

m=0

νm

)

+
∞∑

m=0

Bm

}]

,

(9)

we describe the following terms:

μ0(ψ ,T ) = E–

[

sδ

m–1∑

k=0

s2+k–δ ∂kμ(ψ ,T )
∂kT

∣
∣
∣
∣
T =0

+ sδE+{
P1(ψ ,T )

}
]

,

ν0(ψ ,T ) = E–

[

sδ

m–1∑

k=0

s2+k–δ ∂kν(ψ ,T )
∂kT

∣
∣
∣
∣
T =0

+ sδE+{
P2(ψ ,T )

}
]

,

(10)
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μ1(ψ ,T ) = –E–[
sδE+{

Ḡ1(μ0,ν0) + A0
}]

,

ν1(ψ ,T ) = –E–[
sδE+{

Ḡ2(μ0,ν0) + B0
}]

,

the general case, for m ≥ 1, is given by

μm+1(ψ ,T ) = –E–[
sδE+{

Ḡ1(μm,νm) + Am
}]

,

νm+1(ψ ,T ) = –E–[
sδE+{

Ḡ2(μm,νm) + Bm
}]

.

5 Numerical examples
5.1 Problem 1
Consider the two-dimensional fractional order Navier–Stokes equation

Dδ
T (μ) + μ

∂μ

∂ψ
+ ν

∂μ

∂ζ
= ρ

[
∂2μ

∂ψ2 +
∂2μ

∂ζ 2

]

+ q,

Dδ
T (ν) + μ

∂ν

∂ψ
+ ν

∂ν

∂ζ
= ρ

[
∂2ν

∂ψ2 +
∂2ν

∂ζ 2

]

– q,
(11)

with initial conditions

⎧
⎨

⎩

μ(ψ , ζ , 0) = – sin(ψ + ζ ),

ν(ψ , ζ , 0) = sin(ψ + ζ ).
(12)

After the Elzaki transformation of Eq. (11), we get

E
{

∂δμ

∂T δ

}

= E
[

–
(

μ
∂μ

∂ψ
+ ν

∂μ

∂ζ

)

+ ρ

{
∂2μ

∂ψ2 +
∂2μ

∂ζ 2

}

+ q
]

,

E
{

∂δν

∂T δ

}

= E
[

–
(

μ
∂ν

∂ψ
+ ν

∂ν

∂ζ

)

+ ρ

{
∂2ν

∂ψ2 +
∂2ν

∂ζ 2

}

– q
]

,

1
sδ

E
{
μ(ψ , ζ ,T )

}
– s2–δμ(ψ , ζ , 0) = E

[

–
(

μ
∂μ

∂ψ
+ ν

∂μ

∂ζ

)

+ ρ

{
∂2μ

∂ψ2 +
∂2μ

∂ζ 2

}

+ q
]

,

1
sδ

E
{
μ(ψ , ζ ,T )

}
– s2–δν(ψ , ζ , 0) = E

[

–
(

μ
∂ν

∂ψ
+ ν

∂ν

∂ζ

)

+ ρ

{
∂2ν

∂ψ2 +
∂2ν

∂ζ 2

}

– q
]

.

The simplified form of the above algorithm is

E
{
μ(ψ , ζ ,T )

}
= s2{μ(ψ , ζ , 0)

}
+ sδE

[

–
(

μ
∂μ

∂ψ
+ ν

∂μ

∂ζ

)

+ ρ

{
∂2μ

∂ψ2 +
∂2μ

∂ζ 2

}

+ q
]

,

E
{
ν(ψ , ζ ,T )

}
= s2{ν(ψ , ζ , 0)

}
= sδE

[

–
(

μ
∂ν

∂ψ
+ ν

∂ν

∂ζ

)

+ ρ

{
∂2ν

∂ψ2 +
∂2ν

∂ζ 2

}

– q
]

.
(13)
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Using the inverse Elzaki transformation, we obtain

μ(ψ , ζ ,T ) = μ(ψ , ζ , 0) + E–[
sδE{q}]

+ E–
[

sδE
[

–
(

μ
∂μ

∂ψ
+ ν

∂μ

∂ζ

)

+ ρ

{
∂2μ

∂ψ2 +
∂2μ

∂ζ 2

}]]

,

ν(ψ , ζ ,T ) = ν(ψ , ζ , 0) – E–[
sδE{q}]

+ E–
[

sδE
[

–
(

μ
∂ν

∂ψ
+ ν

∂ν

∂ζ

)

+ ρ

{
∂2ν

∂ψ2 +
∂2ν

∂ζ 2

}]]

.

(14)

Assume that the unknown functions μ(ψ , ζ ,T ) and ν(ψ , ζ ,T ) have the following solution
in infinite series form:

μ(ψ , ζ ,T ) =
∞∑

m=0

μm(ψ , ζ ,T ) and ν(ψ , ζ ,T ) =
∞∑

m=0

νm(ψ , ζ ,T ).

Remember that μμψ =
∑∞

m=0 Am, νμζ =
∑∞

m=0 Bm, μνψ =
∑∞

m=0 Cm and ννζ =
∑∞

m=0 Dm

are the Adomian polynomials and the nonlinear terms were characterized. Equation (14)
can be rewritten in the form using certain terms

∞∑

m=0

μm(ψ , ζ ,T ) = μ(ψ , ζ , 0) + E–[
sδE{q}]

+ E–

[

sδE

[

–

( ∞∑

m=0

Am +
∞∑

m=0

Bm

)

+ ρ

{
∂2μ

∂ψ2 +
∂2μ

∂ζ 2

}]]

,

∞∑

m=0

νm(ψ , ζ ,T ) = ν(ψ , ζ , 0) – E–[
sδE{q}]

+ E–

[

sδE

[

–

( ∞∑

m=0

Cm +
∞∑

m=0

Dm

)

+ ρ

{
∂2ν

∂ψ2 +
∂2ν

∂ζ 2

}]]

,

∞∑

m=0

μm(ψ , ζ ,T ) = – sin(ψ + ζ ) +
qT δ

�(δ + 1)
+ E–

[

sδE

[

–

( ∞∑

m=0

Am +
∞∑

m=0

Bm

)]]

+ E–

[

sδE

[

ρ

{ ∞∑

m=0

∂2μm

∂ψ2 +
∞∑

m=0

∂2μm

∂ζ 2

}]]

,

∞∑

m=0

νm(ψ , ζ ,T ) = sin(ψ + ζ ) –
qT δ

�(δ + 1)
E–

[

sδE

[

–

( ∞∑

m=0

Cm +
∞∑

m=0

Dm

)]]

+ E–

[

sδE

[

ρ

{ ∞∑

m=0

∂2νm

∂ψ2 +
∞∑

m=0

∂2νm

∂ζ 2

}]]

.

(15)

According to Eq. (7), all types of nonlinearity can be represented by the Adomian polyno-
mials as

A0 = μ0
∂μ0

∂ψ
, A1 = μ0

∂μ1

∂ψ
+ μ1

∂μ0

∂ψ
,

B0 = ν0
∂μ0

∂ζ
, B1 = ν0

∂μ1

∂ζ
+ ν1

∂μ0

∂ζ
,
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C0 = μ0
∂ν0

∂ψ
, C1 = μ0

∂ν1

∂ψ
+ μ1

∂ν0

∂ψ
,

D0 = ν0
∂ν0

∂ψ
, D1 = ν0

∂ν1

∂ψ
+ ν1

∂ν0

∂ψ
.

Thus, by comparing both sides of Eq. (15) we can get easily the recursive relationship

μ0(ψ , ζ ,T ) = – sin(ψ + ζ ) +
qT δ

�(δ + 1)
, ν0(ψ , ζ ,T ) = sin(ψ + ζ ) –

qT δ

�(δ + 1)
.

For m = 0

μ1(ψ , ζ ,T ) = sin(ψ + ζ )
2ρT δ

�(δ + 1)
, ν1(ψ , ζ ,T ) = – sin(ψ + ζ )

2ρT δ

�(δ + 1)
.

For m = 1

μ2(ψ , ζ ,T ) = – sin(ψ + ζ )
(2ρ)2T 2δ

�(2δ + 1)
, ν2(ψ , ζ ,T ) = sin(ψ + ζ )

(2ρ)2T 2δ

�(2δ + 1)
.

For m = 2

μ3(ψ , ζ ,T ) = sin(ψ + ζ )
(2ρ)3T 3δ

�(3δ + 1)
,

ν3(ψ , ζ ,T ) = – sin(ψ + ζ )
(2ρ)3T 3δ

�(3δ + 1)
,

....

In the same manner, the remaining μm and νm (m > 3) elements of the ETDM solution
are easy to obtain. So we describe the alternatives sequence as

μ(ψ , ζ ,T ) =
∞∑

m=0

μm(ψ , ζ ) = μ0(ψ , ζ ) + μ1(ψ , ζ ) + μ2(ψ , ζ ) + μ3(ψ , ζ ) + · · · ,

ν(ψ , ζ ,T ) =
∞∑

m=0

νm(ψ , ζ ) = ν0(ψ , ζ ) + ν1(ψ , ζ ) + ν2(ψ , ζ ) + ν3(ψ , ζ ) + · · · ,

μ(ψ , ζ ,T ) = – sin(ψ + ζ ) +
qT δ

�(δ + 1)
+ sin(ψ + ζ )

2ρT δ

�(δ + 1)

– sin(ψ + ζ )
(2ρ)2T 2δ

�(2δ + 1)
+ sin(ψ + ζ )

(2ρ)3T 3δ

�(3δ + 1)
– · · ·

– sin(ψ + ζ )
∞∑

m=0

(–2ρ)mT mδ

�(mδ + 1)
,

ν(ψ , ζ ,T ) = sin(ψ + ζ ) –
qT δ

�(δ + 1)
– sin(ψ + ζ )

2ρT δ

�(δ + 1)

× sin(ψ + ζ )
(2ρ)2T 2δ

�(2δ + 1)
– sin(ψ + ζ )

(2ρ)3T 3δ

�(3δ + 1)
+ · · ·

+ sin(ψ + ζ )
∞∑

m=0

(–2ρ)mT mδ

�(mδ + 1)
.
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At δ = 1 and q = 0, the exact solution of Eq. (11) is

μ(ψ , ζ ,T ) = –e–2ρT sin(ψ + ζ ),

ν(ψ , ζ ,T ) = e–2ρT sin(ψ + ζ ).
(16)

5.2 Problem 2
Consider the system of fractional order Navier–Stokes equation

Dδ
T (μ) + μ

∂μ

∂ψ
+ ν

∂μ

∂ζ
= ρ

[
∂2μ

∂ψ2 +
∂2μ

∂ζ 2

]

+ q,

Dδ
T (ν) + μ

∂ν

∂ψ
+ ν

∂ν

∂ζ
= ρ

[
∂2ν

∂ψ2 +
∂2ν

∂ζ 2

]

– q,
(17)

with initial conditions

⎧
⎨

⎩

μ(ψ , ζ , 0) = –eψ+ζ ,

ν(ψ , ζ , 0) = eψ+ζ .
(18)

After the Elzaki transformation of Eq. (17), we get

E
{

∂δμ

∂T δ

}

= E
[

–
(

μ
∂μ

∂ψ
+ ν

∂μ

∂ζ

)

+ ρ

{
∂2μ

∂ψ2 +
∂2μ

∂ζ 2

}

+ q
]

,

E
{

∂δν

∂T δ

}

= E
[

–
(

μ
∂ν

∂ψ
+ ν

∂ν

∂ζ

)

+ ρ

{
∂2ν

∂ψ2 +
∂2ν

∂ζ 2

}

– q
]

,

1
sδ

E
{
μ(ψ , ζ ,T )

}
– s2–δμ(ψ , ζ , 0) = E

[

–
(

μ
∂μ

∂ψ
+ ν

∂μ

∂ζ

)

+ ρ

{
∂2μ

∂ψ2 +
∂2μ

∂ζ 2

}

+ q
]

,

1
sδ

E
{
μ(ψ , ζ ,T )

}
– s2–δν(ψ , ζ , 0) = E

[

–
(

μ
∂ν

∂ψ
+ ν

∂ν

∂ζ

)

+ ρ

{
∂2ν

∂ψ2 +
∂2ν

∂ζ 2

}

– q
]

.

The simplified form of the above algorithm is

E
{
μ(ψ , ζ ,T )

}
= s2{μ(ψ , ζ , 0)

}
+ sδE

[

–
(

μ
∂μ

∂ψ
+ ν

∂μ

∂ζ

)

+ ρ

{
∂2μ

∂ψ2 +
∂2μ

∂ζ 2

}

+ q
]

,

E
{
ν(ψ , ζ ,T )

}
= s2{ν(ψ , ζ , 0)

}
= sδE

[

–
(

μ
∂ν

∂ψ
+ ν

∂ν

∂ζ

)

+ ρ

{
∂2ν

∂ψ2 +
∂2ν

∂ζ 2

}

– q
]

.
(19)

Using the inverse Elzaki transformation, we obtain

μ(ψ , ζ ,T ) = μ(ψ , ζ , 0) + E–[
sδE+{q}]

+ E–
[

sδE
[

–
(

μ
∂μ

∂ψ
+ ν

∂μ

∂ζ

)

+ ρ

{
∂2μ

∂ψ2 +
∂2μ

∂ζ 2

}]]

,

ν(ψ , ζ ,T ) = ν(ψ , ζ , 0) – E–[
sδE{q}]

+ E–
[

sδE
[

–
(

μ
∂ν

∂ψ
+ ν

∂ν

∂ζ

)

+ ρ

{
∂2ν

∂ψ2 +
∂2ν

∂ζ 2

}]]

.

(20)
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Assume that the unknown functions μ(ψ , ζ ,T ) and ν(ψ , ζ ,T ) have the following solution
in infinite series form:

μ(ψ , ζ ,T ) =
∞∑

m=0

μm(ψ , ζ ,T ) and ν(ψ , ζ ,T ) =
∞∑

m=0

νm(ψ , ζ ,T ).

Remember that μμψ =
∑∞

m=0 Am, νμζ =
∑∞

m=0 Bm, μνψ =
∑∞

m=0 Cm and ννζ =
∑∞

m=0 Dm

are the Adomian polynomials and the nonlinear terms were characterized. Equation (20)
can be rewritten in the form using certain terms

∞∑

m=0

μm(ψ , ζ ,T ) = μ(ψ , ζ , 0) + E–[
sδE{q}]

+ E–

[

sδE

[

–

( ∞∑

m=0

Am +
∞∑

m=0

Bm

)

+ ρ

{
∂2μ

∂ψ2 +
∂2μ

∂ζ 2

}]]

,

∞∑

m=0

νm(ψ , ζ ,T ) = ν(ψ , ζ , 0) – E–[
sδE{q}]

+ E–

[

sδE

[

–

( ∞∑

m=0

Cm +
∞∑

m=0

Dm

)

+ ρ

{
∂2ν

∂ψ2 +
∂2ν

∂ζ 2

}]]

,

∞∑

m=0

μm(ψ , ζ ,T ) = –e(ψ+ζ ) +
qT δ

�(δ + 1)
+ E–

[

sδE

[

–

( ∞∑

m=0

Am +
∞∑

m=0

Bm

)]]

+ E–

[

sδE

[

ρ

{ ∞∑

m=0

∂2μm

∂ψ2 +
∞∑

m=0

∂2μm

∂ζ 2

}]]

,

∞∑

m=0

νm(ψ , ζ ,T ) = e(ψ+ζ ) –
qT δ

�(δ + 1)
E–

[

sδE

[

–

( ∞∑

m=0

Cm +
∞∑

m=0

Dm

)]]

+ E–

[

sδE

[

ρ

{ ∞∑

m=0

∂2νm

∂ψ2 +
∞∑

m=0

∂2νm

∂ζ 2

}]]

.

(21)

According to Eq. (7), all types of nonlinearity can be represented by the Adomian polyno-
mials as

A0 = μ0
∂μ0

∂ψ
, A1 = μ0

∂μ1

∂ψ
+ μ1

∂μ0

∂ψ
,

B0 = ν0
∂μ0

∂ζ
, B1 = ν0

∂μ1

∂ζ
+ ν1

∂μ0

∂ζ
,

C0 = μ0
∂ν0

∂ψ
, C1 = μ0

∂ν1

∂ψ
+ μ1

∂ν0

∂ψ
,

D0 = ν0
∂ν0

∂ψ
, D1 = ν0

∂ν1

∂ψ
+ ν1

∂ν0

∂ψ
.

Thus, by comparing both sides of Eq. (21) we can get easily the recursive relationship

μ0(ψ , ζ ,T ) = –eψ+ζ +
qT δ

�(δ + 1)
, ν0(ψ , ζ ,T ) = eψ+ζ –

qT δ

�(δ + 1)
.
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For m = 0

μ1(ψ , ζ ,T ) = –eψ+ζ 2ρT δ

�(δ + 1)
, ν1(ψ , ζ ,T ) = eψ+ζ 2ρT δ

�(δ + 1)
.

For m = 1

μ2(ψ , ζ ,T ) = –eψ+ζ (2ρ)2T 2δ

�(2δ + 1)
, ν2(ψ , ζ ,T ) = eψ+ζ (2ρ)2T 2δ

�(2δ + 1)
.

For m = 2

μ3(ψ , ζ ,T ) = –eψ+ζ (2ρ)3T 3δ

�(3δ + 1)
, ν3(ψ , ζ ,T ) = eψ+ζ (2ρ)3T 3δ

�(3δ + 1)
.

....

In the same manner, the remaining μm and νm (m > 3) elements of the ETDM solution are
easy to obtain. So we describe the alternatives sequence as

μ(ψ , ζ ,T ) =
∞∑

m=0

μm(ψ , ζ ) = μ0(ψ , ζ ) + μ1(ψ , ζ ) + μ2(ψ , ζ ) + μ3(ψ , ζ ) + · · · ,

ν(ψ , ζ ,T ) =
∞∑

m=0

νm(ψ , ζ ) = ν0(ψ , ζ ) + ν1(ψ , ζ ) + ν2(ψ , ζ ) + ν3(ψ , ζ ) + · · · ,

μ(ψ , ζ ,T ) = –eψ+ζ +
qT δ

�(δ + 1)
– eψ+ζ 2ρT δ

�(δ + 1)

– eψ+ζ (2ρ)2T 2δ

�(2δ + 1)
– eψ+ζ (2ρ)3T 3δ

�(3δ + 1)
– · · · – eψ+ζ

∞∑

m=0

(–2ρ)mT mδ

�(mδ + 1)
,

ν(ψ , ζ ,T ) = eψ+ζ –
qT δ

�(δ + 1)
+ eψ+ζ 2ρT δ

�(δ + 1)

+ eψ+ζ (2ρ)2T 2δ

�(2δ + 1)
+ eψ+ζ (2ρ)3T 3δ

�(3δ + 1)
+ · · · – eψ+ζ

∞∑

m=0

(–2ρ)mT mδ

�(mδ + 1)
.

At δ = 1 and q = 0, the exact solution of Eq. (17) is

μ(ψ , ζ ,T ) = –eψ+ζ+2ρT ,

ν(ψ , ζ ,T ) = eψ+ζ+2ρT .
(22)

5.3 Problem 3
Consider the system of fractional order Navier–Stokes equations

Dδ
T (μ) + μ

∂μ

∂ψ
+ ν

∂μ

∂ζ
+ ω

∂μ

∂γ
= ρ

[
∂2μ

∂ψ2 +
∂2μ

∂ζ 2 +
∂2μ

∂γ 2

]

+ q1,

Dδ
T (ν) + μ

∂ν

∂ψ
+ ν

∂ν

∂ζ
+ ω

∂ν

∂γ
= ρ

[
∂2ν

∂ψ2 +
∂2ν

∂ζ 2 +
∂2ν

∂γ 2

]

+ q2,

Dδ
T (ω) + μ

∂ω

∂ψ
+ ν

∂ω

∂ζ
+ ω

∂ω

∂γ
= ρ

[
∂2ω

∂ψ2 +
∂2ω

∂ζ 2 +
∂2ω

∂γ 2

]

+ q3,

(23)
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with initial conditions

⎧
⎪⎪⎨

⎪⎪⎩

μ(ψ , ζ ,γ , 0) = –0.5ψ + ζ + γ ,

ν(ψ , ζ ,γ , 0) = ψ – 0.5ζ + γ ,

ω(ψ , ζ ,γ , 0) = ψ + ζ – 0.5γ .

(24)

Furthermore, if ρ is known, then q1 = – 1
ρ

∂g
∂ψ

, q2 = – 1
ρ

∂g
∂ζ

and q3 = – 1
ρ

∂g
∂γ

can be determined.
After the Elzaki transformation of Eq. (23), we get

E
{

∂δμ

∂T δ

}

= E
[

–
(

μ
∂μ

∂ψ
+ ν

∂μ

∂ζ
+ ω

∂μ

∂γ

)]

+ E

{

ρ

{
∂2μ

∂ψ2 +
∂2μ

∂ζ 2 +
∂2μ

∂γ 2

}

+ q1

]

,

E
{

∂δν

∂T δ

}

= E
[

–
(

μ
∂ν

∂ψ
+ ν

∂ν

∂ζ
+ ω

∂ν

∂γ

)]

+ E
{

ρ

{
∂2ν

∂ψ2 +
∂2ν

∂ζ 2 +
∂2ν

∂γ 2

}

+ q2

]

,

E
{

∂δω

∂T δ

}

= E
[

–
(

μ
∂ω

∂ψ
+ ν

∂ω

∂ζ
+ ω

∂ω

∂γ

)]

+ E
[

ρ

{
∂2ω

∂ψ2 +
∂2ω

∂ζ 2 +
∂2ω

∂γ 2

}

+ q3

]

,

1
sδ

E
{
μ(ψ , ζ ,γ ,T )

}
– s2–δμ(ψ , ζ ,γ , 0)

= E
[

–
(

μ
∂μ

∂ψ
+ ν

∂μ

∂ζ
+ ω

∂μ

∂γ

)]

+ E
[

ρ

{
∂2μ

∂ψ2 +
∂2μ

∂ζ 2 +
∂2μ

∂γ 2

}

+ q1

]

,

1
sδ

E
{
ν(ψ , ζ ,γ ,T )

}
– s2–δν(ψ , ζ ,γ , 0)

= E
[

–
(

μ
∂ν

∂ψ
+ ν

∂ν

∂ζ
+ ω

∂ν

∂γ

)]

+ E

{

ρ

{
∂2ν

∂ψ2 +
∂2ν

∂ζ 2 +
∂2ν

∂γ 2

}

+ q2

]

,

1
sδ

E
{
ω(ψ , ζ ,γ ,T )

}
– s2–δω(ψ , ζ ,γ , 0)

= E
[

–
(

μ
∂ω

∂ψ
+ ν

∂ω

∂ζ
+ ω

∂ω

∂γ

)]

+ E
[

ρ

{
∂2ω

∂ψ2 +
∂2ω

∂ζ 2 +
∂2ω

∂γ 2

}

+ q3

]

.

The simplified form of the above algorithm is

E
{
μ(ψ , ζ ,γ ,T )

}
= s2μ(ψ , ζ ,γ , 0) + sδE

[

–
(

μ
∂μ

∂ψ
+ ν

∂μ

∂ζ
+ ω

∂μ

∂γ

)]

+ sδE
{

ρ

{
∂2μ

∂ψ2 +
∂2μ

∂ζ 2 +
∂2μ

∂γ 2

}

+ q1

]

,

E
{
ν(ψ , ζ ,γ ,T )

}
= s2ν(ψ , ζ ,γ , 0) + sδE

[

–
(

μ
∂ν

∂ψ
+ ν

∂ν

∂ζ
+ ω

∂ν

∂γ

)]

+ sδE
[

ρ

{
∂2ν

∂ψ2 +
∂2ν

∂ζ 2 +
∂2ν

∂γ 2

}

+ q2

]

,
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E
{
ω(ψ , ζ ,γ ,T )

}
= s2ω(ψ , ζ ,γ , 0) + sδE

[

–
(

μ
∂ω

∂ψ
+ ν

∂ω

∂ζ
+ ω

∂ω

∂γ

)]

+ sδE
[

ρ

{
∂2ω

∂ψ2 +
∂2ω

∂ζ 2 +
∂2ω

∂γ 2

}

+ q3

]

.

Using the inverse Elzaki transformation, we obtain

μ(ψ , ζ ,γ ,T ) = μ(ψ , ζ ,γ , 0) + E–
[

sδE
[

–
(

μ
∂μ

∂ψ
+ ν

∂μ

∂ζ
+ ω

∂μ

∂γ

)]]

+ E–
[

sδE
{

ρ

{
∂2μ

∂ψ2 +
∂2μ

∂ζ 2 +
∂2μ

∂γ 2

}

+ q1

]]

,

ν(ψ , ζ ,γ ,T ) = ν(ψ , ζ ,γ , 0) + E–
[

sδE
[

–
(

μ
∂ν

∂ψ
+ ν

∂ν

∂ζ
+ ω

∂ν

∂γ

)]]

+ E–
[

sδE
{

ρ

{
∂2ν

∂ψ2 +
∂2ν

∂ζ 2 +
∂2ν

∂γ 2

}

+ q2

]]

,

ω(ψ , ζ ,γ ,T ) = ω(ψ , ζ ,γ , 0) + E–
[

sδE
[

–
(

μ
∂ω

∂ψ
+ ν

∂ω

∂ζ
+ ω

∂ω

∂γ

)]]

+ E–
[

sδE
{

ρ

{
∂2ω

∂ψ2 +
∂2ω

∂ζ 2 +
∂2ω

∂γ 2

}

+ q3

]]

.

(25)

Assume that the unknown functions μ(ψ , ζ ,γ ,T ), ν(ψ , ζ ,γ ,T ) and ω(ψ , ζ ,γ ,T ) have the
following solution in infinite series form:

μ(ψ , ζ ,γ ,T ) =
∞∑

m=0

μm(ψ , ζ ,γ ,T ),

ν(ψ , ζ ,γ ,T ) =
∞∑

m=0

νm(ψ , ζ ,γ ,T ) and

ω(ψ , ζ ,γ ,T ) =
∞∑

m=0

ωm(ψ , ζ ,γ ,T ).

The Adomian polynomials of non-linear terms as, using such terms, Eq. (26) can be rewrit-
ten in the form

μμψ =
∞∑

m=0

Am, νμζ =
∞∑

m=0

Bm, ωμγ =
∞∑

m=0

Cm, μνψ =
∞∑

m=0

Dm,

ννζ =
∞∑

m=0

Em, ωνζ =
∞∑

m=0

Fm, μωψ =
∞∑

m=0

Gm,

νωζ =
∞∑

m=0

Hm and ωωζ =
∞∑

m=0

Im,

∞∑

m=0

μm(ψ , ζ ,γ ,T )

= μ(ψ , ζ ,γ , 0) + E–[
sδE{q1}

]
+ E–

[

sδE

[

–

( ∞∑

m=0

Am +
∞∑

m=0

Bm +
∞∑

m=0

Cm

)]]
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+ E–
[

sδE
{

ρ

{
∂2μm

∂ψ2 +
∂2μm

∂ζ 2 +
∂2μm

∂γ 2

}

+ q1

]]

,

∞∑

m=0

νm(ψ , ζ ,γ ,T )

= ν(ψ , ζ ,γ , 0) – E–[
sδE{q2}

]
+ E–

[

sδE

[

–

( ∞∑

m=0

Dm +
∞∑

m=0

Em +
∞∑

m=0

Fm

)]]

+ E–
[

sδE
{

ρ

{
∂2νm

∂ψ2 +
∂2νm

∂ζ 2 +
∂2νm

∂γ 2

}

+ q2

]]

,

(26)

∞∑

m=0

ωm(ψ , ζ ,γ ,T )

= ω(ψ , ζ ,γ , 0) – E–[
sδE{q3}

]
+ E–

[

sδE

[

–

( ∞∑

m=0

Gm +
∞∑

m=0

Hm +
∞∑

m=0

Im

)]]

+ E–
[

sδE
{

∂2ω

∂ψ2 +
∂2ω

∂ζ 2 +
∂2ω

∂γ 2

}

+ q3

]

.

According to Eq. (7), all types of nonlinearity can be represented by the Adomian polyno-
mials as

A0 = μ0
∂μ0

∂ψ
, A1 = μ0

∂μ1

∂ψ
+ μ1

∂μ0

∂ψ
, B0 = ν0

∂μ0

∂ζ
, B1 = ν0

∂μ1

∂ζ
+ ν1

∂μ0

∂ζ
,

C0 = ω0
∂μ0

∂ζ
, C1 = ω0

∂μ1

∂ζ
+ ω1

∂μ0

∂ζ
, D0 = μ0

∂ν0

∂ψ
, D1 = μ0

∂ν1

∂ψ
+ μ1

∂ν0

∂ψ
,

E0 = ν0
∂ν0

∂ψ
, E1 = ν0

∂ν1

∂ψ
+ ν1

∂ν0

∂ψ
, F0 = ω0

∂ν0

∂ψ
, F1 = ω0

∂ν1

∂ψ
+ ω1

∂ν0

∂ψ
,

G0 = μ0
∂ω0

∂ψ
, G1 = μ0

∂ω1

∂ψ
+ μ1

∂ω0

∂ψ
, H0 = ν0

∂ω0

∂ψ
, H1 = ν0

∂ω1

∂ψ
+ ν1

∂ω0

∂ψ
,

I0 = ω0
∂ω0

∂ψ
, I1 = ω0

∂ω1

∂ψ
+ ω1

∂ω0

∂ψ
.

Thus, by comparing the two sides of Eq. (27) we can get easily the recursive relationship

μ0(ψ , ζ ,γ ,T ) = –0.5ψ + ζ + γ ,

ν0(ψ , ζ ,γ ,T ) = ψ – 0.5ζ + γ ,

ω0(ψ , ζ ,γ ,T ) = ψ + ζ – 0.5γ .

For m = 0

μ1(ψ , ζ ,γ ,T ) =
–2.25ψT δ

�(δ + 1)
, ν1(ψ , ζ ,γ ,T ) =

–2.25ζT δ

�(δ + 1)
,

ω1(ψ , ζ ,γ ,T ) =
–2.25γT δ

�(δ + 1)
.
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For m = 1

μ2(ψ , ζ ,γ ,T ) =
2(2.25)ψT 2δ

�(2δ + 1)
(–0.5ψ + ζ + γ ),

ν2(ψ , ζ ,γ ,T ) =
2(2.25)ζT 2δ

�(2δ + 1)
(ψ – 0.5ζ + γ ),

ω2(ψ , ζ ,γ ,T ) =
2(2.25)γT 2δ

�(2δ + 1)
(ψ + ζ – 0.5γ ).

For m = 2

μ3(ψ , ζ ,γ ,T ) = –
(2.25)2ψ(4(�(δ + 1))2 + �(2δ + 1))T 3δ

�(2δ + 1)(�(δ + 1))2 ,

ν3(ψ , ζ ,γ ,T ) = –
(2.25)2ζ (4(�(δ + 1))2 + �(2δ + 1))T 3δ

�(2δ + 1)(�(δ + 1))2 ,

ω3(ψ , ζ ,γ ,T ) = –
(2.25)2γ (4(�(δ + 1))2 + �(2δ + 1))T 3δ

�(2δ + 1)(�(δ + 1))2 ,

· · ·
· · ·

In the same manner, the remaining μm, νm and ωm (m > 3) elements of the ETDM solution
are easy to obtain. So we describe the alternative sequence as

μ(ψ , ζ ,γ ,T ) =
∞∑

m=0

μm(ψ , ζ ) = μ0(ψ , ζ ) + μ1(ψ , ζ ) + μ2(ψ , ζ ) + μ3(ψ , ζ ) + · · · ,

ν(ψ , ζ ,γ ,T ) =
∞∑

m=0

νm(ψ , ζ ) = ν0(ψ , ζ ) + ν1(ψ , ζ ) + ν2(ψ , ζ ) + ν3(ψ , ζ ) + · · · ,

ω(ψ , ζ ,γ ,T ) =
∞∑

m=0

ωm(ψ , ζ ) = ω0(ψ , ζ ) + ω1(ψ , ζ ) + ω2(ψ , ζ ) + ω3(ψ , ζ ) + · · · ,

μ(ψ , ζ ,γ ,T )

= –0.5ψ + ζ + γ –
2.25ψT δ

�(δ + 1)
+

2(2.25)ψT 2δ

�(2δ + 1)

× (–0.5ψ + ζ + γ ) –
(2.25)2ψT 3δ

�(3δ + 1)

(

4 +
�(2δ + 1)

(�(δ + 1))2

)

+ · · · ,

ν(ψ , ζ ,γ ,T )

= ψ – 0.5ζ + γ –
2.25ζT δ

�(δ + 1)
+

2(2.25)ζT 2δ

�(2δ + 1)

× (ψ – 0.5ζ + γ ) –
(2.25)2ζT 3δ

�(3δ + 1)

(

4 +
�(2δ + 1)

(�(δ + 1))2

)

+ · · · ,

ω(ψ , ζ ,γ ,T )

= ψ + ζ – 0.5γ –
2.25γT δ

�(δ + 1)
+

2(2.25)γT 2δ

�(2δ + 1)

× (ψ + ζ – 0.5γ ) –
(2.25)2γT 3δ

�(3δ + 1)

(

4 +
�(2δ + 1)

(�(δ + 1))2

)

+ · · · .
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At δ = 1 and q1 = q2 = q3 = 0, the exact solution of Eq. (23) is

μ(ψ , ζ ,γ ,T ) =
–0.5ψ + ζ + γ – 2.25ψT

1 – 2.25T 2 ,

ν(ψ , ζ ,γ ,T ) =
ψ – 0.5ζ + γ – 2.25ζT

1 – 2.25T 2 ,

ω(ψ , ζ ,γ ,T ) =
ψ + ζ – 0.5γ – 2.25γT

1 – 2.25T 2 .

(27)

6 Results and discussion
In Fig. 1, the subgraphs (a) and (b) represent the exact μ-solution and associated ETDM
error, respectively. In Fig. 2, the subgraphs (a) and (b) denotes the exact ν-solution and as-
sociated error of ETDM, respectively, at δ = 1. The error-graphs in Figs. 1 and 2 confirmed
the higher accuracy of the proposed method. In Fig. 3, the comparison of the exact and
ETDM μ-solutions are displaced by using subgraphs (a) and (b) respectively for example 2.
The exact and ETDM solutions are in closed contacts shown by their graphs. In Fig. 4,
the μ-solutions of example 2 at different fractional-orders are presented in both two and
three dimensional sub-plots (a) and (b) respectively. In Fig. 5, the ν-solutions comparison
is done with sufficient degree of accuracy of example 2. Figure 6, represents the various

Figure 1 The μ-solution graph of example 1, (a) exact solution and (b) error graph at δ = 1

Figure 2 The ν-solution graph of example 1, (a) exact solution and (b) error graph at δ = 1
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Figure 3 The μ-solution graph of example 2, (a) exact solution and (b) ETDM solution at δ = 1

Figure 4 The (a) ETDM μ-solution of example 2 at different fractional orders of δ (b) ζ = 0.5

Figure 5 The ν-solution graph of example 2, (a) exact solution and (b) ETDM solution at δ = 1

fractional solutions for variable nu by using sub-graphs (a) and (b) of example 2 in both
two and three dimensions. It is observed that the ETDM solutions are in good contact with
the actual solutions of example 2. In Fig. 7, the exact and ETDM μ-solutions are compared
at δ = 1 of example 3. The comparison has shown a very close relation between the actual
and ETDM solutions. In Fig. 8, the exact and ETDM solutions at δ = 1 of example 3 are
represented by the sub-graphs (a) and (b) respectively. In Fig. 9, various fractional-order
solutions of example 3 are presented in both two and three dimensional space. In Fig. 10,
the ω-exact and ETDM solutions are plotted which confirmed to close relation between



Hajira et al. Advances in Difference Equations        (2020) 2020:622 Page 18 of 23

Figure 6 The (a) ETDM ν-solution of example 2 at different fractional orders of δ (b) ζ = 0.5

Figure 7 The μ-solution graph of example 3, (a) exact solution and (b) ETDM solution at δ = 1

Figure 8 The ν-solution graph of example 3, (a) exact solution and (b) ETDM solution at δ = 1

ETDM and exact solutions of example 3. Similarly in Fig. 11, the ETDM error is analyzed
and solution at different fractional-orders are presented in two-dimensional graph for ex-
ample 3. Tables 1 and 2, represent the exact, ETDM and the associated ETDM absolute
error of example 1 at δ = 1 for μ and ν variables respectively. Both Tables 1 and 2 have
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Figure 9 The (a) ETDM μ-solution of example 3 at different fractional orders of δ (b) ζ = 0.5

Figure 10 The ν-solution graph of example 3, (a) exact solution and (b) ETDM solution at δ = 1

Figure 11 The ETDM ν-solution graph of example 3, (a) Error graph and (b) at different fractional orders of δ
at ζ = 0.5

shown the sufficient degree of accuracy. Tables 3 and 4 provide the comparison of exact
and ETDM solutions in term of absolute error at δ = 1, at time τ = 0.0005 for variable μ

and ν respectively.
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Table 1 μ(ψ ,ζ ,T ) Comparison of Exact soltion, ETDM and ETDM Error of example 1 at ρ = 1

T = 0.01 Exact solution ETDM soltion AE of ETDM
ψ δ = 1 δ = 1 δ = 1

0 –0.824808742900000 –0.824808737600000 5.3012672040E–09
1 0.891292131400000 –0.891292125700000 5.7285737890E–09
2 –0.138325644700000 –0.138325643800000 8.8905605100E–10
3 0.741816801800000 0.741816797100000 4.7678557200E–09
4 0.939936301900000 0.939936295800000 6.0412229310E–09
5 0.273882700600000 0.273882698900000 1.7603176390E–09
6 –0.643977392400000 –0.643977388300000 4.1390155720E–09
7 –0.969767640700000 –0.969767634500000 6.2329569540E–09
8 –0.403957992400000 –0.403957989800000 2.5963464570E–09
9 0.533248771200000 0.533248767700000 3.4273329990E–09
10 0.980189073800000 0.980189067500000 6.2999383020E–09

Table 2 ν(ψ ,ζ ,T ) Comparison of Exact soltion, ETDM and ETDM Error of example 1 at ρ = 1

T = 0.01 Exact solution ETDM soltion AE of ETDM
ψ δ = 1 δ = 1 δ = 1

0 0.824808742900000 0.824808737600000 5.3012672040E–09
1 0.891292131400000 0.891292125700000 5.7285737890E–09
2 0.138325644700000 0.138325643800000 8.8905605100E–10
3 –0.741816801800000 –0.741816797100000 4.7678557200E–09
4 –0.939936301900000 –0.939936295800000 6.0412229310E–09
5 –0.273882700600000 –0.273882698900000 1.7603176390E–09
6 0.643977392400000 0.643977388300000 4.1390155720E–09
7 0.969767640700000 0.969767634500000 6.2329569540E–09
8 0.403957992400000 0.403957989800000 2.5963464570E–09
9 –0.533248771200000 –0.533248767700000 3.4273329990E–09
10 –0.980189073800000 –0.980189067500000 6.2999383020E–09

Table 3 μ(ψ ,ζ ,T ) Comparison of Exact solution, ETDM and ETDM Error of example 1 at ρ = 1

T = 0.0005 Exact solution ETDM soltion AE of ETDM
ψ δ = 1 δ = 1 δ = 1

0 –1.650370817000000 –1.650370817000000 0.0000000000E+00
1 –4.486173001000000 –4.486173000000000 1.0000000000E–09
2 –12.194682550000000 –12.194682550000000 0.0000000000E+00
3 –33.148583970000000 –33.148583970000000 0.0000000000E+00
4 –90.107193460000000 –90.107193440000000 2.0000000000E–08
5 –244.936746600000000 –244.936746600000000 0.0000000000E+00
6 –665.807107400000000 –665.807107200000000 2.0000000000E–07
7 –1809.851361000000000 –1809.851360000000000 1.0000000000E–06
8 –4919.686067000000000 –4919.686066000000000 1.0000000000E–06
9 –13373.093240000000000 –13373.093240000000000 0.0000000000E+00
10 –36351.836340000000000 –36351.836330000000000 1.0000000000E–05

Table 4 ν(ψ ,ζ ,T ) Comparison of Exact solution, ETDM and ETDM Error of example 1 at ρ = 1

T = 0.0005 Exact solution ETDM soltion AE of ETDM
ψ δ = 1 δ = 1 δ = 1

0 1.650370817000000 1.650370817000000 0.0000000000E+00
1 4.486173001000000 4.486173000000000 1.0000000000E–09
2 12.194682550000000 12.194682550000000 0.0000000000E+00
3 33.148583970000000 33.148583970000000 0.0000000000E+00
4 90.107193460000000 90.107193440000000 2.0000000000E–08
5 244.936746600000000 244.936746600000000 0.0000000000E+00
6 665.807107400000000 665.807107200000000 2.0000000000E–07
7 1809.851361000000000 1809.851360000000000 1.0000000000E–06
8 4919.686067000000000 4919.686066000000000 1.0000000000E–06
9 13373.093240000000000 13373.093240000000000 0.0000000000E+00
10 36351.836340000000000 36351.836330000000000 1.0000000000E–05
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7 Conclusion
It is always difficult to investigate the solution of nonlinear fractional mathematical mod-
els which frequently occur in science and engineering. In this paper, we attempted with
success to find the analytical solutions of some nonlinear fractional Navier–Stokes equa-
tions. The obtained results are found to be accurate and close to the exact solutions of
the problems. The solution presentation has been done with the help of tables and graphs
which confirmed the reliability of the proposed method. The solutions at different frac-
tional orders are determined and found to be interesting as regards explaining the various
dynamical behaviors of the suggested problems. To handle the nonlinearity of the prob-
lems and then solutions calculation are the novelty of the current research work. In con-
clusion, this work will contribute to investigating other nonlinear dynamics in science and
engineering.
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