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Abstract
In the current study, we conduct an investigation into the Hyers–Ulam stability of
linear fractional differential equation using the Riemann–Liouville derivatives based
on fractional Fourier transform. In addition, some new results on stability conditions
with respect to delay differential equation of fractional order are obtained. We
establish the Hyers–Ulam–Rassias stability results as well as examine their existence
and uniqueness of solutions pertaining to nonlinear problems. We provide examples
that indicate the usefulness of the results presented.
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1 Introduction
In recent years, the area related to fractional differential and integral equations has re-
ceived much attention from numerous mathematicians and specialists. The derivatives of
fractional order portray physical models of multiple phenomena in different fields such as
biology, physics, mechanics, dynamical systems, and so on (see [1–8] and the references
therein).

The possibility of fractional calculus was presented in 1695, when the notation dν

dtν h(x)
was introduced to indicate the νth order derivative of function h(x). Specifically, Leibniz
composed a letter to L’Hospital in which he posed an enquiry on the derivative of order ν =
1
2 , which led to the establishment of fractional calculus. Later on, fractional derivative was
presented by Lacroix [9]. Perhaps the most utilized fractional derivatives are Riemann–
Liouville (R–L) and Caputo derivatives, which assume an immodest role in fractional order
differential equation(FRDE).

One of the best examination regions in FRDE, which receives vast considerations by
analysts, entails the existence theory of solution. This is a rapidly moving topic of inves-
tigation. For details with respect to the present hypothesis, see [10–15]. Finding an exact
solution of FRDE is exceptionally troublesome, and the type of exact solution is regularly
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Figure 1 Flow chart of fractional Fourier transform

so complicated that it is not convenient for numerical computation. Considering this, it
is important to study an approximate solution with a relatively simple form and examine
how close both the approximate and exact solutions are. By and large, we state that a FRDE
is said to be Hyers–Ulam (H–U) stable if, for every solution of the FRDE, there exists an
approximate solution of the concerned equation that is close to it.

Ulam [16] formulated the stability of a functional equation, which was solved by Hyers
[17] using an additive function defined on the Banach space. This result led Rassias [18]
to study and generalize the stability concept, establishing the Hyers–Ulam–Rassias sta-
bility. An integral transform (introduced by Fourier) involves a trigonometric form of the
Mittag-Leffler function to identify an analytic solution with respect to a differential equa-
tion of fractional order. The Fourier transforms, Mittag-Leffler function, and fractional
trigonometric function constitute an effective tool for analytic expression pertaining to
the solution of differential equation of noninteger order. Indeed, the Fourier transform
has become popular in view of recent developments in differential applications. It is also
seen as the easiest and most effective way among many other transforms. Luchko [19] de-
fined the fractional Fourier transform (FRFT) of real order ν , 0 < ν ≤ 1, and discussed its
important properties. The application of FRFT for undertaking certain types of differen-
tial equations of fractional order has also been conducted. Indeed, there are many studies
on FRFT and its applications in the literature [20–23].

In 2017, Wang et al. [24] discussed the stability of fractional differential equation based
on the right-sided Riemann–Liouville fractional derivatives with respect to a continuous
function space. The fixed point theorem and weighted space method were exploited. In
[25], a study on the H–U stability condition was conducted, focusing on an impulsive R-L
fractional neutral functional stochastic differential equation with time delays. In [26], the
stability criteria pertaining to a class of fractional differential equations was investigated, in
which the Krasnoselskii fixed point method was employed. Recently, Opadhyay et al. [27]
discussed the R–L fractional differential equations using the Hankel transform method.
At present, some remarkable results to the stability of fractional differential equation have
been reported (see [28–31] and the references therein). In [32, 33], the author studied
the H–U stability of linear differential equation by using Fourier transform. To the best
of our knowledge, there are no results on H–U stability of fractional differential equation
by fractional Fourier transform (FRFT). The flow chart of fractional fourier transform is
represented in Fig. 1.

Motivated by the ongoing research in this field, we examine the H–U stability and gen-
eralized H–U stability of FRDE in this study, i.e.,

(
Dν

ϑh
)
(x) = G(x), ∀x ∈R,
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and the delay differential equation of fractional order

(
Dν

ϑh
)
(x – ξ ) = G(x), ∀x ∈R,

where Dν
ϑ represents R–L fractional derivative, ξ > 0, ϑ ∈ R, and 0 < ν ≤ 1 with the help

of FRFT. In our investigation, we exploit the fractional Fourier transform and present it
in an integral form. Furthermore, using the convolution concept and properties of frac-
tional Fourier transform, the solution pertaining to the stability conditions with respect
to FRDE is established. Specifically, we analyze Hyers–Ulam–Rassias stability of the non-
linear FRDE

(
Dν

ϑh
)
(x) = G

(
x, h(x)

)
, ∀x ∈R,

and use the fixed point theorems for examining the existence and uniqueness of the solu-
tion.

We organize this article as follows. The related fundamental properties, lemmas, and
definitions are presented in Sect. 2. In Sect. 3, H–U and generalized H–U stability of FRDE
and delay FRDE are explained. Numerical examples and conclusion are given in Sects. 4
and 5, respectively.

2 Fundamentals
Consider L1(R) as the space pertaining to the complex-valued Lebesgue integrable func-
tion on the real line R with norm

‖h‖ =
∫

R

∣
∣h(x)

∣
∣dx.

The definition of a Fourier transform with respect to a function h ∈ L1(R) is

Ĥ(ω) =
(
Fh(x)

)
(ω) =

∫ ∞

–∞
h(x)eiωx dx, ∀ω ∈R. (2.1)

The form of the associated inverse Fourier transform is

h(x) =
(
F–1Ĥ(ω)

)
(x) =

1
2π

∫ ∞

–∞
Ĥ(ω)e–iωx dω, ∀x ∈R. (2.2)

Note that Fourier transform is useful for conversion of a function between the time and
frequency domains. It adopts the principle of rotation operation on the time-frequency
distribution. Given parameter ν , we can express the fractional Fourier transform of func-
tion h(x) in a one-dimensional case as follows [34]:

Ĥ(ω) =
(
Fαh(x)

)
(ω) =

∫ ∞

–∞
h(x)Kν(x,ω) dx,

where kernel Kν(x,ω) is

Kν(x,ω) =

⎧
⎨

⎩
Bνe

i(x2+ω2) cot ν
2 –ixω cosecν ; ν �= nπ ,

1√
2π

e–ixω; ν = π
2 ,
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and n is an integer, while

Bν = (2π i sinν)
–1
2 eiν2 =

√
1 – i cotν

2π
.

As such, the form of the associated inverse fractional Fourier transform is

h(x) =
1

2π

∫ ∞

–∞
Kν(x,ν)Ĥ(ω) dω, (2.3)

where

Kν(x,ν) =
(2π i sinν) 1

2

ν sin
e

–iν
2 e

–i(x2+ω2) cotν
2 + ixω cosecν

= B′
νe

–i(x2+ω2) cotν
2 + ixω cosecν,

B′
ν =

(2π i sinν) 1
2

sinν
e

–iν
2 =

√
2π (1 + i cotν).

Definition 2.1 ([35]) The Mittag-Leffler function in fractional order ν with respect to one
parameter is denoted by Eν(xν), which is defined as

Eν

(
xν

)
=

∞∑

K=0

xνk

�(1 + νk)
, 0 < ν ≤ 1.

Definition 2.2 The fractional trigonometric function is denoted by

Eν

(
ixν

)
= cos xν + i sin xν ,

with cos xν =
∑∞

K=0(–1)k x2νk

�(1+2νk) and sin xν =
∑∞

K=0(–1)k x(2k+1)ν

�(1+ν(2k+1)) .

Luchko et al. [36] introduced a new fractional Fourier transform Fν of order ν , (0 < ν ≤
1), and its definition is

Ĥν(ω) = (Fνh)(ω) =
∫ ∞

–∞
h(x)eν(ω, x) dx, (2.4)

where

eν(ω, x) =

⎧
⎨

⎩
Eν(–i|ω|1/νx); ω ≤ 0

Eν(i|ω|1/νx); ω ≥ 0
= Eν

(
i sign (ω)|ω|1/νx

)
,

sign (ω) =

⎧
⎨

⎩
–1; ω < 0,

1; ω ≥ 0.

As such, the definition of the associated inverse fractional Fourier transform is

h(x) =
1

2πν

∫ ∞

–∞
Eν

(
–i sign (ω)|ω|1/νx

)|ω| 1
ν –1Ĥν(ω) dω
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for any x ∈ R and ν > 0. If ν = 1, then Ĥν(ω) and the classical Fourier transform (2.1) are
the same. Suppose that the space of a function with rapid decrease is denoted asS . In other
words, the following relation with respect to the space of infinity differentiable functions
v(x) on R is satisfied:

sup
(
1 + |x|)n∣∣vk(x)

∣∣ < ∞.

Given x ∈R and n, k ∈N∪ {0}. If v(x) ∈ S , then

∣∣vk(x)
∣∣ ≤ M

|x|n
(
n, k ∈N∪ {0}, n > k; |x| → ∞)

.

Based on V (R), the following relation with respect to a set of functions v ∈ S is satisfied:

dnv
dxn

∣
∣∣
∣
x=0

= 0, n = 0, 1, 2, 3, . . .

The Lizorkin space is 	(R) ⊂ L1(R), and it is defined as the Fourier pre-image of the space
V (R) in the space S , i.e.,

	(R) =
{

h ∈ S ;F (h) ∈ V (R)
}

.

The reason for using the Lizorkin space is its convenience in using the Fourier transform
as well as the inverse Fourier transform with fractional integration and differentiation op-
erators. The properties and associated details of the Lizorkin space have been discussed in
many studies (see [37–39]). In our study, we use F to represent the domain of either real R
or complex C. According to the definition of Lizorkin space, the orthogonality condition
is satisfied by any function h ∈ 	(R), i.e.,

∫ ∞

–∞
xnh(x) dx = 0, n = 0, 1, 2, 3, . . .

Note that the property of invariance pertaining to the Fourier transform and its inverse
holds for the space 	(R). In other words, both transforms are inverse of one another, i.e.,

F–1Fh = h, h ∈ 	(R).

Definition 2.3 Given a function h ∈ 	(R) of order ν , where 0 < ν ≤ 1, the definition of its
fractional Fourier transform is

Ĥν(ω) =
(
Fνh(x)

)
(ω) =

∫ ∞

–∞
h(x)Eν

(
i sign (ω)|ω|1/νx

)
dx. (2.5)

The inverse fractional Fourier transform for function h ∈ 	(R) is

h(x) =
1

2πν

∫ ∞

–∞
Eν

(
–i sign (ω)|ω|1/νx

)|ω| 1
ν –1Ĥν(ω) dω (2.6)

for any x ∈R and ν > 0.
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Definition 2.4 The function (h1 ∗ h2)(x) =
∫
R

h1(x – τ )h2(τ ) dτ is denoted as the convolu-
tion of both functions of h1 and h2 defined on 	(R).

Some properties of FRFT that are closely related to the solution in this study are given
as follows. Let h, h1, and h2 be functions belonging to 	(R). Then

(1) If (Fνh1)(ω) = (Fνh2)(ω), then h1(x) = h2(x);
(2) F(Fνh(x – ξ ))(ω) = eν(ω, ξ )H̃(ω);
(3) Fν(h1 ∗ h2)(ω) = Fν(h1)(ω))Fν(h2)(ω);
(4) F–1

ν (h1h2)(x) = F–1
ν (h1)(x)) ∗F–1

ν (h2)(x).

Definition 2.5 ([40]) The definition of R–L fractional integral of order ν > 0 is

(
Iν

+h
)
(x) =

1
�ν

∫ x

–∞
(x – t)ν–1h(t) dt (Right RLI), (2.7)

and

(
Iν

–h
)
(x) =

1
�ν

∫ ∞

x
(t – x)ν–1h(t) dt (Left RLI), (2.8)

where Re(ν) > 0, we have �ν =
∫ ∞

0 e–uuν–1 du.

Definition 2.6 ([40]) The definition of R–L fractional derivative of order ν > 0 is

(
Dν

+h
)
(x) =

d
dx

(
I1–ν

+ h
)
(x) (Right RLD),

(
Dν

–h
)
(x) = –

d
dx

(
I1–ν

– h
)
(x) (Left RLD).

Lemma 2.1 ([39]) Based on the integration by parts formula, the R–L derivative holds for
any h, k ∈ 	(R):

∫ ∞

–∞
k(x)

(
Dν

+h
)
(x) dx =

∫ ∞

–∞

(
Dν

–k
)
(x)h(x) dx, (2.9)

∫ ∞

–∞
k(x)

(
Dν

–h
)
(x) dx =

∫ ∞

–∞

(
Dν

+k
)
(x)h(x) dx. (2.10)

Our current study considers the definition with respect to a fractional derivative oper-
ator Dν

ϑ of h ∈ 	(R), i.e.,

(
Dν

ϑh
)
(x) = (1 – ϑ)

(
Dν

+h
)
(x) – ϑ

(
Dν

–h
)
(x), 0 < ν ≤ 1,ϑ ∈R, (2.11)

where Dν
– and Dν

+ denote the left-hand and right-hand R–L fractional derivatives of order
ν , in which 0 < ν < 1.
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Lemma 2.2 A function that is continuously differentiable is denoted as h ∈ 	(R), ω ∈
R/{0}, and 0 < ν ≤ 1, and it is able to satisfy

I1–ν
+ (Eν

(
i sign(ω)|ω| 1

ν x
)

= Eν

(
i sign(ω)|ω| 1

ν x
)|ω| –(1–ν)

ν Eν

(
–i sign(ω)(1 – ν)π/2

)
,

D
ν
+(Eν

(
i sign (ω)|ω| 1

ν x
)

= Eν

(
i sign (ω)|ω| 1

ν x
)|ω|Eν

(
i sign (ω)νπ/2

)
.

(2.12)

Proof By taking into account of the R–L fractional integral (2.7), we get

I1–ν
+ (Eν

(
i sign(ω)|ω| 1

ν x
)

=
1

�(1 – ν)

∫ x

–∞
(x – t)1–ν–1Eν

(
i sign(ω)|ω| 1

ν t
)

dt. (2.13)

Using the variables substitution η = x – t, we obtain

I1–ν
+ (Eν

(
i sign(ω)|ω| 1

ν x
)

=
1

�(1 – ν)
Eν

(
i sign(ω)|ω| 1

ν x
)∫ ∞

0
η–νEν

(
–i sign(ω)|ω| 1

ν η
)

dη

= Eν

(
i sign(ω)|ω| 1

ν x
) 1
�(1 – ν)

∫ ∞

0
η–ν cos

(|ω| 1
ν η

)
dη

– i sign(ω)Eν

(
i sign(ω)|ω| 1

ν x
) 1
�(1 – ν)

∫ ∞

0
η–ν sin

(|ω| 1
ν η

)
dη. (2.14)

Both the integrals in the above equation can be evaluated by using the integral formula in
[41]:

1
�(1 – ν)

∫ ∞

0
η–ν cos

(|ω| 1
ν η

)
dη = |ω| –(1–ν)

ν cos
(
(1 – ν)π/2

)
, (2.15)

1
�(1 – ν)

∫ ∞

0
η–ν sin

(|ω| 1
ν η

)
dη = sign(ω)|ω| –(1–ν)

ν sin
(
(1 – ν)π/2

)
. (2.16)

Substituting equation (2.15) and (2.16) in equation (2.14), we get

I1–ν
+ (Eν

(
i sign(ω)|ω| 1

ν x
)

= Eν

(
i sign(ω)|ω| 1

ν x
)|ω| –(1–ν)

ν Eν

(
–i sign(ω)(1 – ν)π/2

)
. (2.17)

By the definition of R–L fractional derivative and equation (2.17), we have

D
ν
+(Eν

(
i sign (ω)|ω| 1

ν x
)

=
d

dx
(I1–ν

+ Eν

(
i sign(ω)|ω| 1

ν x
)

=
d

dx
Eν

(
i sign(ω)|ω| 1

ν x
)|ω| –(1–ν)

ν Eν

(
–i sign(ω)(1 – ν)π/2

)

= Eν

(
i sign(ω)|ω| 1

ν x
)
i|ω| 1

ν |ω| –(1–ν)
ν Eν

(
–i sign(ω)(1 – ν)π/2

)

= Eν

(
i sign(ω)|ω| 1

ν x
)|ω|(sin(1 – ν)π/2 + i sign (ω) cos(1 – ν)π/2

)
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= Eν

(
i sign(ω)|ω| 1

ν x
)|ω|(cos(νπ/2) + i sign (ω) sin(νπ/2)

)

= Eν

(
i sign(ω)|ω| 1

ν x
)|ω|Eν

(
i sign (ω)νπ/2

)
.

Hence, the proof is completed. �

Similarly, the following lemma is formulated.

Lemma 2.3 Suppose ω ∈ R/{0} and 0 < ν ≤ 1. As such,

I1–ν
– (Eν

(
i sign(ω)|ω| 1

ν x
)

= Eν

(
i sign(ω)|ω| 1

ν x
)|ω| –(1–ν)

ν Eν

(
i sign(ω)(1 – ν)π/2

)
.

D
ν
–(Eν

(
i sign (ω)|ω| 1

ν x
)

= Eν

(
i sign (ω)|ω| 1

ν x
)|ω|Eν

(
–i sign (ω)νπ/2

)
.

(2.18)

Theorem 2.1 Consider a function h in the Lizorkin space 	(R), and assume 0 < α ≤ 1, the
operational relation as follows is true:

Fν

(
Dν

ϑh
)
(ω) = |ω|Aν(ω)(Fνh)(ω), (2.19)

where Aν(ω) is given by

Aν(ω) = (1 – 2ϑ) cos(νπ/2) – i sign(ω) sin(νπ/2).

Proof We first get the relation

Fν

(
Dν

ϑh
)
(0) = 0

for any function h that belongs to the Lizorkin space 	(R). For ω �= 0, the formulas (2.9),
(2.12), and (2.18) are applied, and we have the following chain of equalities:

Fν

(
D

ν
ϑh

)
(ω) =

∫ ∞

–∞
Eν

(
i|ω| 1

ν x
)(
Dν

ϑh
)
(x) dx

= (1 – ϑ)
∫ ∞

–∞
Eν

(
i sign(ω)|ω| 1

ν x
)(
Dν

+h
)
(x) dx

– ϑ

∫ ∞

–∞
Eν

(
i sign(ω)|ω| 1

ν x
)(
Dν

–h
)
(x) dx

= (1 – ϑ)
∫ ∞

–∞

(
Dν

–Eν

(
i|ω| 1

ν t
))

(x)h(x) dx

– ϑ

∫ ∞

–∞

(
Dν

+Eν

(
i|ω| 1

ν t
))

(x)h(x) dx

= (1 – ϑ)
∫ ∞

–∞
Eν

(
i sign (ω)|ω| 1

ν x
)|ω|Eν

(
–i sign (ω)νπ/2

)
h(x) dx

– ϑ

∫ ∞

–∞
Eν

(
i sign (ω)|ω| 1

ν x
)|ω|Eν

(
i sign (ω)νπ/2

)
h(x) dx

= (1 – ϑ)|ω|Eν

(
–i sign (ω)νπ/2

) ∫ ∞

–∞
Eν

(
i sign (ω)|ω| 1

ν x
)
h(x) dx

– ϑ |ω|Eν

(
i sign (ω)νπ/2

) ∫ ∞

–∞
Eν

(
i sign (ω)|ω| 1

ν x
)
h(x) dx
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= (1 – ϑ)|ω|(cos(νπ/2) – i sign(ω) sin(νπ/2)Fνh
)
(ω)

– ϑ |ω|(cos(νπ/2) + i sign (ω) sin(νπ/2)Fνh
)
(ω)

= |ω|Aν(ω)(Fνh)(ω),

where Aν(ω) = (1 – 2ϑ) cos(νπ/2) – i sign(ω) sin(νπ/2). �

Remark 2.1 Let us take Aν1 (ω) = (1 – 2ϑ) cos(νπ/2) + i sin(νπ/2) for ω < 0 and Aν2 (ω) =
(1 – 2ϑ) cos(νπ/2) – i sin(νπ/2) for ω ≥ 0.

Theorem 2.2 (Arzela–Ascoli’s theorem)
(1) A family B of continuous functions on I = [a, b] is a uniformly bounded set if there

exists λ > 0 with

‖h‖ = sup
∣∣h(x)

∣∣ < λ, ∀h ∈ B.

(2) B is an equicontinuous set, i.e., for any ε > 0, there exists δ > 0 such that

|x1 – x2| ≤ δ ⇒ ∣
∣h(x1) – h(x2)

∣
∣ ≤ ε, ∀h ∈ B.

Let {hn}n∈N be a family of continuous functions on I = [a, b]. If the sequence is uniformly
bounded and equicontinuous, then there exists a subsequence {hn1 (x)}n1∈N that converges
uniformly.

Theorem 2.3 (Banach fixed point theorem) LetB be a nonempty closed subset of a Banach
space ψ . Then any contraction mapping � from ψ into itself has a unique fixed point.

Theorem 2.4 (Schaefer’s fixed point theorem) A Banach space is denoted by ψ . Suppose
that the mapping � : ψ → ψ is completely continuous. Moreover, suppose that

B = {h ∈ ψ |h = η�h, 0 < η < 1}

is a bounded set. Then � has at least one fixed point on ψ .

Definition 2.7 The fractional differential equation

(
Dν

ϑh
)
(x) = G(x) (2.20)

is said to be H–U stable if the inequality |(Dν
ϑh)(x) –G(x)| ≤ ε is satisfied by a continuously

differentiable mapping h : R → F, and there exists a solution hν : R → F of differential
equation (2.20) with

∣∣h(x) – hν(x)
∣∣ ≤ Kε, ∀x ∈ R,

where ε > 0 and K > 0 is the H–U stability constant.
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Definition 2.8 The fractional differential equation with delay

(
Dν

ϑh
)
(x – ξ ) = G(x), (2.21)

is H–U stable if the inequality |(Dν
ϑh)(x –ξ ) –G(x)| ≤ ε is satisfied by a continuously differ-

entiable mapping h : R→ F, and there exists a solution hν : R → F of differential equation
(2.21) with

∣
∣h(x) – hν(x)

∣
∣ ≤ Kε, ∀x ∈ R,

where ε > 0 and K > 0 is the Hyers–Ulam stability (HUS) constant.

Remark 2.2 If ε and Kε are replaced with continuous functions β(x) and �(x) in the above
definition, then equation (2.20) and equation (2.21) are generalized H–U or H–U–Rassias
stable.

3 Stability results of linear FRDE
Based on the fractional Fourier transform, we derive the results with respect to the H–U
stability of FRDE

(
Dν

ϑh
)
(x) = G(x), ∀x ∈R, (3.1)

in the following theorem.

Theorem 3.1 Given 	(R), a real continuous function is denoted by G(x), and assume 0 <
α ≤ 1. If a function h : R → F is able to satisfy the following:

∣∣(Dν
ϑh

)
(x) – G(x)

∣∣ ≤ ε (3.2)

for all x ∈ R and for some ε > 0, then, with respect to fractional differential equation (3.1),
a solution hν : R → F exists in which

∣
∣h(x) – hν(x)

∣
∣ ≤ Kε.

Proof Suppose that the definition of function Y1 : R → F is

Y1(x) =
(
Dν

βh
)
(x) – G(x). (3.3)

Suppose that h(x) is a continuously differentiable function satisfying inequality (3.2). We
have

∣
∣Y1(x)

∣
∣ ≤ ε
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for each ε > 0. Now, taking Fν (the fractional Fourier transform operator) with respect to
equation (3.3) on both sides as well as using equation (2.19), we have

Fν

(
Y1(x)

)
(ω) = Fν

(
Dν

ϑh(x)
)
(ω) – Fν

(
G(x)

)
(ω)

= |ω|Aν(ω)Fν

(
h(x)

)
(ω) – Fν

(
G(x)

)
(ω),

Fν(h)(ω) =
1

|ω|Aν(ω)
Fν

(
G(x)

)
(ω) +

1
|ω|Aν(ω)

Fν

(
Y1(x)

)
(ω).

(3.4)

Set

hν(x) =
�(1 – ν)

2π

∫ ∞

–∞

(
A1 cos(νπ/2) – iA2 sign(x – τ ) sin(νπ/2)

)

× sign(x – τ )|x – τ |ν–1G(τ ) dτ , (3.5)

where A1 = –i
Aν1

+ i
Aν2

and A2 = i
Aν1

+ i
Aν2

.
By the definition of convolution, we obtain

hν(x) =
�(1 – ν)

2π
sign(x)|x|ν–1(A1 cos(νπ/2) – i sign(x)A2 sin(νπ/2)

) ∗ G(x)

=
1

2π

(
1

Aν1

∫ ∞

0
Eα(izx)z–ν dz +

1
Aν2

∫ ∞

0
Eα(–izx)z–ν dz

)
∗ G(x)

=
1

2πν

(
1

Aν1

∫ 0

–∞
Eν

(
i(–ω)

1
ν x

)
(–ω)

1
ν –2 dω

+
1

Aν2

∫ ∞

0
Eν

(
–i(ω)

1
ν x

)
(–ω)

1
ν –2 dω

)
∗ G(x) (3.6)

=
1

2πν

(∫ ∞

–∞
1

Aν(ω)|ω|Eν

(
–i sign (ω)|ω| 1

ν x
)|ω| 1

ν –1 dω

)
∗ G(x)

= F–1
ν

(
1

Aν(ω)|ω|
)

∗ G(x),

(Fνhν)(ω) =
1

Aν(ω)|ω|
(
FνG(x)

)
(ω).

By equation (2.19) and equation (3.6) and simple computation, we obtain

Fν

(
Dν

ϑhν(x)
)
(ω) = |ω|Aν(ω)

(
Fνh(x)

)
(ω)

= |ω|Aν(ω)
1

Aν(ω)|ω|
(
FνG(x)

)
(ω),

Fν

(
Dν

ϑhν(x)
)
(ω) =

(
FνG(x)

)
(ω), ∀ω ∈R.

Since Fν is one-to-one, it follows that (Dν
ϑhν)(x) = G(x), so hν(x) is a solution of equation

(3.1). Consequently, from equation (3.4) and equation (3.6), we obtain

(
Fνh(x)

)
(ω) –

(
Fνhν(x)

)
(ω) =

1
|ω|Aν(ω)

(
FνY1(x)

)
(ω),

h(x) – hν(x)

= F–1
ν

(
1

|ω|Aν(ω)

)
∗Y1(x)
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=
1

2πν

(∫ ∞

–∞
1

Aν(ω)|ω|Eν

(
–i sign (ω)|ω| 1

ν x
)|ω| 1

ν –1 dω

)
∗Y1(x)

=
1

2πν

1
Aν1

∫ 0

–∞
Eν

(
i(–ω)

1
ν x

)
(–ω)

1
ν –2 dω ∗Y1(x)

+
1

2πν

1
Aν2

∫ ∞

0
Eν

(
–i(ω)

1
ν x

)
(–ω)

1
ν –2 dω ∗Y1(x)

=
1

2π

(
1

Aν1

∫ ∞

0
Eα(izx)z–ν dz

+
1

Aν2

∫ ∞

0
Eν(–izx)z–ν dz

)
∗Y1(x)

(3.7)

=
�(1 – ν)|x|ν–1

2π

(
1

Aν1
Eν

(
i sign(x)(νπ/2)

)

+
1

Aν2
Eν

(
–i sign(x)(νπ/2)

)) ∗Y1(x)

=
�(1 – ν)

2π

∫

R

(
1

Aν1
Eν

(
i sign(x – τ )(νπ/2)

)

+
1

Aν2
Eν

(
–i sign(x – τ )(νπ/2)

))|x – τ |ν–1Y1(τ ) dτ .

Now, taking modulus with respect to equation (3.7) on both sides gives

∣∣h(x) – hν(x)
∣∣ ≤ C

∣
∣∣
∣

∫

R

|x – τ |ν–1Y1(τ ) dτ

∣
∣∣
∣

(where C = | 1
Aν1

Eν(i sign(x – τ )(νπ/2)) + 1
Aν2

Eν(–i sign(x – τ )(νπ/2))| ∈R)

∣∣h(x) – hν(x)
∣∣ ≤ Cε

∫

R

|x – τ |ν–1 dτ ,

∣
∣h(x) – hν(x)

∣
∣ ≤ Kε,

where K = C
∫
R

|x – τ |ν–1 dτ . Hence, FRDE (3.1) is H–U stable. �

Similarly, we can prove that FRDE (3.1) is H–U–Rassias stable with the help of FRFT.

Corollary 3.1 Given 	(R), a real continuous function is G(x), and suppose 0 < ν ≤ 1,
the following inequality is satisfied subject to the existence of a continuous function φ(x)
whereby h : R → F is a continuously differentiable function

∣
∣(Dν

ϑh
)
(x) – G(x)

∣
∣ ≤ β(x)

for all x ∈ R. As such, a solution hν : R → F of fractional differential equation (3.1) exists
whereby

∣
∣h(x) – hν(x)

∣
∣ ≤ �(x),

where �(x) = Cβ(x)
∫
R

|x – τ |ν–1 dτ for any x ∈R.
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Theorem 3.2 Consider the delay FRDE

(
Dν

ϑh
)
(x – ξ ) = G(x), (3.8)

where G(x) ∈ 	(R), then a constant K having the following property exists, i.e., for every
h ∈ 	(R) and given ε > 0 satisfying

∣
∣(Dν

ϑh
)
(x – ξ ) – G(x)

∣
∣ ≤ ε, ∀x ∈ R, (3.9)

0 < ν ≤ 1, then there exists a solution hν ∈ 	(R) of equation (3.8) such that

∣
∣h(x) – hν(x)

∣
∣ ≤ Kε.

Proof Let h ∈ 	(R) satisfy inequality (3.9) and define

M(x) =
(
Dν

ϑh
)
(x – ξ ) – G(x) (3.10)

for each x ∈R. We have

∣
∣M(x)

∣
∣ ≤ ε.

By taking into account the formula and the property of FRFT and from equation (3.12),
we can derive

Fν

(
M(x)

)
= Fν

(
Dν

ϑh
)
(x – ξ ) – Fν

(
G(x)

)
,

M̂ν(ω) = Eν

(
–i sign (ω)|ω| 1

ν ξ
)|ω|Aν(ω)Fν(h)(ω) – Fν(G)(ω),

Fν(h)(ω) =
1

Eν(–i sign (ω)|ω| 1
ν ξ )|ω|Aν(ω)

(
Fν(G)(ω) + M̂ν(ω)

)
.

(3.11)

Set

hν(x) =
�(1 – ν)

2π

∫ ∞

–∞

(
A1 cos(νπ/2) – iA2 sign(x + ξ – τ ) sin(νπ/2)

)
sign(x + ξ – τ )

× |x + ξ – τ |ν–1G(τ ) dτ ,

where A1 = –i
Aν1

+ i
Aν2

and A2 = i
Aν1

+ i
Aν2

.
Applying the formula of convolution, we obtain

hν(x) =
�(1 – ν)

2π
sign(x + ξ )|x + ξ |ν–1(A1 cos(νπ/2)

– i sign(x + ξ )A2 sin(νπ/2)
) ∗ G(x)

=
1

2π

(
1

Aν1

∫ ∞

0
Eα

(
iz(x + ξ )

)
z–ν dz

+
1

Aν2

∫ ∞

0
Eα

(
–iz(x + ξ )

)
z–ν dz

)
∗ G(x)
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=
1

2πν

(
1

Aν1 (ω)

∫ 0

–∞
Eν

(
i(–ω)

1
ν (x + ξ )

)
(–ω)

1
ν –2 dω

)
∗ G(x) (3.12)

+
1

2πν

(
1

Aν2 (ω)

∫ ∞

0
Eν

(
–i(ω)

1
ν (x + ξ )

)
(–ω)

1
ν –2 dω

)
∗ G(x)

=
1

2πν

(∫ ∞

–∞
1

Aν(ω)|ω|Eν

(
–i sign (ω)|ω| 1

ν (x + ξ )
)|ω| 1

ν –1 dω

)
∗ G(x)

= F–1
ν

(
1

Aν(ω)|ω|
)

∗ G(x),

(Fνhν)(ω) =
1

Aν(ω)|ω| (FνG)(ω).

By equation (3.12) and simple computation, we obtain

Fν

(
Dν

ϑhν(x – ξ )
)
(ω) = Eν

(
–i sign (ω)|ω| 1

ν ξ
)|ω|Aν(ω)(Fνh)(ω)

= Eν

(
–i sign (ω)|ω| 1

ν ξ
)|ω|Aν(ω)

1
Aν(ω)|ω| (Fνg)(ω),

Fν

(
Dν

ϑhν(x – ξ )
)
(ω) = (Fνg)(ω), ∀x ∈R.

Since Fν is one-to-one, it follows that (Dν
ϑhν)(x – ξ ) = g(x). So, hν(x) is a solution of

equation (3.8).
From equation (3.11) and equation (3.12), we obtain

(
Fνh(x)

)
(ω) –

(
Fνhν(x)

)
(ω) =

1
Eν(–i sign (ω)|ω| 1

ν ξ )|ω|Aν(ω)
Fν

(
M(x)

)
(ω),

h(x) – hν(x) = F–1
ν

(
1

Eν(–i sign (ω)|ω| 1
ν ξ )|ω|Aν(ω)

)
∗M(x)

=
1

2πν

(∫ ∞

–∞
1

Aν(ω)|ω|Eν

(
–i sign (ω)|ω| 1

ν (x + ξ )
)|ω| 1

ν –1 dω

)
∗M(x)

=
1

2πν

1
Aν1 (ω)

∫ 0

–∞
Eν

(
i(–ω)

1
ν (x + ξ )

)
(–ω)

1
ν –2 dω ∗M(x)

+
1

2πν

1
Aν2 (ω)

∫ ∞

0
Eν(–i(ω)

1
ν (x + ξ )(–ω)

1
ν –2 dω ∗M(x)

=
1

2π

(
1

Aν1 (ω)

∫ ∞

0
Eα

(
iz(x + ξ )

)
z–ν dz (3.13)

+
1

Aν2 (ω)

∫ ∞

0
Eα

(
–iz(x + ξ )

)
z–ν dz

)
∗Y1(x)

=
�(1 – ν)|x + ξ |ν–1

2π

(
1

Aν1 (ω)
Eν

(
i sign(x)(νπ/2)

)

+
1

Aν2 (ω)
Eν

(
–i sign(x)(νπ/2)

)) ∗M(x)

=
�(1 – ν)

2π

∫

R

(
1

Aν1 (ω)
Eν

(
i sign(x + ξ – τ )(νπ/2)

)

+
1

Aν2 (ω)
Eν

(
–i sign(x + ξ – τ )(νπ/2)

)
)

|x + ξ – τ |ν–1M(τ ) dτ .



Unyong et al. Advances in Difference Equations        (2020) 2020:578 Page 15 of 23

Now, taking modulus with respect to equation (3.13) on both sides gives

∣∣h(x) – hν(x)
∣∣ = C

∣
∣∣
∣

∫

R

|x + ξ – τ |ν–1M(τ ) dτ

∣
∣∣
∣,

∣∣h(x) – hν(x)
∣∣ ≤ Cε

∫

R

|x + ξ – τ |ν–1 dτ ,

∣
∣h(x) – hν(x)

∣
∣ ≤ Kε,

where K = C
∫
R

|x + ξ – τ |ν–1 dτ for any value of x and ξ > 0. Consequently, the fractional
differential equation with delay equation (3.8) is H–U stable. �

Similarly, we can prove that FRDE (3.8) is generalized H–U stable with the help of FRFT.

Corollary 3.2 For every function h ∈ 	(R) satisfying

∣
∣(Dν

ϑh
)
(x – ξ ) – G(x)

∣
∣ ≤ β(x), ∀x ∈R,

0 < α ≤ 1 and G(x) is a continuous function on 	(R), there exists a solution hν ∈ 	(R) of
equation (3.8) whereby

∣
∣h(x) – hν(x)

∣
∣ ≤ �(x), ∀x ∈R.

4 Existence and stability results of nonlinear FRDE
The current section is concerned with establishing the existence and H–U–Rassias stabil-
ity to the nonlinear FRDE

(
Dν

ϑh
)
(x) = G

(
x, h(x)

)
, ∀x ∈R. (4.1)

[D1] G : [–X, X] ×R → F is continuous;
[D2] For x ∈ [–X, X], constant 0 < L < 1 exists whereby

∣
∣G(x, h1) – G(x, h2)

∣
∣ ≤ L|h1 – h2|, ∀h1, h2 ∈R;

[D3] There exists a constant Lh > 0 whereby

∣
∣G(x, h)

∣
∣ ≤ Lh

(
1 + |h|), ∀h ∈ R.

Denote ψ = C(R,F) as the Banach space which contains all continuous functions from R

in F and its norm is

‖h‖C = sup
{∣∣h(x)

∣
∣ : x ∈R

}
.

Theorem 4.1 Consider that hypotheses [D1] and [D2] are valid. As such, if LC (2X)ν�(1–ν)
2πν

<
1, then there exists a unique solution in ψ for (4.1).
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Proof The definition of an operator � : ψ → ψ is

(�h)(x) =
�(1 – ν)

2π

∫ x

–x

(
A1 cos(νπ/2) – iA2 sign(x – τ ) sin(νπ/2)

)

× |x – τ |ν–1G
(
τ , h(τ )

)
dτ (4.2)

for any x ∈ [–X, X]. As such, � is well defined because of [D1].
We obtain the following for any h1, h2 ∈ ψ and given x ∈ [–X, X]:

∣∣(�h1)(x) – (�h2)(x)
∣∣

≤ �(1 – ν)
2π

∫ x

–x

∣
∣(A1 cos(νπ/2) – iA2 sign(t – τ ) sin(νπ/2)

)∣∣

× |x – τ |ν–1∣∣G
(
τ , h1(τ )

)
– G

(
τ , h2(τ )

)∣∣dτ

≤ �(1 – ν)
2π

LC
∫ x

–x
|x – τ |ν–1|h1 – h2|dτ

≤ �(1 – ν)LC
(2X)ν

2πν
‖h1 – h2‖C .

From the condition LC (2X)ν�(1–ν)
2πν

< 1, � takes the form of a contraction mapping. As a
result, we are able to establish that � has a unique fixed point in accordance with the
Banach contraction principle, and it is a unique solution with respect to FRDE (4.1). �

Theorem 4.2 Operator � is compact based on hypotheses [D1]–[D3].

Proof Consider the definition in equation (4.2) for the operator �.
Step (1): We assume that hn whereby hn → h as n → ∞ in ψ . As such, we have the

following given all x ∈ [–X, X]:

∣∣(�hn)(x) – (�h)(x)
∣∣ ≤ �(1 – ν)

2π
C

∫ x

–x
|x – τ |ν–1∣∣G

(
τ , hn(τ )

)
– G

(
τ , h(τ )

)∣∣dτ .

We have the following with respect to [D2]:

∣
∣G(τ , hn) – G(τ , h)

∣
∣ ≤ L|hn – h|.

Consequently,

∣
∣(�hn)(x) – (�h)(x)

∣
∣ ≤ �(1 – ν)

2π
LC

∫ x

–x
|x – τ |ν–1|hn – h|dτ

≤ �(1 – ν)
2π

LC
(2X)ν

ν
|hn – h|.

Note that hn → h as n → ∞ for every x ∈ [–X, X], and based on the Lebesgue dominated
convergence theorem,

∣
∣(�hn)(x) – (�h)(x)

∣
∣ → 0 as n → ∞,
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hence

∥∥(�hn)(x) – (�h)(x)
∥∥
C → 0 as n → ∞.

Therefore, � is continuous.
Step (2): Here, � maps a bounded set in ψ is established. For this, we just have to prove

that, for any κ∗ > 0, there exists ρ > 0 whereby given any

h ∈ E∗ =
{

h ∈ ψ : ‖h‖C ≤ κ∗},

we have

∥
∥�(h)

∥
∥ ≤ ρ.

In fact, for any x ∈ [–X, X], from equation (4.2), we have

∣
∣(�h)(x)

∣
∣ =

�(1 – ν)
2π

∫ x

–x

∣
∣(A1 cos(νπ/2) – iA2 sign(x – τ ) sin(νπ/2)

)∣∣

× |x – τ |ν–1∣∣G
(
τ , h(τ )

)∣∣dτ ,

where G ∈ ψ . Based on [D3], we have

∣∣(�h)(x)
∣∣ ≤ C

∫ x

–x
|x – τ |ν–1∣∣G

(
τ , h(τ )

)∣∣dτ ≤ CLh(1 + ρ)
∫ x

–x
|x – τ |ν–1 dτ .

Consequently, we have

∣∣(�h)(x)
∣∣ ≤ CLh(1 + ρ)

(2X)ν

ν
= K .

Hence �(E∗) is bounded.
Step (3): We prove that the operator � is equicontinuous in ψ . Suppose x1, x2 ∈ [–X, X]

with 0 ≤ x1 ≤ x2 ≤ X, as E∗ is a bounded set in ψ , and assume h ∈ E∗.

∣∣(�h)(x1) – (�h)(x2)
∣∣ =

�(1 – ν)
2π

∫ t1

–t1

∣∣(A1 cos(νπ/2) – iA2 sign(x1 – τ ) sin(νπ/2)
)∣∣

× |x1 – τ |ν–1∣∣G
(
τ , h(τ )

)∣∣dτ –
�(1 – ν)

2π

∫ x2

–x2

∣∣(A1 cos(νπ/2)

– iA2 sign(t2 – τ ) sin(νπ/2)
)∣∣|x2 – τ |ν–1∣∣G

(
τ , h(τ )

)∣∣dτ .

Now, by [D3], we have

∣∣(�h)(x1) – (�h)(x2)
∣∣ ≤ �(1 – ν)

2π
CLh(1 + ρ)

(∫ x1

–x1

(|x1 – τ |ν–1 – |x2 – τ |ν–1)dτ

+
∫ –x1

–x2

|x2 – τ |ν–1 dτ +
∫ x2

x1

|x2 – τ |ν–1 dτ

)
,

∣
∣(�h)(x1) – (�h)(x2)

∣
∣ ≤ �(1 – ν)

2π
CLh(1 + ρ)

(
(2x1)ν

ν
–

(2x2)ν

ν
–

2(x2 – x1)ν

ν

)
.
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Note that as x1 → x2, and consider the above inequality, its right-hand side approximates
zero, and this indicates that � is equicontinuous. Based on steps (1) to step (3), it is con-
cluded that � is completely continuous. Therefore, operator � is compact as in agreement
with the Arzela–Ascoli theorem. �

Next, by exploiting the fixed point theorem of Schaefer, we are able to show that the
solution for equation (4.1) exists.

Theorem 4.3 Suppose that hypothesis [D3] holds. Given C < 1, at least one solution in ψ

exists for FRDE (4.1).

Proof Now, a set B ⊂ ψ is considered, and its definition is

B = {h ∈ ψ : h = η�h, 0 < η < 1}. (4.3)

Let h ∈ B, in which

h(x) = η�h(x), η ∈ (0, 1). (4.4)

The following is obtained for every x ∈ [–X, X]:

h(x) = η
�(1 – ν)

2π

∫ x

–x

(
A1 cos(νπ/2) – iA2 sign(x – τ ) sin(νπ/2)

)

× |x – τ |ν–1G
(
τ , h(τ )

)
dτ ,

∣∣h(x)
∣∣ ≤ C

∫ x

–x
|x – τ |ν–1∣∣G

(
τ , h(τ )

)∣∣dτ ,

∥
∥h(x)

∥
∥
C ≤ CLh

∫ x

–x
|x – τ |ν–1∣∣1 + h(τ )

∣
∣dτ ,

∥∥h(x)
∥∥
C ≤ CLh

∫ x

–x
|x – τ |ν–1 dτ + CLh

∫ x

–x
|x – τ |ν–1∣∣h(τ )

∣∣dτ ,

∥
∥h(x)

∥
∥
C ≤ CLh

(2X)ν

ν
+ CLh

(2X)ν

ν

∥
∥h(x)

∥
∥
C .

(4.5)

For simplicity, let N = CLh
(2X)ν

ν
. So, (4.5) becomes

∥
∥h(x)

∥
∥
C ≤ N + N

∥
∥h(x)

∥
∥
C ,

∥
∥h(x)

∥
∥
C ≤ N

1 – N
.

Therefore,B is bounded. According to Theorems 2.2 and 4.2, at least one fixed point exists
with respect to operator �. Therefore, the considered FODE (4.1) has at least one solution
in ψ . �

The following inequality is used for further analysis:

∣∣(Dν
ϑh

)
(x) – G

(
x, h(x)

)∣∣ ≤ κ(x). (4.6)

Based on the following condition, we examine the generalized H–U stability.
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[D4] A function G ∈ ψ is considered, and there exists λκ > 0 whereby

∫ x

–x

(
A1 cos(νπ/2) – iA2 sign(x – τ ) sin(νπ/2)

)|x – τ |ν–1G(τ ) dτ ≤ λκκ(x).

Theorem 4.4 Suppose that hypotheses [D1], [D2], and [D4] hold. If LC�(1–ν)
2π

< 1, then (4.1)
is H–U–Rassias stable pertaining to κ .

Proof A unique solution with respect to FRDE (4.1) exists, i.e.,

f (x) =
�(1 – ν)

2π

∫ x

–x

(
A1 cos(νπ/2) – iA2 sign(x – τ ) sin(νπ/2)

)

× |x – τ |ν–1G
(
τ , f (τ )

)
dτ . (4.7)

Integrating inequality (4.6) from –x to x and using condition [D4], we obtain

∣
∣∣
∣h(x) –

�(1 – ν)
2π

∫ x

–x

(
A1 cos(νπ/2) – iA2 sign(x – τ ) sin(νπ/2)

)

× |x – τ |ν–1G
(
τ , h(τ )

)
dτ

∣∣∣
∣

≤ �(1 – ν)
2π

∫ x

–x

(
A1 cos(νπ/2) – iA2 sign(x – τ ) sin(νπ/2)

)|x – τ |ν–1κ(τ ) dτ

≤ �(1 – ν)
2π

λκκ(x).

Thus,

h(x) – f (x)

= h(x) –
�(1 – ν)

2π

∫ x

–x

(
A1 cos(νπ/2) – iA2 sign(x – τ ) sin(νπ/2)

)

× |x – τ |ν–1G
(
τ , f (τ )

)
dτ .

By taking modulus on both sides, we have

∣∣h(x) – f (x)
∣∣

≤
∣∣
∣∣h(x) –

�(1 – ν)
2π

∫ x

–x

(
A1 cos(νπ/2) – iA2 sign(x – τ ) sin(νπ/2)

)

× |x – τ |ν–1G
(
τ , h(τ )

)
dτ

∣
∣∣
∣

+
∣
∣∣
∣
�(1 – ν)

2π

∫ x

–x

(
A1 cos(νπ/2) – iA2 sign(x – τ ) sin(νπ/2)

)

× |x – τ |ν–1G
(
τ , h(τ )

)
– G

(
τ , f (τ )

)
dτ

∣∣
∣∣

≤ �(1 – ν)
2π

λκκ(x) +
LC�(1 – ν)

2π

∫ x

–x
|x – τ |(ν–1)∣∣h(τ ) – f (τ )

∣∣dτ .
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By Grownwall’s inequality, we obtain

∣∣H(x) – Q(x)
∣∣ ≤ W ∗κ(x),

where W ∗ = ( 1
2π

�(1 – ν)) exp( LC
2π

�(1 – ν)).
Equation (4.1) is stable in the sense of H–U–Rassias pertaining to κ on (–x, x). �

5 Simulations
Example 5.1 Consider

D
1
2
0 h(x) =

8
3

(
1√
π

x
3
2 +

3
16

e–x – 1
)

(5.1)

with ν = 1
2 , ϑ = 0, g(x) = 8

3 ( 1√
π

x 3
2 + 3

16 e–x – 1).
Let h1(x) = x2, and from [40] we have

D
1
2
0 x2 =

�(1 + 2)
�(1 + 2 – 1/2)

x2– 1
2 =

8
3
√

π
x

3
2 .

Note that h1(x) = x2 satisfies

∣
∣D

1
2
0 x2 – g(x)

∣
∣ =

∣∣
∣∣

8
3
√

π
x

3
2 –

(
8
3

(
1√
π

x
3
2 +

3
16

e–x – 1
))∣∣

∣∣ =
∣∣
∣∣
8
3

–
1
2

e–x
∣∣
∣∣ ≤ 8

3
= ε.

From (3.5), we obtain the exact solution of equation (5.1), i.e.,

hν(x) =
1√
π

∫ x

0
(x – τ )

–1
2

(
8
3

(
1√
π

x
3
2 +

3
16

e–x – 1
))

dτ .

Equation (5.1) has a solution as in agreement with Theorem 3.1. Therefore, it is H–U
stable, whereby

∣∣h1(x) – hν(x)
∣∣ ≤ 1√

π

∫ x

0
(x – τ )

–1
2 Y1(τ ) dτ

≤ 8
3
√

π

∫ x

0
(x – τ )

–1
2 dτ

≤ 16
3
√

π

√
x =

8K
3

,

where K = 2
√

x√
π

. Hence, our result can be applied to equation (5.1).

Example 5.2 Consider

D
3
2
0 h(x + 0.3) = 4

(
1√
π

x
1
2 +

1
12

e–x – 1
)

(5.2)

with ν = 3
2 , ϑ = 0, ξ = 0.3, g(x) = 4( 1√

π
x 1

2 + 1
12 e–x – 1).

Let h1(x + 0.3) = (x + 0.3)2, and from [40] we have

D
3
2
0 (x + 0.3)2 =

�(1 + 2)
�(1 + 2 – 3/2)

x2– 3
2 =

4√
π

(x + 0.3)
1
2 .
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Note that h1(x + 0.3) = (x + 0.3)2 satisfies

∣∣D
3
2
0 (x + 0.3)2 – g(x)

∣∣ =
∣
∣∣
∣

4√
π

(x + 0.3)
1
2 –

(
4
(

1√
π

x
1
2 +

1
12

e–x – 1
))∣

∣∣
∣ ≤ 4 = ε.

The exact solution of equation (5.2) is

hν(x) =
1√
π

∫ x

0
(x + 0.3 – τ )

–1
2

(
8
3

(
1√
π

x
3
2 +

3
16

e–x – 1
))

dτ .

By Theorem 3.1, we get

∣
∣h1(x) – hν(x)

∣
∣ ≤ 1√

π

∫ x

0
(x + 0.3 – τ )

–1
2 Y1(τ ) dτ

≤ 4√
π

∫ x

0
(x + 0.3 – τ )

–1
2 dτ

≤ 8√
π

√
x + 0.3 = K4,

where K = 2
√

x+0.3√
π

. Therefore, we can ascertain that (5.2) is stable in the sense of H–U.

6 Conclusion
In this paper, the analysis of our results indicates that fractional Fourier transform con-
stitutes a useful method for tackling linear and nonlinear FRDE in 	(R). In addition, our
study has established the stability and existence of solution of such equations using FRFT.
The effectiveness of our results has been positively shown by using two illustrative ex-
amples. Further work will focus on the application of our results to various scientific and
engineering problems.
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11. Sher, M., Shah, K., Fečkan, M., Khan, R.A.: Qualitative analysis of multi-terms fractional order delay differential

equations via the topological degree theory. Mathematics 8(2), 218 (2020)
12. Shah, K., Hussain, W.: Investigating a class of nonlinear fractional differential equations and its Hyers–Ulam stability by

means of topological degree theory. Numer. Funct. Anal. Optim. 40(12), 1355–1372 (2019)
13. Baleanu, D., Mousalou, A., Rezapour, S.: On the existence of solutions for some infinite coefficient-symmetric

Caputo–Fabrizio fractional integro-differential equations. Bound. Value Probl. 2017(1), 1 (2017)
14. Baleanu, D., Agarwal, R.P., Mohammadi, H., Rezapour, S.: Some existence results for a nonlinear fractional differential

equation on partially ordered Banach spaces. Bound. Value Probl. 2013(1), 112 (2013)
15. Baleanu, D., Rezapour, S., Mohammadi, H.: Some existence results on nonlinear fractional differential equations.

Philos. Trans. R. Soc. A, Math. Phys. Eng. Sci. 371(1990), 20120144 (2013)
16. Ulam, S.M.: A collection of mathematical problems. New York 29 (1960)
17. Hyers, D.H.: On the stability of the linear functional equation. Proc. Natl. Acad. Sci. USA 27(4), 222–224 (1941)
18. Rassias, T.M.: On the stability of the linear mapping in Banach spaces. Proc. Am. Math. Soc. 72(2), 297–300 (1978)
19. Luchko, Y., Rodrigues, M.M.: Some new properties and applications of a fractional Fourier transform. J. Inequal. Spec.

Funct. 8(1), 13–27 (2017)
20. Ozaktas, H.M., Kutay, M.A.: The fractional Fourier transform. In: 2001 European Control Conference (ECC),

pp. 1477–1483. IEEE Press, New York (2001)
21. Wiener, N.: Hermitian polynomials and Fourier analysis. J. Math. Phys. 8(1–4), 70–73 (1929)
22. Liu, K., Wang, J., Zhou, Y., O’Regan, D.: Hyers–Ulam stability and existence of solutions for fractional differential

equations with Mittag-Leffler kernel. Chaos Solitons Fractals 132, 109534 (2020)
23. Vu, H., An, T.V., Van Hoa, N.: Ulam–Hyers stability of uncertain functional differential equation in fuzzy setting with

Caputo–Hadamard fractional derivative concept. J. Intell. Fuzzy Syst. 38(2), 2245–2259 (2020)
24. Wang, C., Xu, T.-Z.: Stability of the nonlinear fractional differential equations with the right-sided Riemann–Liouville

fractional derivative. Discrete Contin. Dyn. Syst. 10(3), 505–521 (2017)
25. Guo, Y., Shu, X.-B., Li, Y., Xu, F.: The existence and Hyers–Ulam stability of solution for an impulsive Riemann–Liouville

fractional neutral functional stochastic differential equation with infinite delay of order 1 < β < 2. Bound. Value Probl.
2019(1), 1 (2019)

26. Dai, Q., Gao, R., Li, Z., Wang, C.: Stability of Ulam–Hyers and Ulam–Hyers–Rassias for a class of fractional differential
equations. Adv. Differ. Equ. 2020(1), 1 (2020)

27. Upadhyay, S., Khatterwani, K.: Characterizations of certain Hankel transform involving Riemann–Liouville fractional
derivatives. Comput. Appl. Math. 38(1), 24 (2019)

28. Baleanu, D., Rezapour, S., Saberpour, Z.: On fractional integro-differential inclusions via the extended fractional
Caputo–Fabrizio derivation. Bound. Value Probl. 2019(1), 79 (2019)

29. Aydogan, M.S., Baleanu, D., Mousalou, A., Rezapour, S.: On high order fractional integro-differential equations
including the Caputo–Fabrizio derivative. Bound. Value Probl. 2018(1), 90 (2018)

30. Rashid, S., Hammouch, Z., Baleanu, D., Chu, Y.-M.: New generalizations in the sense of the weighted non-singular
fractional integral operator. Fractals (2020)

31. Khan, A., Syam, M.I., Zada, A., Khan, H.: Stability analysis of nonlinear fractional differential equations with Caputo and
Riemann–Liouville derivatives. Eur. Phys. J. Plus 133(7), 1–9 (2018)

32. Mohanapriya, A., Ganesh, A., Gunasekaran, N.: The Fourier transform approach to Hyers–Ulam stability of differential
equation of second order. J. Phys. Conf. Ser. 2020(1), 12–27 (2020)

33. Mohanapriya, A., Park, C., Ganesh, A., Govindan, V.: Mittag-Leffler–Hyers–Ulam stability of differential equation using
Fourier transform. Adv. Differ. Equ. 2020(1), 1 (2020)

34. Zayed, A.I.: Fractional Fourier transform of generalized functions. Integral Transforms Spec. Funct. 7(3–4), 299–312
(1998)

35. Yang, X., Kang, Z., Liu, C.: Local fractional Fourier’s transform based on the local fractional calculus. In: 2010
International Conference on Electrical and Control Engineering, pp. 1242–1245. IEEE Comput. Soc., Los Alamitos
(2010)

https://doi.org/10.3389/fphy


Unyong et al. Advances in Difference Equations        (2020) 2020:578 Page 23 of 23

36. Luchko, Y.F., Martinez, H., Trujillo, J.J.: Fractional Fourier transform and some of its applications. Fract. Calc. Appl. Anal.
11(4), 457–470 (2008)

37. Lizorkin, P.I.: Generalized Liouville differentiation and the functional spaces Lrp(En). Imbedding theorems. Mat. Sb.
102(3), 325–353 (1963)

38. Lizorkin, P.I.: Generalized Liouville differentiation and the method of multiplicators in imbedding theory for function
classes. Math. Notes Acad. Sci. USSR 4(4), 771–779 (1968)

39. Samko, S.: Densencess of the spaces 	(V) of Lizorkin type in the mixed Lp(Rn)-spaces. Stud. Math. 3(113), 199–210
(1995)

40. Kilbas, A., Trujillo, J.: Differential equations of fractional order: methods results and problem – I. Appl. Anal. 78(1–2),
153–192 (2001)

41. Prudnikov, A., Brychkov, Y.A., Marichev, O.I.: Integrals and Series, Vol. 1: Elementary Functions. Gordon & Breach, New
York (1986)


	Fractional Fourier transform and stability of fractional differential equation on Lizorkin space
	Abstract
	Keywords

	Introduction
	Fundamentals
	Stability results of linear FRDE
	Existence and stability results of nonlinear FRDE
	Simulations
	Conclusion
	Acknowledgements
	Funding
	Availability of data and materials
	Competing interests
	Authors' contributions
	Author details
	Publisher's Note
	References


