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1 Introduction

Some differential equations such as that of Sturm-Liouville have established important re-
lations between physics, mathematics, and other fields of engineering (see [1, 2]). During
the last decades, many researchers have been studying some well-known problems involv-
ing differential equations such as Sturm-Lioville boundary value problems from different
views (see, for example, [3—16]). It is important that researchers try to investigate distinct
versions of famous and applicable differential equations (see, for example, [17-20]). On
the other hand, some interesting integro-differential equations have been investigated by
researchers. Among these interesting ones are hybrid differential equations (see, for ex-
ample, [21-35]).

In 2010, Dhage and Lakshmikantham introduced hybrid differential equations [36]. In
2011, Zhao et al. extended Dhage’s work to fractional order and investigated the hybrid
fractional differential equations [25]. In 2012, Sun et al. studied a fractional hybrid two
point boundary value problem [23].In 2016, Baleanu et al. reviewed some existence results
for the Caputo fractional hybrid inclusion problem

: ( )
h(t,z(8), I 2(t), ..., 1% z(t)))

) € H(t,z(t), 1M 2(0),..., I%2(t)) (te]0,1])

with boundary value conditions z(0) = z§ and z(1) = z§, where p € (1,2], °D* and I de-
note the Caputo derivative operator of the fractional order o and the Riemann-Liouville
integral operator of the fractional order y € {«;, 8;} C (0,00) fori=1,...,nandj=1,...,k,
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respectively [37]. In 2019, El-Sayed et al. investigated the fractional version of the Sturm-—
Liouville differential equation with multipoint boundary condition

D (p(t)u' (1)) + q()u(t) = h(f)f(ll(f)),
u'(t)=0, Z, lé:z =V ]"1:1 nju(bj);

where o € (0,1], °D* denotes the Caputo fractional derivative, p € C'(I,R), ¢(t) and k()
are absolutely continuous functions on I = [0, T] with T < oo and p(t) # 0 for all £ € I,
f:R — R is defined and differentiable on the interval [, 0 <a; <az <---<a, <c¢ d <
by<by<---<b,<T,c<dand&,...,&,, N1,...,Ms and v are some real constants [6].
Since inclusion problems are really strong versions of the usual differential equations, by
using and mixing the main ideas of these works, we are going to investigate the fractional
hybrid inclusion version of the Sturm-Lioville equation given by

¢ Z(t) ' ~(NT
D (p(t) (g(t,z(t))) —p(t)f(z(t))) eV(tz(t)) (t€(0,1,0<a=<1) 1)

with multipoint hybrid boundary conditions

(7570 = (BRF (2(8))io, o

> 151 @ m,) )_UZ] 1105 25 f(; ),
where o € (0,1], °D* denotes the Caputo fractional derivative, ¥ : [0,1] x R — P(R) is a
multivalued map with some properties, p,p € C1(I,R), p(t) is absolutely continuous func-
tionon [0, 1], p(¢) #0forall t € I, inf,; |p(£)| = p,f :R — Ris defined and differentiable on
the interval [0,1],0 <a;<ay < - <au<c¢d<by<by<---<b,<1,c<d,and &,...,&,,
M1>..., N and v are some real constants with ) 1 & —v ;’zl n; 7 0. Moreover, we review

the fractional hybrid Sturm-Liouville differential inclusion

cna Z(t) —f(t,Z(t)) '

with integral hybrid boundary conditions

(z(t)—f(t,z(t)) 120,
g(tZ(t)) =0~ (4)
S COLED) de (0) = v [ ((OLEED) dv o),

where o € (0,1], °D* denotes the Caputo fractional derivative, W : [0,1] x R — P(R) is
a multivalued map with some properties, f € C([0,1] x R,R), g € C([0,1] x R,R \ {0}),
veR, w,v:[0,1] — R are two increasing functions, the integrals are in the Riemann—
Stieltjes sense,and 0 <a<c<d<e<1.

2 Preliminaries
We consider the norm ||u|| = sup,(o ) |4(¢)| on the space Cr([0,1]) and ||u|| 21 = fol lu(s)| ds
on £[0, 1]. The Riemann-Liouville fractional integral of order « for a function f is defined
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by I*f(t) = ﬁ jg(t —5)*7Lf(s) ds (@ > 0) and the Caputo derivative of order « for a function
fis defined by °D*f(¢) = "™ ﬂf(t) S IO ds, where n = [a] + 1 (see [38, 39]).

v T(—a) JO (z—s)2—1

Suppose that (X, || - || ) is a normed si)aclz. D:n(;te by P(X), Pu(X), Py(X), Pep(X), and
P.,(X) the set of all subsets of X, the set of all closed subsets of X, the set of all bounded
subsets of A, the set of all compact subsets of X' and the set of all convex subsets of X,
respectively. We say that a set-valued map W has convex values whenever the set W (z)
is convex for each element z € X. A set-valued map W is called upper semicontinuous
(u.s.c.) whenever for each z* € X’ and open set V containing W(z*) there exists an open
neighborhood Z/Alo of z* such that \I/(Z:{O) cy [40]. An element z* € X is called a fixed point
for the multivalued map W : X — P(X) whenever z* € W(z*). The set of all fixed points
of the multifunction W is denoted by Fix(¥) [40].

Let (X, dx) be a metric space. For each A;,A; € P(X), the Pompeiu—Hausdorff metric
PH,;: P(X) x P(X) — RU {00} is defined by

PH4(A1,A5) :max{ sup dx(ai,Asz), sup dX(Al,dz)},

a1€A ar€Asy

where dx(a1,A3) = infy, cq, dx (a1, a;) and dx (A1, a2) = inf,,ca, dx(a1,a2) [40]. A multi-
valued function ¥ : X — P,(X) is said to be Lipschitz with Lipschitz constant k > 0 when-
ever PH;(V(z1), V(z1)) < kdx(z1,25) holds for all z1,z, € X. A Lipschitz map W is called
a contraction whenever 0 < k < 1 [40]. A set-valued operator W : [0,1] — P,(R) is called
measurable whenever the function t — dx (w, ¥(¢)) = inf{|w — y| : y € W(¢)} is measurable
for any real constant w [40, 41]. The graph of a set-valued function ¥ : X — P,(R) is
defined by Graph(¥) = {(z,w) € X x Q: w € W¥(z)} [40]. We say that the graph of ¥ is
closed whenever for each sequence {z,} in X and {w,} in Q with z, — 2, @, = w and
w, € Y(z,), we have wy € W(zp) [41].

A multifunction W is said to be a completely continuous operator whenever the set
(W) is relatively compact for all W € Pp(X). If the multifunction ¥ : X — P(RQ)) is
upper semicontinuous, then Graph(W) is a subset of the product space X' x Q with the
closedness property. Conversely, if the set-valued mapping W is completely continuous
and has a closed graph, then W is upper semicontinuous (see [40], Proposition 2.1). A set-
valued map W : [0,1] x R — P(R) is said to be a Caratheodory multifunction whenever
t — W(t,z) is a measurable mapping for all z € R and z — W (¢, z) is an upper semicontin-
uous mapping for almost all ¢ € [0, 1] (see [40, 41]). Also, a Caratheodory multifunction
W :[0,1] x R — P(R) is said to be £!-Caratheodory whenever for each constant y > 0
there exists function ¢, € £1([0,1],R) such that

||\IJ(t,z)H = SI[épl]{|s| 1S € \I/(t,z)} <.

forall |z] < u and for almostall £ € [0, 1] (see [40, 41]). The set of selections of a multifunc-
tion W at a point z € Cr([0, 1]) is defined by (SEL)y , := {y € L}([0,1],R) : y(t) € ¥ (t,2)}
for almostall t € [0, 1] (see [40, 41]). Let W be a set-valued map. It is known that (S€L)y , #
@ for all z € Cgr([0, 1]) whenever dim X < oo [40]. We need the following results.

Theorem 1 ([42]) Supposethat X is a separable Banach space, ¥ : [0,1] x X — Py (X)
is an L'-Carathéodory multifunction and T : £1([0,1], X) — C([0,1], X) is a linear con-
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tinuous mapping. Then
T 0 (SEL) : C([0,1], X) — Poper(C([0, 1], X))

is an operator in the product space C([0,1],X) x C([0,1], X) with the action z — (“AT o
(SEL)W)(z) = T((SE L)) having the closed graph property.

Theorem 2 (Theorem 4.8 of [43]) Let V,(0) and 1_/4 (0) denote respectively the open and
closed balls centered at the origin 0 of radius ¢ > 0 in a Banach algebra X and let By, Bs:
\_/; 0) > X and l’;’z : \_/¢ (0) = Pep,ev(X) be three operators such that
(i) By and Bs are single-valued Lipschitz with the Lipschitz constants £} and €3,
respectively;

(ii) Bg is u.s.c. and compact;

(ili) 1M + €5 < L where M = | By(V,(0)]| = sup{|| Bzl : z € V;(0)}.
Then either

(a) the operator inclusion z € élzézz + l§'3z has a solution, or

(b) there exists z € X with ||z|| = ¢ such that uz € Blzézz + l’;’ngor some > 1.

Theorem 3 (Theorem 4.13 of [43]) Let X' be a Banach algebra. Let Bl, l§3 : X — X betwo
single-valued operators and By: X — Pep,ev(X) be a multivalued map such that
(i) B’l and Bg are single-valued Lipschitz with the Lipschitz constants €5 and £,
respectively;

(ii) l§’2 is u.s.c. and compact;

(iii) LM + €5 < L where M = | Bo(V,(0)]| = sup{[|Bozl| : z € X).
Then either

(a) the operator inclusion z € Blzl%zz + Bgz has a solution, or

(b) theset *={zeX:nze lglz[;’zz + [;’gZ,M > 1} is unbounded.

3 Main results

Now, we investigate the fractional Sturm-Liouville differential inclusion (1)—(2).

Lemma 4 Lety € L£1([0,1],R). A function z is a solution for the fractional hybrid Sturm—

Liouville differential equation
z®) \ . -
0 (00 ) ~POTE0) ) =500 )
(’” dzty) P D)=
with multipoint hybrid boundary conditions

( o) 7
(72570 = (BRF (2(6))m0, ©
m z(a;) _ no o zbj)
2t 8 cta) = ¥ 2o 1 )
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if and only if z is a solution for the integral equation

2(t) = g (6,2(0)) |:7-lvz / 3 (2(s)) ds - HZg,/ lﬁf(z(s))

p(s) - S(s—1)* 'y(7)
+/0 o6 ((s)) ds:| +g(£,2(2)) |:’Her),/ Wdfds (7)

45 (s—1)* y(r) S (s—1)* y(7)
—HY & S ALY B0 X e,
21:5/0 0o POT@ S+/o 0o pOr@ O S}
1
Z;Zléi—uz;‘il”j'

where H =

Proof First assume that z is a solution for the hybrid fractional equation (5). Note that
equation (5) can be written as

IH( [ ( )< o it»)/-ﬁ (t)f(z“))D =0

Then, 11(% [P(t)(g(z(zt()t)) ), _ﬁ(t)f(z(t)]) = Ia.y(t) and so

20\ . - 20\ ., - e
20 ey ) ~POFE0) 2O 0] OFEO) -

Since (ﬁ); 0= (i’(t)f((z(t)))t 0, one has p(t )(%)/ =[9(t)f(z(t)) +1%y(t), and so

p(0)
© \ 50, 1
(g“'dt))) oA ®)

By integrating from O to ¢, we get

z(t) B ¢ L ¢ L .
doe | e [ e ©
where £ = (0 z(O . Now, we can write

e z(a;)

;5(g(a, ) Za

. [PB); 1,
e[ L7 () ds+2a / s

i=1

(10)

and

n Z(b) n
L ”"( @ z<b>)> ”;”’[
Z / () f(2(s)) ds + v 21: / —I"y(s)ds.

(11)

Page 5 of 23
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Now by subtracting (10) from (11) and utilizing ) ", &( fl o) ) =y Z/ 11 tz(b ) we
conclude that

l= Hvzn,f PO 6) ds-HZs,f ﬁf(())
+'HvZn,f —I“ 'HZE,[ —1“ (s)ds,

where H = -. Now by substituting the value of £ in (9), we get

Z,ml &i— VZ,” 17

2(t) = gtzt)|:7-LvZ / () f(2(s)) ds - HZ&/O ‘58(())

L pls) Z b
£3°) d ; —I%y(s)d.
+/0 6 (u(s)) s+7—[vjzzln,/0 ()I y(s) ds

m a; t 1
_ : —— I*v(s)d —I%(s)ds |.
7—[;5/0 ()I ¥(s) s+/(; p(s)l y(s) s:|

Conversely, to complete the equivalence between integral equation (7) and problem (5)—

(6), by using (8), we obtain

0\ N
( ()<g(t (t))> _”(t)f(z(’f))) =D Iy(t) = y(t)

and ( Z(t) ) (p t)f (z(t)))t 0 Also by using simple computations and (7), we obtain

Zz lgl

=v Z} 1 n,( ) This completes the proof. d

Definition 5 We say that an absolutely continuous function z : [0, 1] — R is a solution for
the fractional hybrid Sturm-Liouville differential inclusion (1)—(2) whenever there is an
integrable function y € £1([0, 1], R) with y(¢) € (¢, z(¢)) for almost all ¢ € [0, 1],

2\ Za(t ) ( > < ( z(b)) )
(g(t,z(t)))t_o_(pt =0 ;é’ g(anz(a ) v;"’ §(byz(y) )’

and

n

z(t) =g(t,z(t)) |:’Hv 2. r]}/() ]L; Z( ) HZ‘E!/(; (S) ( ))
Ps) (s— )“ -0"H@)
[ Sare] ol [ 55

o s (- o) =Dy
_ l, $2U XY g g S2H R
Hszo e [, e S}

forall £ € [0,1].
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Theorem 6 Assume that
(Q1) there exists a bounded mapping x : [0,1] — R* such that |g(t,x) — g(t, )| < x(t)|x -
y| for all (¢,x,y) € [0,1] x R x R;
(95) thefunctionf : R — R is differentiable on [0,1], and % is bounded on [0,1] with
% <K
(Q3) the set-valued map W : [0,1] x R — P, (R) has L -Caratheodory property;
(Qu) there exists a positive mapping o € C([0,1],R*) such that

|t x)] = supflyl -y € W(t,0)} <o)

forall x € R and almost all t € [0,1];
(Qs) there exists ¢ > 0 such that ¢ > A(x*¢ +g0)(||p||(IC§ +ﬂ))

2 ) and

Kol o -
<F(a+2)+||l9||(21CX §+Xfo+/Cgo)>A<

N |

where & = L(HICTL, 18]+ v 00 Iyl) + 1), 2 = Supycgo) X (6), €0 = SUPcpo.,8(4,0), and
fo =f(0). Then the fractional hybrid Sturm—Liouville inclusion problem (1)—(2) has at least

one solution.

Proof Let X = Cr([0,1]), and let V;(0) :={z e X : ||z|]| < ¢} and \_/;(O) ={ze X :|z| <¢}
be the open and closed balls centered at the origin 0 of radius ¢, respectively. Consider the

operator K: V;(0) — P(X) defined by

A

K(z) = {a) € X : there exists y € (S£L)y . such that w(t) = ¢(¢) for all £ € [0, 1]},

where
o(t) = g(t, =t |:’Hv2 /lﬂfz( ds—HZ%‘,/ul&~ (s)) ds
0
/iﬁsif(())ds]tqtz [Hvzn,f / (s T)al(f)d ds
0
m ‘ a; S(S—‘L')a_ly(‘f) t S(S—‘L')a_ly(l')
‘”gfl/ofo e [, S re d”’s}'

It is easy to check that fixed point of the set-valued map K is solution for the fractional hy-
brid Sturm-Liouville inclusion problem (1)—(2). Define the maps Bl, 33 : \_/{ (0) - X and
the set-valued-map B, : V;(0) — P(X) by (B12)(¢) = g(t, z()), (Bsz)(¢) = g(t, (1)) (9 2)(¢),

A

(Byz)(t) = {ga € X : there exists y € (SEL)y . such that ¢(¢) = o(¢) for all £ € [0, 1]},

Page 7 of 23
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where
_ 7)1 _ -1
o(t) = Hvzn,/ (sp(z)r(y(f)d ds HZg,/ / d T)F(a GO 4 s

/ / p(gi(la)r)d @

and

®2)() = Hvzn,/O 8 (2(s)) ds - HZE,/O ’N’E; (2(s)) ds
[ e

Note that /@(z) =BizByz + BgZ forallz € \_/; (0). We show that the operators B, B,, and Bg
satisfy the conditions of Theorem 2. First, we prove that the set-valued map B, is convex-

valued. Let ¢y, ¢, € l’;’zz. Choose y1,¥,2 € (SEL)y,, such that

)al )al

s—T yk(r) s— yk(r)
ilt) = Huzn,// — T © % HZ&Lf/ T
(s =0)* (o)
/ / T T T

for k=1,2.Let A € (0,1). Then, we have

o— 1
2o () + (1= Veat) = HVZ');/ / —7)" 7 (a(r) + (1 - ?»)yz(r))dtds

p)(a)
S [ 5= (D) + (L= Aya(2))
_HZ&/O /(; SO dt ds
/ / (s —0)* ' (r) + A = M)ya(2)) drds
p) ()

for almost all £ € [0, 1]. Since WV is convex-valued, (S€L)y , is convex, that is,
Ay1(T) + (1 = A)ya(7)) € (SEL)w ..

Hence, A1 (t) + (1 — A)po(t) € Z%gz, and so Bzz is a convex set for all z € X. Now, we show
that the operator B, is completely continuous and upper semicontinuous on X'. To estab-
lish the complete continuity of the operator B,, we should prove that By(X)isan equicon-
tinuous and uniformly bounded set. To do this, first we prove that B, maps all bounded
sets into bounded subsets of X. Let V' be a bounded subset of V; (0). Choose 0 < k* <¢
such that ||z|| < «* forall z € V. For each z € V and Y E l§2(]>), there exists y € (SEL)y .
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such that

(s=1)*y(r) (s=1)*y(r)
Hvzn,// OTE) dds—HZg,// ST dt ds
//(s—f)“ ly(r)d s
p(s)T '
Hence,
_ al
t)|<|7-£||v|Z|77;|/ /(S V;s)'rg) N e s
(=) (@)l (=) (@)
+|H|Z|§"// Cpe)IT(@) drdss // CpB)T(@) de ds
a—1
<|H|IvIZ|n,|f /(S 2 G(T)drds

S(s— 1) o () C s (s— ) o)
; 761 d. — " dtds.
*'H'Z'g'/ POIT@ S+/0 b, PO %

Since [H|[v] >7. 1|n,|f0 fowdrds<|7-lllv|z Ly Il 52 el

ol
'H'Z'E"// |p(s)|r<) d’ds—'H'Z'g’pr(

i=1

and [ [5 & o s)\l" %) dr ds < 2),we get

ol
\t)y<m||v|Z|n, ( W';'& +2 t T+

|o|| <|'H|<Z|§l|+|v|2|n]> ) (K”Z)A,

loll
T(a+2)

erator Bz maps bounded sets onto equicontinuous sets. Let z € Y and xS Bzz Choose
y € (SEL)y, such that

and so ||¢|| < A. Thus, Bz(f}) is a uniformly bounded. Now, we prove that the op-

(s=1)*y(r) (s=1)*y(r)
H”Z”’// P T HZ@// Por@ T

// S;(Zr(a) drds

Page 9 of 23
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for all ¢ € [0, 1]. For each ti, £, with #; < £, we have

(s—1)* 1y(f (s =) y(r)
[elta) - o) / T POT@) a) / f s)r @ ar ds‘
S—T S—
s)l"(a) dr ds| < s)l"(oz) drds

Since the right-hand side of the above inequality tends to zero as t; — t;, by using the
Arzela—Ascoli theorem, the operator By: \_/; (0) = P(X) is completely continuous. Here,
we show that B, has a closed graph, and this implies that B, is upper semicontinuous.
For this aim, suppose that z,, € Y and ¥ € Z%'zzn with z, — z* and ¢,, — ¢*. We show that
p*e ézz*. For each ¢, € l%zz,,, choose y, € (5€L)y 4, such that

(s—1)* )
on(t) = 'Huzn,// (S)F(a) 6= D) s HZ&// p(sl"((x) dt ds

(5= ) Ly(r)
+/o T T

It is sufficient to be prove that there exists a function y* € (S€L)y .+ such that

s—1) s—1) )
o= H”Z"’/ [ ""ds‘%zs’/ [ S e

s (S— .L.)ot—ly*(.’:)
+/0 A R T

for all ¢ € [0, 1]. Consider the continuous linear operator T :£1([0,1],R) — X defined by
(s— 1) 'y(r)
TO)(8) = 2(t) = Hv / / =Dy s
v Z K T pOT@

- =) ()
_HZ&/O er@ dt ds

/ / S;é;;(la)ﬂd s

for all ¢ € [0,1]. Then, we get

p(a)

P =) (D) — ¥ (D)
‘51/0/ 2T @) dt ds

sl _ s =) On(r) -y ()
len(®) —*@)] = HHV,;:”}/O /0 dr ds

—0 (asn— o0).

/ / (s =) a(r) - y*(x D e ds
p)'(a)

Page 10 of 23



Charandabi and Rezapour Advances in Difference Equations (2020) 2020:546 Page 11 of 23

Hence by using Theorem 1, we conclude that the operator Y o (SEL£)y has a closed graph.
In fact, since ¢, € YA”((SEL')\;,,Z”) and z,, — z*, there exists y* € (S§€ L)y, such that

(s=0)* "y () (s=1)*y*(r)
v = H”Z"’/ / O R HZS[/ / e T

s (S— ‘L')a_ly*(‘f)
——~——dtd
*/o /o pOr@

for all £ € [0,1]. Hence, ¢* € l’;’zz*. This means that the graph of l’;’z is closed. Thus, l’;’z is
upper semicontinuous. Furthermore, by using the assumptions, we know that the operator
W has compact values. Hence, Bg is a compact and upper semicontinuous operator. Now,
we show that B; and Bg are Lipschitz. Let z,2z; € 1_/; (0). By using (Q;), we get

[(Biz1)(t) - (Bi22)(8)| = [¢(t 21) - g(t,20)| < x @)|z1(8) - 220)],
and so ||l§’1z1 —l”;'lzzH < x*|lz1 —2z2|]. Hence, l§1 is Lipschitz with Lipschitz constant £] = x

Let z € V;(0). By using (Q,), we get If (z(s))] < Kl +fo < IE( + fo. Similarly, one can show
that |g(s, z(s))| < x*¢ + go. Thus, we obtain

n b/ ~ . m ai |y ~
w20 < IHIIvIZIn;I/O :ﬁg;:wz@)wﬁ |H|Z|si|f0 %V(z(s))ws
j=1 i=1

! 1p(s)] [f(z(s))’ds

N
0 |I’(S)|
~ E = n ~ ’% ~ m
§|H||v|(4”p”( “ﬁ’))2|n,|+m|(4”p”( “f"))DsA
p j=1 p i=1

, IBI(Ez +o)
p

(npn(/c; +fy) )(W(Zm . lle'ﬂz ) +1)

= IBI (K¢ +fo)A.

Letz,20 € \_/} (0). Similarly, we get

" b5 15(s)| - -
(0200~ 022)0] < 1 Y [ L) 79 ds
j=1

Y lel [ 2 8: F(21(5)) ~F(z2(5)) | ds
i=1

&3: f(21(5)) = f (22(5)) | ds

(upn )(rHl(Z L ] Z"?x ) . 1) et - 2l

= 1pIKA 21 - 2.
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On the other hand, we have

|(B321)(®) = (Bs22) ()]
= [e(t,21(0) 920 (0) - g (t, 22(0)) (922)(8) |
= [e(t,21(0) P2 (0) - g (£, 21(0) (W 22)(®) + g (£, 21(1) (9 22)(¢) - g (£, 22(8)) (9 22) (8)
lg(6:21(0)((F21) () - (¥2)(1)) + (P22) () (g(t, 21(2)) - g (£, 22(2)) )|

g(t,21(1))||(020)(8) - (@ 22)(D)] + | (D 22)(8)] (6,21 (8)) — g (£ 22(0)) |-

IA

Thus,

[(Bsz1)(t) - (Bsz2)(®)|
< lg(tz10)]|020)(8) - @2)(0)| + |92)(1)| g (& 21(8) - g(t:22(0)) |
< 1BIK(x*¢ +go) Allzs = 22l + 1l x* (K¢ +fo)Allzy - 22|
= 1BI(2Kx"¢ + x*fo + Kgo) Allzr - 221,

and so ||l§3z1 - Bgz2|| < ||[9||(2i€x*§ + X*ﬁ) + l%go)AHzl — 2;||. Hence, Bg is Lipschitz with
Lipschitz constant £} = ||[7||(2i€x*§ + X*fo + l%go)& Note that

loll -+
I +2)

= ||l§2(1_/;(0)) | = sup{|l§22| :z€ V(0)} =

and

loll
IN'a +2)

GA 4= x* A+ 11K X ¢ + x*fo + Kgo) A

1

X*”o‘” B ~ P _
= A<—.
(o 1 1eRe + o+ Reo) )

\V)

Thus, the assumptions of Theorem 2 hold for [%1, Bz, and [;’3. Hence, one of the conditions
(a) or (b) holds. We show that condition (b) is impossible. Let z € X’ with | z| = ¢ be such
that uz e élzlg’zz + Bgz for some u > 1. Choose y € (S5€L)y, such that

2(t) = —g(t,2(0) [Hvz /”(5) )) ds ?—LZ&/ &f () ds
() (s =) y(r)
f (s) ds+HvZn,/ / p(s)l"(a) dtds
(s=1)*y(r) ) (=) y(r)
‘Hzg’/ [ ara e [ ds}'

Page 12 of 23
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Hence,
|2(6)] < |g(&:2(1))|

. bj Iia(s)l |p<s)|
; d. ; d.
x[mnw;ﬂ |n,|f0 L) s+|H|§ |e;f|f 9)|ds

|P S)l S(s—1)* 10‘(1')
o | i 7 !d+|%||v|2|n,|f e v

S(s—1)* 1cr(t) (s-0)""a(2) 1U(t)
+'H'Z'Sl'/ TP T f/ OO d”“}

< A(X*HZH +go)[||171||(ﬁ||2|| "’fB) + l—w(l(l){al'z)]’

and so ¢ < A(x*¢ +g0)[||p||(lC§ +f0) + =lolL_1 which is a contradiction. Hence, condition

I(a+2)

(b) is impossible, and so the fractional hybrid Sturm-Liouville inclusion problem (1)—(2)

has at least one solution.

Now, we investigate the fractional hybrid Sturm-Liouville inclusion problem (3)—(4).

Lemma 7 Lety € £L1([0,1],R). A function z is a solution for the fractional hybrid Sturm—

Liouville differential equation

‘D* (p(t)(w> ) =y(t) (t€[0,1],0<a <1) (12)

g(t,z(t))

with integral hybrid boundary conditions

z(2)—f (¢,2(t)) _
‘( g )“"O (13)

¢ z(0 (0
fa( (;(92 )d (6 _vfd g9,z )() )))du(e)’

if and only if z is a solution for the integral equation

(s=1)*y(r)
z(t) = tz [va / / POT @) dt dsdv(0)

~ (=) y(r) L= () } (14)
R/ / f dt dsdw(9)+/ dr ds

p(s)T () o Jo p6)I(a)

+f(t,2(2)),

where R =

w(g)_w(a)_lv(u(e))_u(d)) with w (c) — w (a) — v(v(e)) — v(d)) #0.

Proof First, assume that z is a solution for the fractional hybrid equation (12). Note that

- 28 -f(&2) \ T _
! ( [”( ¢620) )])‘y(t)'

Page 13 of 23
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Hence, I' (4 [p()) “2LEDY)) = 1°y(¢), and so

(£.2(2)

Z(t)—f(t,Z(t)))’_ (Z(t)—f(t,Z(t)))/ o
“)( 2t.20) O\ Ttz ), =10

Since (%);zo =0, we get
-0y L, §
( =) ) " T (15)

By integrating from O to ¢, we obtain

2t) - f(t,2@) A
—_— {F= —1 ds, 16
2(6,2(0) / pe TOE (1o
where £* = M . Thus,
£(0,2(0)
€z<9)—f(e,z(e>>)d Nt a2 [ o) ds du (6
f( oy )0 [Laoo= [ [y asaoo
and v [7( Mi)dv( )= [; dv(®)=v [ f09 pl I*y(s) dsdv(9). Hence,
¢(z(0)-f(6,20)) . [ | N

and

¢ (2(0) —£(0,2(6)) . e,
) /d (W>du(9)—£v(v(e)—v(d))—v /d fo s dv(d)

Since f:(% = vfd ga,z )y du (), we have

e a)—lv( (f f YO Ba@)
[ )

Now by substituting the value of £* in (16), we obtain

1 o
z(t)=g(t,z(t))[w(c)_w(a)_v( ( / f —1 (s)dsdv(6)
/ / —IO‘ dsdw(@)) / oG )I “y(s) ds:| +f(t z(t ))
For the converse part, from (15) we get “D*(p(¢)(% t;j Dyy = epage y(¢) = y(t) and
(72,([;2 ))[ o = 0. Also by using some simple computations and (14), we obtain
f( g(@zeze) )dw vfd g(@zezg) )dU( ) 0
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Definition 8 We say that an absolutely continuous function z: [0,1] — R is a solution
for the fractional hybrid Sturm-Liouville inclusion problem (3)—(4) whenever there ex-
ists y € £1([0,1],R) such that y(¢) € W(t,z(¢)) for almost all £ € [0, 1], (%)t 0=0,

(t,2(2)
Ja® g(ﬂzgzw) )dw (0) =v [;( %)dv(@) and

2(t) = g(t, 2(2)) [UR/// S;(Z %) e dsdv(6)

(s=1)*y(r) Ers(s—1)* () }
- drdsd — < ‘dtd
R/ // O T w‘e”/o L PTG
+f(t,2(t))

for all £ € [0, 1].

Theorem 9 Assume that
(9Q3) there exists a bounded mapping x1 : [0,1] — R* such that |g(t,x) — g(t,y)| <
@)|x—y| forall (t,x,y) € [0,1] x R x R;
(Q3) there exists a bounded map x5 : [0,1] = R* such that |f(¢,x) —f (£, )] < x2()|x -yl
forall (t,x,7) €[0,1] x R x R;
(Q3) the set-valued map WV : [0,1] x R — P, (R) has L1-Caratheodory property;
(Q3) there exists a positive map o € C([0,1],R*) such that

Hlll(t,x)H = sup{|y| 1y € lIl(t,x)} <o(t)

forall x € R and almost all t € [0,1];
(Q}) the strict inequality x{A* + x5 < 3 holds, where xi = sup,oy x1(), x5 =
Supscon) ot and A* = 5L (Rl (0)— (@) + I(0le) (@) + 1)
Then the fractional hybrid Sturm—Liouville inclusion problem (3)—(4) has a solution.

Proof Let X = Cg([0,1]). Consider the operator K:X— P(X) defined by

~

K(z) = {a) € X : there exists y € (S£L)y ., such that w(t) = ¢(¢) for all £ € [0, 1]},

where

a—1
c(t) = g(t,2(t) [UR///(S S;F(y)( dt dsdv(6)

_R/// S_Z)r() dtdsdw(9)+// p(sr(a) drds]

+f(62(2)).

Note that each fixed point of the set-valued map K is a solution for the fractional hybrid
Sturm-Liouville inclusion problem (3)—(4). Define the single-valued maps Bl,ég X —
X by (Bi2)(t) = g(t,2(2)) and (Bsz)(¢) = f(£,2(t)), and the set-valued map B, : X — P(X)
by

A

(Byz)(t) = {ga € X : there exists y € (SEL)y . such that ¢(¢) = o(¢) for all £ € [0, 1]},

Page 15 of 23
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where

t)—vR/// S;(Z)r(a) dr dsdv(6)
_R///(Sp(sii(ly)()d dsde (6)

f/ T)al ’)d ds.

Note that I@(z) = Blzl;’zz + égz. We prove that the operators l§1, B’Z, and [;)3 satisfy the
conditions of Theorem 3. Now, we prove that the set-valued map B, is convex-valued. Let

21,29 € [3’22. Choose y1,y,2 € (SEL)y , such that

~ (s=1)*y(r)
zj(t) = vR/// 5T @) dt dsdv(0)

~ (s—1)*1y(r) (s=1)*y(r)
Rf / / PO (@) ‘“d”iw(e“/ / PO R

forj=1,2.Let A € (0,1). Then, we have

Azi(t) + (1= Nzt _va / / (s—7)*" 1()\y1(f)+(1 A)yZ(T))drdsdu(G)

P ()
(s— Tflﬂmh0+ﬂ Mya(1))
—Rf f/ PO @) dt dsdw (0)
/ / - ) (i (r) + (1 = A)ya(1)) Jt ds
pI(er)

for almost all ¢ € [0, 1]. Since W is convex-valued, (S€L)y , is convex. This implies that
() + (1= A)ya(1)) € (SEL)w,, and so l’;’zz is convex set for all z € X'. Now, we show that
the operator B, is completely continuous and upper semicontinuous on X. To establish
the complete continuity of the operator B,, we should prove that By(X) is an equicon-
tinuous and uniformly bounded set. To do this, it is sufficient to prove that B, maps
all bounded sets into bounded subsets of X'. Assume that V is a bounded subset of X.
Choose k* > 0 such that ||z|| <«* forallz€ V. Foreveryz€ Vand ¢ € Bz(V), there exists
y € (SEL)y, such that

<P(L‘)—UR/ / f (Sp(s)a G-y dsdv(6)

‘R/ / / p<s>?(1>r)d’d5dw(9)+/ / (s_gj“(z)(r dr s

Page 16 of 23
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Hence,

(5 — 0 1yl
t)|<|v||R|f/ D e dsauio)

(= D" p@) C s (s = 1) y(o)
*'R'/// POIre@ " d“dww“/o pOT@ T
=0 o o)l r>|
<|v||R|/// |ps)|F dt dsdv(0)

f)‘”IG(T)I L (s=1)* Mo (n)l
+|R|/ // -t dsdw(9)+/0 ; —|p(s)|F(a) dt ds.

) 1|U

Since |v|[R] [} fo IN W‘dfdsdu(g) < w

[(a+1)

|R|// (S—T)‘“IG(T)Id dsdw (0) < IRlllo [|(z (c) - W(ﬂ)),

lp(s)IT" () pra+1)
and [ [5 6 T)allrl(‘lt Vdt ds < 1 , we get
o) < IRlllo|[[vI(v(e) — v(d)) . IRlllo||(@ (c) - @ (a) L ol
Wl = pl(a+1) pro+1) pro+1)
loll

< m(ﬂﬂ(w(c) —wl(a)+ |v|(v(e) - U(d))) + 1) = A",

Hence, ||¢|| < A*. This means l§2(V) is a uniformly bounded set. Here, we show that the
operator B, maps bounded sets onto equicontinuous sets. Let z€ V and ¢ € Byz. Choose
y € (SEL)y , such that

(s—1)*" 1}/( )
<ﬂ(f)—VR/ // (s)F() dt dsdv(6)

‘R/ / / (Sp(gj“(;;)d dsde (6 / / 5 3?(;)(1)”’ @

for all ¢ € [0, 1]. For each t;, £, with #; < £, we can write

(s—1)* 1y(f) (s=1)*y(r)
/ p)T(a) f ./ p)(e) a ds‘

/(S 208 ly( drds|< /(S 7)o () drds‘.
()M ()

()M ()
Note that the right-hand side of the inequality tends to zero as t; — £,. Now by using the

lo(t) — ¢

Arzela—Ascoli theorem, the operator By: X — P(X) is completely continuous. We show
that B, has a closed graph, and this implies that B, is upper semicontinuous. For this,

suppose that z, € V and ¢, € Bzzn with z, — z* and ¢, — ¢*. We show that ¢* € ézz*.

Page 17 of 23
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For each ¢, € l%gzn, choose y, € (5€L)y,, such that

(pn(t)—vR/ / / (s (S);Fz) Y iz dsdu(o)

_R/// s)F() )dtdsdw(9)+// S"S)m) =" l®) s,

It is sufficient to prove that there exists a function y* € (§€ L)y .+ such that

(s=1)*y* (1)
-vR/ / / p(s)F(a) dt dsdv(0)

~ (S ‘L’)a ly*(.[) t S(S—l')a_ly*(l')
Rfff dtdsdw(9)+/0 in(s)r(a) dt ds

for all £ € [0, 1]. Consider the continuous linear operator T: L£1([0,1],R) — X defined by

T)(t) = 2(2)

_”R/ / / (Sp(gf“(z)( e dsdvld)

‘R/// s)r() d’d”iw(@)*// p(s)r(a> SR

for all £ € [0, 1]. Then, we have

vR/ / f (s—1)"" 1(yn(f) Y (1) dr dsdv(®)

(s—1)*" 1()’n(f) -y*(7))
—R/ / / SO dtdsdw (0)

/ / 7 nlr) - (@) drdsH —0 (asn— o0).
p)C(a)

|en®) -

Now by using Theorem 1, we conclude that the operator T o (SEL£)y has a closed graph.
In fact, since ¢, € “Af((SSE)\p,Zn) and z,, — z*, there exists y* € (§€ L)y, such that

~ (=1 " (1)
@ (t) = vR/// ORI dt dsdv(0)

Cs=0)*y (@) (S—f)"1 (t)
—R/;/O p(s)F() dtdsdw9)+// p(s)F dr ds

for all ¢ € [0,1]. Hence, ¢* € l’;'zz*, and so the graph of 5’2 is closed. Thus, 5’2 is upper
semicontinuous. Furthermore, by using the assumptions, we know that the operator ¥ has
compact values. Hence, ég is a compact and upper semicontinuous operator. By a similar
method as in proof of Theorem 6, we can prove that B, and B; are Lipschitz operators
on X with Lipschitz constants x;" and x;, respectively. Now by using assumption (Qf),
we get Z}‘]\A/I* +405 = Xflléz(X)ll + X3 =X+ sup{ll’g’zzl 1ze€ X+ x5 S XFAT+ x5 < % Thus,
the assumptions of Theorem 3 hold for l§1, l’;’z, and Bg, and so one of the conditions (a)
or (b) holds. We show that condition (b) is impossible. According to the definition of 3",
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let z be an arbitrary element of >_*. Thus, uz € B12Byz + Bsz for some u > 1. Now, choose
y € (SEL)y , such that

z(t)—— (t,2(1)) [UR/// S;(Z)r( ) e dsdv(6)

‘R/// p(sr(a> d’d”lw‘g)*// S;<§>r<a) @ d}

+ ;f(t, z(t)).

Hence,

s—r"‘1|y(t|
|z(t)|<—|gtz(t [IUIIRI/// “peT@ drdsdv(9)

(-0 (o)l
drdsd
+'R'/ / / |ps)|r<) rdsawm(6)

/ / -0 @) dr ds:| + %[f(t,z(t))’

[p(s)|I" ()

_ \a-1
< g(t,200)] |:|v||R|/ // s|p’(Z)|F'Z§T)'d dsdv ()

o (7))
*'R'/// T pEIT@  ATdsdm©)

/ / T)a llg(TN dr ds:| + V(t,z(t))|.

Since |g(t, z(2))| < x{ ||zl + G* and [f (¢, z(£))| < x5 |zl + F*, where G* = sup, (o1, &(¢,0) and
F* = sup,cio11f (¢ 0), we deduce that

lloll
pl(ae+1)

+ 5 2l + F*

|2()| < (xi'llzll + G*) (IRI(w (c) =@ (a) + [vI(v(e) = v(d))) + 1)

= (X{A" + x3) Nzl + GFA* + F*.

By taking the supremum over ¢ € [0, 1] in the above inequality, we find a constant M > 0
such that ||z|| < M := 19’;}\% Hence, Y " is bounded. Thus, condition (b) is impossible.
Now by using Theorem 3, the fractlonal hybrid Sturm-Liouville inclusion problem (3)—(4)

has at least one solution. 0
Now, we provide two examples to illustrate our main results.

Example 1 Consider the fractional hybrid Sturm-Liouville inclusion problem

Dg(IOI«/1+t( o ())

21 ze—blnﬂtlz t
¢ RNEOIS

(17)
_ =@l _ =@l
e n(1 + e 0T e n(2 + e l+Z<t>|):|

—CcosTTt -1
—e T an” (2(f) + 1)) € [ B+lz(8) 1+ 12(0)]

Page 19 of 23



Charandabi and Rezapour Advances in Difference Equations (2020) 2020:546 Page 20 of 23

with multipoint hybrid boundary conditions

2(t) , _ g CoSTEL 1
6427[,1+26_Sm"t\z(t)\ z:O_( m tan (Z(t)"'l))t:O,
[z(6)[+1 1
2 1 ( Z(;)
Zi:l oi —sin &
Sl e Y \z(%)\
92 ol ot
¢ ’ \Z(é)\ﬂ (18)
1
S _1y8 1 =Tl )
200 j=1 (-3)y _sinm—L :
_ 1y o2 WLy
e Y 3, — ¥
\Z(Hy)\ﬂ

Puto=5,¢=1 6= (i=12), 1= =5 (=123), v = -5 pt) = 1014/ +1 p(t) =

( 2e—sinnt‘z(t)|

e £(8) = tan~ (2(0) + 1), g(t, 2(8) = e + zont o and

=l __lal
e—Snt ln(l +e‘1+|x|) e—4ﬂt1n(2+e l+x)i|

“I”(t’x) = |: ’

3+ |x| 1+ x|

Then, |g(t,z1) — g(t,z2)| < 2e~5"7¢|z) — 25| for all z;,2z;, € R and ¢ € [0,1]. If x (£) = 2e"7,
then x*=2and gy = e 7. Also,

W ()| =sup{lyl:y € W(t,x)}

_xl _
e—571t1n(1 +e 1+|x\) e—4~nt 111(2 t+e 1+x):|}

=su 1y € ,
p{'y'y[ 3+ [ 1+ I

<In(3)e**

for all x € R and almost all ¢ € [0,1]. Put o (¢) = 2E)(1 — ¢#7%). Then, |0l = %(1 —e™4m),

T 4w

p =101, |p|l = 1, |%Z>| <1=K,fy=2,and A = 0.0198816623. Hence,

B R fx S ol
¢ =1>0.0794154803 ~ A(x*¢ +g0)(||p||(lC§ +fo) + P 2))

and (llczllfzn) + II[aII(ZE)(*g + X*ﬁ) + l%go))ﬁ ~ 0.1162851566 < % Then by using Theorem 6,

the fractional hybrid inclusion problem (17)—(18) has at least one solution.

Example 2 Consider the fractional hybrid Sturm-Liouville inclusion problem

L v (2 3)\’ cos Tt sin 720
cpib (150v/avg( 2D w0® " G #3NY [y ©OS 5 Aiizop (19)
LG IE G A R "1+ sin 22O
1+|z(2)| 1+t 2(1+]z(8)])
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with integral hybrid boundary conditions

2
L
(z(t)—fe 142 (52(0+3) |, -0
_ln2(t+1) 2O, 1t t=0 = %
T+[2(8)] 12+t
6%
1 1
T (20)-gye 149 (4520 20
fO ( e_1n2(0+1)| )] 0 )d(4e + 1) ( )
B P (7) R +1+ee
02
_ 1 29)—72 1462 (402(0 )+3)
- T111 f ( —ln2 0+1) \1(9) 1 )d(69 + 1)
71442(9)\ T ¢

Puta = 1, v=—17, & =1, p(t) =150v/4 + £, w(0) =46 + 1, v(0) =66 + 1,

111
—In? (t+1)
e |x| 1
t,x) = —th’
&) 1+ |x| 1 +t

_mlx|
e n‘;f"“ ]. Then p = 300, w( )—w(0)=1
" AT

v(1) - v(}) =4, lg(t,21) ~ g(t,z2)| < €Dz — 2], and

T
Cos 5 tsin

ftx) = —e 1+2tz( z(t)+3) and ¥ (¢, %) = [0,

_ 2
lf(t, z1) = f(t, Zz)| = 24006 1% |z1 — 23|

t2
for all z1,22 € Rand t € [0,1]. If x1(¢) = e+ ) and x2(t) = me 112, then x; =1 and

Xl = m AISO,

Zisin 2(711‘:\2‘4) b4
|w(tx)| =sup{lyl :y € W(t,x)} =sup] |yl :y € |0, ——— "> | } <cos ¢
1+ sin 2(711569‘4) 2

for all x € R and almost all £ € [0,1]. Put o (£) = %cos2 7t. Then, |lo|| = % and so

1
A*~0.0042619756 andso x;A™+ x5 ~0.0046786423 < 3
Now by using Theorem 9, the hybrid inclusion problem (19)—(20) has at least one solution.

4 Conclusion

Many natural processes are modeled by some types of fractional differential equations.
This diversity factor in studying complicated fractional integro-differential equations in-
creases our ability for exact modeling of more phenomena. We know that inclusion prob-
lems are real generalizations for differential equations and some economic phenomena
could be model by inclusions. Thus, it is important that we study different inclusion
problems, especially those related to well-known differential equations such as Sturm-—
Liouville. In this work, we review fractional hybrid inclusion version of the Sturm-—
Liouville equation. In this way, we investigate two fractional hybrid Sturm-Liouville dif-
ferential inclusions with multipoint and integral hybrid boundary conditions. Also, we

provide two examples to illustrate our main results.
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