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Abstract
Recently, the nth Lah–Bell number was defined as the number of ways a set of n
elements can be partitioned into nonempty linearly ordered subsets for any
nonnegative integer n. Further, as natural extensions of the Lah–Bell numbers,
Lah–Bell polynomials are defined. We study Lah–Bell polynomials with and without
the help of umbral calculus. Notably, we use three different formulas in order to
express various known families of polynomials such as higher-order Bernoulli
polynomials and poly-Bernoulli polynomials in terms of the Lah–Bell polynomials. In
addition, we obtain several properties of Lah–Bell polynomials.
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1 Introduction
The Stirling number of the second kind S2(n, k) is the number of ways to partition a set
with n elements into k nonempty subsets. Thus Bn =

∑n
k=0 S2(n, k), which is known as the

nth Bell number, is the number of ways to partition a set with n elements into nonempty
subsets. Further, the Bell polynomials Bn(x) are natural extensions of the Bell numbers.

The Lah number L(n, k) counts the number of ways a set of n elements can be partitioned
into k nonempty linearly ordered subsets. So BL

n =
∑n

k=0 L(n, k), which was recently defined
as the nth Lah–Bell number (see [8]), counts the number of ways a set of n elements can be
partitioned into nonempty linearly ordered subsets. In addition, the Lah–Bell polynomials
BL

n(x) are also defined as natural extensions of the Lah–Bell numbers.
The aim of this paper is to study some properties of Lah–Bell polynomials with and

without the help of umbral calculus. In particular, we represent several known families
of polynomials in terms of the Lah–Bell polynomials, and vice versa. This has been done
by using three different means, namely by using a formula derived from the definition
of Sheffer polynomials (see Theorem 1), the transfer formula (see (29)), and the general
formula expressing one Sheffer polynomial in terms of other Sheffer polynomial (see (12)).
In more detail, we express Bernoulli polynomials, powers of x, poly-Bernoulli polynomials,
and higher-order Bernoulli polynomials in terms of the Lah–Bell polynomials. In addition,
we represent the Lah–Bell polynomials in terms of powers of x and of falling factorials. In
addition, we obtain several properties of Lah–Bell polynomials. For the rest of this section,
we recall some necessary facts that are needed throughout this paper and briefly review
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basic facts about umbral calculus. For more details on umbral calculus, we refer the reader
to [13].

We recall from [8] that Lah–Bell polynomials BL
n(x) are given by

ex( 1
1–t –1) =

∞∑

n=0

BL
n(x)

tn

n!
, (1)

and the Lah–Bell numbers are given by BL
n = BL

n(1).
For r ∈N, the higher-order Bernoulli polynomials are given by

(
t

et – 1

)r

ext =
∞∑

n=0

B(r)
n (x)

tn

n!
(see [1, 3, 4, 13]). (2)

We note that B(r)
n = B(r)

n (0) (n ≥ 0) are called the higher-order Bernoulli numbers.
For k ∈ Z, the polylogarithm function is defined by

Lik(x) =
∞∑

n=1

xn

nk (see [10]). (3)

Bayad and Hamahata [2] considered the poly-Bernoulli polynomials (of index k) given by

Lik(1 – e–t)
et – 1

ext =
∞∑

n=0

β (k)
n (x)

tn

n!
. (4)

For x = 0, β
(k)
n = β

(k)
n (0) are called the poly-Bernoulli numbers (of index k) (see [7]). More

precisely, the nth poly-Bernoulli polynomials of index k are defined as β
(k)
n (x + 1) in [2]

and the nth poly-Bernoulli numbers of index k are defined as β
(k)
n (1) in [7].

From (1), we note that

e(x+y)( 1
1–t –1) = ex( 1

1–t –1) · ey( 1
1–t –1)

=
∞∑

l=0

BL
l (x)

tl

l!

∞∑

m=0

BL
m(y)

tm

m!

=
∞∑

n=0

( n∑

l=0

(
n
l

)

BL
l (x)BL

n–l(y)

)
tn

n!
. (5)

By (1) and (5), we get

BL
n(x + y) =

n∑

l=0

(
n
l

)

BL
l (x)BL

n–l(y) (n ≥ 0) (see [8]).

Let C be the field of complex numbers, and let F be the set of all power series in the
variable t over C given by

F =

{

f (t) =
∞∑

k=0

ak
tk

k!

∣
∣
∣
∣ak ∈C

}

. (6)

Let P = C[x], and let P∗ be the vector space of all linear functionals on P.
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For f (t) =
∑∞

k=0 ak
tk

k! ∈F , we define the linear functional on P by

〈
f (t)|xn〉 = an, for all n ≥ 0 (see [5, 6, 8–13]). (7)

Thus, by (7), we get

〈
tk|xn〉 = n!δn,k (n, k ≥ 0) (see [5, 6, 8–13]), (8)

where δn,k is the Kronecker’s symbol.
By (7) and (8), we easily get 〈eyt|xn〉 = yn, and so 〈eyt|P(x)〉 = P(y). The order o(f (t)) of

a power series f (t)( �= 0) is the smallest integer k for which the coefficient of tk does not
vanish. If f (t) is a series with o(f (t)) = 1, then f (t) is called a delta series.

If f (t) is a series with o(f (t)) = 0, then f (t) is called an invertible series. For f (t), g(t) ∈F
with o(f (t)) = 1, o(g(t)) = 0, there exists a unique sequence sn(x) of polynomials such that

〈
g(t)f (t)k|sn(x)

〉
= n!δn,k (n, k ≥ 0) (see [13]). (9)

The sequence sn(x) is called the Sheffer sequence for the pair (g(t), f (t)), which is denoted
by sn(x) ∼ (g(t), f (t)).

It is well known that sn(x) ∼ (g(t), f (t)) if and only if

1
g(f (t))

exf (t) =
∞∑

n=0

sn(x)
n!

tn (see [11, 13]), (10)

for all x ∈C where f (t) is the compositional inverse of f (t) such that f (f (t)) = f (f (t)) = t.
Let sn(x) ∼ (g(t), f (t)) and rn(x) ∼ (h(t), g(t)) (n ≥ 0). Then we have

sn(x) =
n∑

m=0

An,mrm(x) (n ≥ 0), (11)

where

An,m =
1

m!

〈
h(f (t))
g(f (t))

(
l
(
f (t)

))m|xn
〉

(see [13]). (12)

2 Some identities of Lah–Bell polynomials
Here we represent several known families of polynomials in terms of the Lah–Bell poly-
nomials, and vice versa. This will be done by using three different means, namely by using
a formula derived from the definition of Sheffer polynomials (see Theorem 1), the transfer
formula (see (29)), and the general formula expressing one Sheffer polynomial in terms of
other Sheffer polynomial (see (12)).

From (1) and (10), we note that

BL
n(x) ∼

(

1, 1 –
1

1 + t

)

, (13)

and

∞∑

n=0

BL
n(x)

tn

n!
= ex( 1

1–t –1) =
∞∑

l=0

xl

l!

(
1

1 – t
– 1

)l
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=
∞∑

l=0

xl
∞∑

n=l

L(n, l)
tn

n!
=

∞∑

n=0

( n∑

l=0

xlL(n, l)

)
tn

n!
, (14)

where L(n, l) = n!
l!
(n–1

l–1
)

are the Lah numbers given by

1
l!

(
1

1 – t
– 1

)l

=
1
l!

(
t

1 – t

)l

=
∞∑

n=l

L(n, l)
tn

n!
. (15)

Here the generating function of the Lah numbers in (15) can be easily derived either from
power series expansion of the left-hand side of (15) or from the identity

exp

(
ut

1 – t

)

=
∞∑

n=0

n∑

l=0

L(n, l)
ultn

n!
, (16)

which is stated on [4, p. 156]. It is not difficult to show that

ex( 1
1–t –1) = e–xe

x
1–t = e–x

∞∑

n=0

xl 1
l!

(1 – t)–l

= e–x
∞∑

l=0

xl

l!

∞∑

k=0

〈l〉k

k!
tk

=
∞∑

k=0

(

e–x
∞∑

l=0

xl

l!
〈l〉k

)
tk

k!
, (17)

where 〈x〉0 = 1, 〈x〉n = x(x + 1) · · · (x + n – 1), n ≥ 1.
Thus, we have

BL
k (x) = e–x

∞∑

l=0

〈l〉k

l!
xl (k ≥ 0) (see [8]). (18)

For n ∈N, by (18), we get

x
n∑

k=1

(
n – 1
k – 1

)

BL
k–1(x) = x

n∑

k=1

(
n – 1
k – 1

)

e–x
∞∑

l=0

xl

l!
〈l〉k–1

= xe–x
∞∑

l=0

xl

l!

n–1∑

k=0

(
n – 1

k

)

〈l〉k . (19)

Let

Pn =
{

P(x) ∈C[x]|deg P(x) ≤ n
}

(n ≥ 0).

Then Pn is an (n + 1)-dimensional vector space over C. For P(x) ∈ Pn, with P(x) =
∑n

m=0 AmBL
m(x), we have

〈(
t

1 + t

)m∣
∣
∣
∣P(x)

〉

=
n∑

l=0

Al

〈(
t

1 + t

)m∣
∣
∣
∣B

L
l (x)

〉
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=
n∑

l=0

All!δm,l = m!Am. (20)

By (20), we have

Am =
1

m!

〈(
t

1 + t

)m∣
∣
∣
∣P(x)

〉

(n ≥ 0).

Therefore, we obtain the following theorem.

Theorem 1 For P(x) ∈ Pn, we have

P(x) =
n∑

m=0

AmBL
m(x) (n ≥ 0),

where

Am =
1

m!

〈(
t

1 + t

)m∣
∣
∣
∣P(x)

〉

.

When r = 1 in (2), Bn(x) = B(1)
n (x) (n ≥ 0) are called the ordinary Bernoulli polynomials.

Let us take x = 0. Then Bn = Bn(0) (n ≥ 0) are called the ordinary Bernoulli numbers.
From (2), we note that

Bn(x) =
n∑

l=0

(
n
l

)

Bn–lxl ∈ Pn. (21)

For P(x) = Bn(x) ∈ Pn, we have

Bn(x) =
n∑

m=0

AmBL
m(x) (n ≥ 0), (22)

where

Am =
1

m!

〈(
t

1 + t

)m∣
∣
∣
∣Bn(x)

〉

. (23)

From (8), we easily note that

〈
tk|P(x)

〉
= P(k)(0), where P(k)(0) =

dk

dxk P(x)
∣
∣
∣
∣
x=0

(see [9, 11, 13]). (24)

By (23), we get

1
m!

〈(
t

1 + t

)m∣
∣
∣
∣Bn(x)

〉

=
1

m!

m∑

l=0

(
m
l

)

(–1)l
〈(

1
1 + t

)l∣∣
∣
∣Bn(x)

〉

=
1

m!

m∑

l=0

(
m
l

)

(–1)l
n∑

k=0

(
l + k – 1

k

)

(–1)k 〈tk|Bn(x)
〉
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=
1

m!

m∑

l=0

m∑

k=0

(
m
l

)(
l + k – 1

k

)

(–1)l+kk!
(

n
k

)

Bn–k . (25)

Therefore, by (22), (23), and (25), we obtain the following theorem.

Theorem 2 For n ≥ 0, we have

Bn(x) =
n∑

m=0

( n∑

k=0

m∑

l=0

k!
m!

(
m
l

)(
l + k – 1

k

)(
n
k

)

(–1)l+kBn–k

)

BL
n(x).

Let us take P(x) = xn ∈ Pn. Then, by Theorem 1, we have

xn =
n∑

k=0

AkBL
k (x), (26)

where

Ak =
1
k!

〈(
t

1 + t

)k∣∣
∣
∣x

n
〉

=
1
k!

k∑

l=0

(
k
l

)

(–1)l
〈(

1
1 + t

)l∣∣
∣
∣x

n
〉

=
1
k!

k∑

l=0

(
k
l

)

(–1)l
n∑

m=0

(
l + m – 1

m

)

(–1)m〈
tm|xn〉

=
1
k!

k∑

l=0

(
k
l

)

(–1)l+n
(

l + n – 1
n

)

n! (27)

Therefore, by (26) and (27), we obtain the following theorem.

Theorem 3 For n ≥ 0, we have

xn =
n∑

k=0

{
n!
k!

k∑

l=0

(
k
l

)

(–1)l+n
(

l + n – 1
n

)}

BL
k (x).

For each nonnegative integer k, the differential operator tk on P is defined by

tkxn =

⎧
⎨

⎩

(n)kxn–k if k ≤ n,

0 if k > n.
(28)

Here (x)k is the falling factorial given by (x)0 = 1, (x)k = x(x – 1) · · · (x – k + 1), k ≥ 1.
Extending this linearly, any power series

f (t) =
∞∑

k=0

ak

k!
tk ∈F

gives a differential operator on P defined by

f (t)xn =
n∑

k=0

(
n
k

)

akxn–k (n ≥ 0).
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For pn(x) ∼ (1, f (t)), qn(x) ∼ (1, g(t)), we have the transfer formula given by

qn(x) = x
(

f (t)
g(t)

)n

x–1pn(x) (n ≥ 0) (see [13]). (29)

We consider the following two Sheffer sequences:

BL
n(x) ∼

(

1,
t

1 + t

)

, xn ∼ (1, t) (n ≥ 0). (30)

From (28), (29), and (30), we note that

BL
n(x) = x

(
1

1 + t

)n

x–1xn = x
∞∑

l=0

(
n + l – 1

l

)

(–1)ltlxn–1

= x
n–1∑

l=0

(
n + l – 1

l

)

(–1)l
(

n – 1
l

)

l!xn–1–l

=
n–1∑

l=0

(
n + l – 1

l

)(
n – 1

l

)

l!(–1)lxn–l. (31)

Therefore, we obtain the following theorem.

Theorem 4 For n ∈N, we have

BL
n(x) =

n–1∑

l=0

(
n + l – 1

l

)(
n – 1

l

)

l!(–1)lxn–l

Let us consider the following two Sheffer sequences:

BL
n(x) ∼

(

1,
t

1 + t

)

(32)

and

β (k)
n (x) ∼

(
et – 1

Lik(1 – e–t)
, t

)

. (33)

From (11) and (12), we note that

β (k)
n (x) =

n∑

m=0

An,mBL
m(x), (34)

where

An,m =
1

m!

〈
Lik(1 – e–t)

et – 1

(
t

1 + t

)m∣
∣
∣
∣x

n
〉

=
1

m!

m∑

l=0

n∑

j=0

(
m
l

)(
j + l – 1

j

)

(–1)l+j
〈

Lik(1 – e–t)
et – 1

tj
∣
∣
∣
∣x

n
〉
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=
1

m!

m∑

l=0

n∑

j=0

(
m
l

)(
j + l – 1

j

)

(–1)l+j
(

n
j

)

j!
〈

Lik(1 – e–t)
et – 1

∣
∣
∣
∣x

n–j
〉

=
1

m!

m∑

l=0

n∑

j=0

(
m
l

)(
j + l – 1

j

)

(–1)l+j
(

n
j

)

j!β (k)
n–j. (35)

Therefore, by (34) and (35), we obtain the following theorem.

Theorem 5 For n ≥ 0, we have

β (k)
n (x) =

n∑

m=0

{
1

m!

m∑

l=0

n∑

j=0

(
m
l

)(
j + l – 1

j

)

(–1)l+j
(

n
j

)

j!β (k)
n–j

}

BL
m(x).

For the following two Sheffer sequences:

BL
n(x) ∼

(

1,
t

1 + t

)

, (x)n ∼ (
1, et – 1

)
(n ≥ 0),

we have

BL
n(x) =

n∑

m=0

An,m(x)m, (36)

where

An,m =
1

m!
〈(

e( 1
1–t –1) – 1

)m|xn〉

=
1

m!

m∑

l=0

(
m
l

)

(–1)m–l〈el( 1
1–t –1)|xn〉

=
1

m!

m∑

l=0

(
m
l

)

(–1)m–lBL
n(l). (37)

Therefore, by (36) and (37), we obtain the following theorem.

Theorem 6 For n ≥ 0, we have

BL
n(x) =

n∑

m=0

{
1

m!

m∑

l=0

(
m
l

)

(–1)m–lBL
n(l)

}

(x)m

=
n∑

m=0

(
x
m

) m∑

l=0

(
m
l

)

(–1)m–lBL
n(l).

Finally, we consider the following two Sheffer sequences:

BL
n(x) ∼

(

1,
t

1 + t

)

, B(r)
n (x) ∼

((
et – 1

t

)r

, t
)

(r ∈N).

From (11) and (12), we have

B(r)
n (x) =

n∑

m=0

An,mBL
m(x), (38)
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where

An,m =
1

m!

〈(
t

et – 1

)r( t
1 + t

)m∣
∣
∣
∣x

n
〉

=
1

m!

m∑

l=0

(
m
l

)

(–1)l
〈(

t
et – 1

)r( 1
1 + t

)l∣∣
∣
∣x

n
〉

=
1

m!

m∑

l=0

(
m
l

)

(–1)l
n∑

j=0

(
l + j – 1

j

)

(–1)j
〈(

t
et – 1

)r

tj
∣
∣
∣
∣x

n
〉

=
1

m!

m∑

l=0

n∑

j=0

(
m
l

)(
l + j – 1

j

)(
n
j

)

j!(–1)l+j
〈(

t
et – 1

)r∣∣
∣
∣x

n–j
〉

=
1

m!

m∑

l=0

n∑

j=0

(
m
l

)(
l + j – 1

j

)(
n
j

)

j!(–1)l+jB(r)
n–j. (39)

Therefore, by (38) and (39), we obtain the following theorem.

Theorem 7 For n ≥ 0, we have

B(r)
n =

n∑

m=0

1
m!

{ m∑

l=0

n∑

j=0

(
m
l

)(
l + j – 1

j

)(
n
j

)

j!(–1)l+jB(r)
n–j

}

BL
m(x).

3 Conclusion
The Lah number L(n, k) counts the number of ways a set of n elements can be partitioned
into k nonempty linearly ordered subsets. Then BL

n =
∑n

k=0 L(n, k), which was recently de-
fined as the nth Lah–Bell number, counts the number of ways a set of n elements can be
partitioned into nonempty linearly ordered subsets. In addition, the Lah–Bell polynomials
BL

n(x) are also defined as natural extensions of the Lah–Bell numbers.
In this paper, we studied some properties of Lah–Bell polynomials with and without the

help of umbral calculus. Among other things, we represented several known families of
polynomials in terms of the Lah–Bell polynomials, and vice versa, by using three differ-
ent means, namely by using a formula derived from the definition of Sheffer polynomials
(see Theorem 1), the transfer formula (see (29)), and the general formula expressing one
Sheffer polynomial in terms of other Sheffer polynomial (see (12)). In more detail, we ex-
pressed Bernoulli polynomials, powers of x, poly-Bernoulli polynomials, and higher-order
Bernoulli polynomials in terms of the Lah–Bell polynomials. In addition, we represented
the Lah–Bell polynomials in terms of powers of x and of falling factorials. In addition, we
obtained several properties of Lah–Bell polynomials.

It is one of our future projects to continue exploring some special numbers and polyno-
mials, and also their degenerate versions, as well as to find their applications in physics,
science and engineering, as well as in mathematics.
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