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Abstract
This paper deals with a general SEIR model for the coronavirus disease 2019
(COVID-19) with the effect of time delay proposed. We get the stability theorems for
the disease-free equilibrium and provide adequate situations of the COVID-19
transmission dynamics equilibrium of present and absent cases. A Hopf bifurcation
parameter τ concerns the effects of time delay and we demonstrate that the locally
asymptotic stability holds for the present equilibrium. The reproduction number is
brief in less than or greater than one, and it effectively is controlling the COVID-19
infection outbreak and subsequently reveals insight into understanding the patterns
of the flare-up. We have included eight parameters and the least square method
allows us to estimate the initial values for the Indian COVID-19 pandemic from real-life
data. It is one of India’s current pandemic models that have been studied for the time
being. This Covid19 SEIR model can apply with or without delay to all country’s
current pandemic region, after estimating parameter values from their data. The
sensitivity of seven parameters has also been explored. The paper also examines the
impact of immune response time delay and the importance of determining essential
parameters such as the transmission rate using sensitivity indices analysis. The
numerical experiment is calculated to illustrate the theoretical results.
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1 Introduction
Globally COVID-19 coronavirus affects 235 countries and territories in which 31,561,520
peoples are affected and 970,688 died and recoverable populations 23,168,689. Accord-
ing to WHO (World Health Organization) data (on September 22, 2020), 5,562,663 have
been affected and 88,935 people have died and 44,97,867 have been cured of diseases for
the viruses in India. No mass transmission has taken place, and there is a possibility that it
will peak in November and December 2020 and will start tapering slowly. Nevertheless, it
will continue as an infectious virus, which will threaten the healthcare system by restoring
in the future [1, 2]. The progressing COVID-19 episode, developed in Wuhan, China, has
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concerned more than 2600 lives starting on 24 February 2020 and represented a colossal
danger to worldwide general wellbeing [3–8]. It has actually required different methods
adding current situations and uncommon medical clinics and travel limitations to relieve
the infection. Here we have indicated that coronavirus ailment has been engendered in the
network of China quickly by revealed information and the Government of China make im-
portant strides, for example, occasion augmentation, travel limitation, hospitalization and
isolation. These vital limitations have been useful to diminish the infection transmission
among the populace and this is legitimized by information results [9–15]. It is earnest to
give increasingly logical data to a superior comprehension of the novel coronavirus and
promote control of the outbreak [16].

At the beginning of the time episode, it was dispersed, and connected to market places
[17]. It has received outrageous measures to relieve flare-up. On 10 March 2020, the neigh-
borhood legislature of Wuhan controlled every open traffic inside the city and shut all in-
bound and outbound transportation [18–24]. Muhammad Altaf Khan and Abdon Atan-
gana discuss the model that the interaction between the bats and unidentified hosts are the
reservoir of infections (seafood market) and the neighborhoods of people. The key cause
of the infection is labeled seafood. The buying of goods from people’s seafood markets will
infect asymptomatically or symptomatically. They reduced the model on the premise that
the market in seafood has a sufficient source of infection to infect people [25]. Lim et al.
discussed the spread of COVID-19 in South Korea through secondary transmission from
the people who traveled from China [26]. Hu et al. revealed the potential for asymptomatic
transmission by COVID-19 by examining the medical features of 24 asymptomatic pa-
tients developing near-contact infection [27]. The open frenzy progressing COVID-19
episode helps us in the records to remember the 1920 flu pandemic in London, United
Kingdom. Besides, its attributes mellow side effects as a rule and short sequential interim
are like pandemic flu, as opposed to the next two coronaviruses [28]. In 1918, critical ex-
tents of the passing were from pneumonia followed by flu contamination [29]. Hence,
it may be sensible to return to the demonstrating system of the 1918 flu pandemic, and
specifically, to catch the impacts of the individual response and government activity. We
assume it will keep going for the following not many days for the occasion and shall refresh.
The variables estimation might be evaluated after data have become accessible [30–33]. It
contends all avoidance and limiting cases might be ordered up to three huge gatherings,
that are portrayed as stage work and reaction work, separately. They likewise consider
a COVID-19 transmission time of 14 days and gigantic resettlement from China [34]. A
contact is an individual who encountered any of the accompanying exposures during the
2 days prior and the 14 days after the beginning of side effects of a plausible or affirmed
case [35].

The median time before the onset of symptoms is 3 days, the shortest is 1 day, and the
longest 24 days as recorded. These intervals have a significant role to play in understanding
the dynamics of COVID-19 transmission. The mathematical model by Abdon Atangana
agrees with its lock-down performance. The harmful effects of inadequate testing should
be stated. The asymptomatic person tested may be good and spread the infection or may
reach the virus within days after testing, and after the contradictory results the disease
may spread further [36].

For COVID-19 among the human population and its stability we have proposed a SEIR
pandemic model. Another scientific model in pestilence elements, known as the Ware-
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house theory, generally has been discussed for quite a while since it was proposed by Ker-
mack and McKendrick in 1927. It incorporates a few essential improved models, for exam-
ple, SIR, SIS, and SEIR, among which SEIR is an ordinary model that takes the incubation
period into account. Giordano et al.’s findings show that the ongoing COVID-19 pandemic
involves the combination of restrictive social-discriminatory behavior with widespread
testing and contact monitoring. For the Italian COVID-19 epidemic, they estimate model
parameters based on data dates from 20 February 2020 (day 1) to 5 April 2020 (day 46) and
demonstrate the effect on the spread of the epidemic of progressive restrictions like the lat-
est lock-down, slowly enforced as of 9 March 2020. They also model possible longer-term
scenarios that show the impacts of various countermeasures, such as social separation and
population-wide SARS-CoV-2 testing. The asymptomatic case is usually not reported to
medical authorities as mentioned, and reported cases are typically only a fraction of the
total number of symptomatic infectious people. The number of asymptomatic infectious
cases and non-confirmed infectious cases and the number of recorded COVID cases in
mainland China are discussed in this paper. The disparity between those diagnosed and
those not diagnosed is significant. The former are being isolated usually and thus less likely
is the infection to spread. This also helps clarify this descent. We mention the fatality rate
and propagation of the disease misconception [37].

The SEIR, a widely utilized scourge model, can show the progressions of individuals be-
tween four states: Susceptible (S) (population not resistant to illness), Exposed (E) (pop-
ulation as of now in brooding), Infectious (I) (number of contamination effectively cir-
cling), and Recovered (R) (population not at this point irresistible because of confine-
ment or in susceptibility or full recuperation). Here the population total size at time t
is defined by N(t), with N(t) = S(t)+E(t)+I(t)+R(t). This system is portrayed by accom-
panying the nonlinear differential equations for the Indian current pandemic COVID19
[38]:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

dS(t)
dt = b + γ I(t) – (μ + p)S(t) – βS(t)I(t),

dE(t)
dt = βS(t)I(t) – μE(t) – ηE(t)R(t),

dI(t)
dt = (η + σβ)E(t) – (α + μ + γ )I(t),

dR(t)
dt = pS(t)E(t)R(t) – (μ + σβ)R(t).

(1)

The parameters p, b, γ , β , μ, η, σ , α are positive constants, p is the proportion of asymp-
tomatic infection, b is the birth rate of people while newborn cells are created, γ is the
incubation period of human infection, β is the transmission rate from one compart-
ment to another compartment, μ is the death rate of people, η is the infectious period
of symptomatic infection of people, σ is the infectious period of asymptomatic infection
of people, α is the multiple of the transmissibility while infected cells are created from the
viruses.

Transmission dynamics generating COVID-19 may require a duration of time delay τ ,
i.e. the delay of the immune system at time (days) t may be governed on the previous
time t – τ . We obtain an immune response of length of incubation period, pS(t)E(t)R(t) =
pS(t – τ )E(t – τ )R(t – τ ) and the duration of the patient being infectious. Tian-Mu Chen
et al. [39] investigated the effect of including time delay to acquire the following nonlinear
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differential equations:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

dS(t)
dt = b + γ I(t) + εR(t) – (μ + p)S(t) – βS(t)I(t),

dE(t)
dt = βS(t)I(t) – μE(t) – ηE(t)R(t),

dI(t)
dt = (η + σβ)E(t) – (α + μ + γ )I(t),

dR(t)
dt = pS(t – τ )E(t – τ )R(t – τ ) – (ε + μ + σβ)R(t),

(2)

where ε is the latent period of human infection in population no longer infectious due to
being fully recovered. The aim of the research work is to discuss the SEIR delay model in
(2). If τ = 0, Eq. (2) narrates the population inputs between size of population and num-
ber of initial infections. The COVID-19 basic reproduction number for the system (2) is
defined by

R0 =
bβ(η + σβ)

μ(μ + p)(α + μ + γ )
.

We have likewise determined the basic reproduction number R0 classical SIR model and
we have seen that if R0 < 1 the disease does not proliferate into the population yet on the off
chance that R0 > 1 infection will spread among the population. We presented an isolated
SIR model and SEIR model portraying disease movement under the presumption that all
contaminated individuals are separated after the hatching time frame so that they cannot
taint others [40]. Ailment movement in these models is controlled by the basic reproduc-
tion number R0, which is different from that for the standard SIR model. In the event that
R0 > 1 (95%, ranges 1.4 to 3.9), at that point the quantity of inertness contaminated people
exponentially develops. Be that as it may, if R0 < 1, at that point the number of contam-
inated behaves exponentially. This investigation of R0 catches the course of COVID-19
flare-up and subsequently reveals insight and understanding of the patterns of the flare-
up and gives some preventive, measure not to spread the COVID-19 malady (97%, ranges
2.47 to 3.9). This portrays the normal number of recently contaminated cells produced
from one tainted cell toward the start of the irresistible procedure. The current scenario
will evolve to account for these continuing advancements as new drugs and vaccines are
being developed and tested [41].

2 Preliminaries
Let S(t) = C([–τ , 0];R) be the continuous norm function of Banach space mappings. The
initial conditions for the model (2) are given as follows:

⎧
⎨

⎩

S(t) ≥ 0, E(t) ≥ 0, I(t) ≥ 0, R(t) ≥ 0, t ∈ [–τ , 0],

S(0) > 0, E(0) > 0, I(0) > 0, R(0) > 0.
(3)

Let (S(t), E(t), R(t)) be three main variables of the system with initial conditions and verify
that there is a unique solution. The accompanying lemma is helpful for examining the
positivity of the bounded solutions.

Lemma 2.1 In the system (S(t), E(t), R(t)) of (2) with initial conditions (3), we state that

lim sup S(t)t→+∞ ≤ b
μ + p

.
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Proof If there is t1 > 0 with the end goal that S(t1) > b
μ+p and

•
S(t1) > 0, then we have

•
S(t1) = b – (μ + p)S(t) – βS(t)I(t) ≤ –βS(t)I(t) ≤ 0.

Hence we have utilized S(t1) > b
μ+p . This is an inconsistency to

•
S(t1) > 0. Along these lines,

Lemma 2.1 is verified. �

Lemma 2.2 Let (S(t), E(t), I(t), R(t)) be the system (2) with initial conditions (3). At that
point (S(t), E(t), I(t)) and R(t) are certain and there exists a positive constant 	 > 0, to such
an extent that S(t) < 	, E(t) < 	, I(t) < 	 and R(t) < 	 at an adequately huge time t.

Proof Considering Eq. (2), we get

S(t) = S(0)e–
∫ t

0 ((μ+p)–βI(ε)) dε +
∫ t

0
be–

∫ t
η ((μ+p)–βI(ε)) dε dη,

E(t) = E(0)e–
∫ t

0 (μ+ηR(ε)) dε +
∫ t

0
βS(η)I(η)e–

∫ t
0 (μ+ηR(ε)) dε dη,

I(t) = I(0)e–(μ+α+γ )t +
∫ t

0
(η + βσ )E(η)e–(μ+α+γ )(t–η) dη,

R(t) = R(0)e–(σβ+ε+μ)t +
∫ t

0
pS(η – τ )E(η – τ )R(η – τ )e(σβ+ε+μ)t dη.

It is anything but difficult to see that S(t) is positive on the existence interval. At that point,
we demonstrate that E(t) is positive. Truth be told, let t1 > 0 be the first run through to
such an extent that E(t1) = 0. From Eq. (2), we get

I(t) = I(0)e–(μ+α+γ )t1 +
∫ t1

0
(η + σβ)E(η)e–(α+μ+γ )(t–η) dη > 0.

Then again, from the second equation of (2), we have
•
E(t1) = βS(t1)I(t1) > 0. This implies

E(t) < 0 for t ∈ (t1 – ξ , t1), where ξ is a subjectively small positive constant, which prompts
an inconsistency. It is follows that E(t) > 0 and I(t) > 0. By the comparative contention as
mentioned above, it is difficult to see that R(t) is positive. Here, we discuss the contentions
for an extreme solution of (2).

Here N(t) = S(t) + E(t) + ( μ

2(η+σβ) )I(t) + ( η(μ+p)
pb )R(t + τ ), and we assume q = min{(μ +

p), μ

2 , (α + μ + γ ), (ε + μ + σβ)}.
From (2), we get

d
dt

[
N(t)

]
= b – (μ + p)S(t) –

(
μ

2

)

E(t) – ηE(t)R(t) –
(

μ(α + μ + γ )
2(η + σβ)

)

I(t)

+
(

η(μ + p)
b

)

S(t)E(t)R(t) –
(

η(ε + μ + σβ)(μ + p)
pb

)

R(t + τ )

≤ b – (μ + p)S(t) –
(

μ

2

)

E(t) –
(

μ(α + μ + γ )
2(η + σβ)

)

I(t)

–
(

η(ε + μ + σβ)(μ + p)
pb

)

R(t + τ )
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< b – q
[

S(t) + E(t) +
(

μ

2(η + σβ)

)

I(t) +
(

η(μ + p)
pb

)

R(t + τ )
]

= b – qN .

Along these lines, N(t) < b
(μ+p)η for all large t. Subsequently, S(t), E(t), I(t) and R(t) are at

last limited by any positive constant 	. Hence, we finish the verification of Lemma 2.2. �

3 Theorems for stability analysis
There are three equilibria for system (2):

(i) COVID-19 infection free equilibrium: E0 = ( b
(μ+p) , 0, 0, 0).

(ii) COVID-19 infection absent equilibrium:
E1 = ( μ(α+μ+γ )

β
(η + σβ), bβ(η+σβ)–μ(μ+p)(α+μ+γ )

μβ(η+σβ) , bβ(η+σβ)–μ(μ+p)(α+μ+γ )
μβ(α+μ+γ ) , 0).

(iii) COVID-19 infection present equilibrium: Ē = (Ē1, Ē2, Ē3, Ē4),
where
Ē1 = p(α+μ+γ )b–β(η+σβ)(ε+μ+σβ)

p(μ+p)(α+μ+γ ) , Ē2 = (ε+μ+σβ)(μ+p)(α+μ+γ )
p(α+μ+γ )b–β(η+σβ)(ε+μ+σβ) ,

Ē3 = (η+σβ)(ε+μ+σβ)(μ+p)
p(α+μ+γ )b–β(η+σβ)(ε+μ+σβ) , Ē4 = 1

η
[ β(η+σβ)(p(α+μ+γ )b–β(η+σβ)(ε+μ+σβ))

p(μ+p)(α+μ+γ )2 – μ].

3.1 Stability of COVID-19 infection free equilibrium
The nonlinear differential equation of (2) at the point E0 is

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

dS(t)
dt = –(μ + p)S(t) – βb

(μ+p) I(t),
dE(t)

dt = –μE(t) + βb
(μ+p) I(t),

dI(t)
dt = (η + σβ)E(t) – (α + μ + γ )I(t),

dR(t)
dt = –(ε + μ + σβ)R(t).

(4)

The polynomial equation for (4) is

[
λ + (ε + μ + σβ)

][
λ + (μ + p)

]

[

λ2 +
(
μ + (α + μ + γ )

)
λ + μ(α + μ + γ ) –

(η + σβ)βb
(μ + p)

]

= 0. (5)

Two of the roots of the polynomial equation (5) are λ1 = –(ε + μ + σβ), λ2 = –(μ + p).
The other roots are calculated by

λ2 +
(
μ + (α + μ + γ )

)
λ + μ(α + μ + γ ) –

(η + σβ)βb
(μ + p)

= 0. (6)

If R0 < 1, then μ(α +μ+γ )– (η+σβ)βb
(μ+p) > 0, and (μ+(α +μ+γ ))2 –4(μ(α +μ+γ )– (η+σβ)βb

(μ+p) ) >
0. We have

λ3,4 =
–(μ + (α + μ + γ )) ±

√
(μ + (α + μ + γ ))2 – 4(μ(α + μ + γ ) – (η+σβ)βb

(μ+p) )

2
.

Equation (6) has negative real roots. It obeys the accompanying theorem. If R0 < 1, then
E0 is seen to be locally asymptotic stable by developing a Lyapunov functional. If R0 > 1,
then E0 is unstable.
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Theorem 3.1 If R0 < 1, then prove that E0 is globally asymptotic stable.

Proof For the Lyapunov functional

V =
1
2

[

S(t) –
(ε + μ + σβ)

(μ + η)

]2

+
(ε + μ + σβ)

(μ + η)
E(t) + mI(t) +

η

p
R(t)

+ η

∫ t

t–τ

S(θ )E(θ )R(θ ) dθ ,

where m > 0, we have

V ′|(5) =
[

S(t) –
b

(μ + p)

][

–(μ + p)
(

S(t) –
b

(μ + p)

)

– βS(t)I(t)
]

+
b

(μ + p)
[
βS(t)I(t) – μE(t) – ηE(t)R(t)

]

+ m
[
(η + σβ)E(t) – (α + μ + γ )I(t)

]
–

(
η(ε + μ + σβ)

p

)

R(t) + ηS(t)E(t)R(t).

Since βS(t)I(t) = βI(t)[S(t) – b
(μ+p) ] + βb

(μ+p) I(t), we have

V ′|(5) = –(μ + p)
[

S(t) –
b

(μ + p)

]2

– βI(t)
[

S(t) –
b

(μ + p)

]2

+ ηS(t)R(t)
[

S(t) –
b

(μ + p)

]

–
[

bμ

(μ + p)
– (η + σβ)m

]

E(t) –
[

(α + μ + γ )m –
βb2

(μ + p)2

]

I(t)

–
[

η(ε + μ + σβ)
p

]

R(t).

Hence R0 < 1 decreases to bμ

(η+σβ)(μ+p) – βb2

(α+μ+γ )(μ+p)2 > 0, (m ∈ [ βb2

(α+μ+γ )(μ+p)2 , bμ

(η+σβ)(μ+p) ]),

such that bμ

(μ+p) – (η + σβ)m > 0 and (α + μ + γ )m – βb2

(μ+p)2 > 0.
Letting S(t), E(t), R(t) be positive and S(t) ≤ b

(μ+p) holds, we have V ′|(5) ≤ 0, and V ′|(5) = 0
iff (S(t), E(t), I(t), R(t)) = ( b

(μ+p) , 0, 0, 0). �

3.2 Stability of COVID-19 infection absent equilibrium
Letting E1 = (S̃, Ẽ, Ĩ, 0) = ( μ(α+μ+γ )

β(η+σβ) , bβ–μ(μ+p)(α+μ+γ )
μβ(α+μ+γ ) , bβ(η+σβ)

μβ(α+μ+γ ) , 0), the linearized form of
equations of system (2) at E1 is

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

dS(t)
dt = –((μ + p) + β Ĩ)S(t) – βS̃I(t),

dE(t)
dt = β ĨS(t) – μE(t) + βS̃I(t) – ηẼR(t),

dI(t)
dt = (η + σβ)E(t) – (α + μ + γ )I(t),

dR(t)
dt = pS̃ẼR(t – τ ) – (ε + μ + σβ)R(t).

(7)

The characteristic polynomial equation of (7) is

(
λ – pS̃Ẽe–λτ + (ε + μ + σβ)

)(
λ3 + a1λ

2 + a2λ + a3
)

= 0,
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where

a1 = μ + (α + μ + γ ) + (μ + p) +
bβ(η + σβ) – μ(μ + p)(α + μ + γ )

μ(α + μ + γ )
,

a2 =
(
μ + (α + μ + γ )

)
(

(μ + p) +
bβ(η + σβ) – μ(μ + p)(α + μ + γ )

μ(α + μ + γ )

)

,

a3 = bβ(η + σβ) – μ(μ + p)(α + μ + γ ).

First we obtain

λ3 + a1λ
2 + a2λ + a3 = 0. (8)

Clearly, if R0 > 1, we have a1 = μ + (α + μ + γ ) + (μ + p) + bβ(η+σβ)–μ(μ+p)(α+μ+γ )
μ(α+μ+γ ) > 0 and

a3 = bβ(η + σβ) – μ(μ + p)(α + μ + γ ),

a1a2 – a3 =
(

μ + (α + μ + γ ) + (μ + p) +
bβ(η + σβ) – μ(μ + p)(α + μ + γ )

μ(α + μ + γ )

)

× (
μ + (α + μ + γ )

)

×
(

(μ + p) +
bβ(η + σβ) – μ(μ + p)(α + μ + γ )

μ(α + μ + γ )

)

–
(
bβ(η + σβ) – μ(μ + p)(α + μ + γ )

)

= μ2(μ + p) +
μ(bβ(η + σβ) – μ(μ + p)(α + μ + γ ))

(α + μ + γ )
+ μ(μ + p)(α + μ + γ )

+
(

(α + μ + γ ) + (μ + p) +
bβ(η + σβ) – μ(μ + p)(α + μ + γ )

μ(α + μ + γ )

)

×
(

μ(μ + p) +
bβ(η + σβ) – μ(μ + p)(α + μ + γ )

μ(α + μ + γ )

+ (α + μ + γ )(μ + p) +
bβ(η + σβ) – μ(μ + p)(α + μ + γ )

μ(α + μ + γ )

)

> 0.

By the Routh–Hurwitz criteria, (8) has no positive roots. So, we investigate the other poly-
nomial equation

λ – pS̃Ẽe–λτ + (ε + μ + σβ) = 0. (9)

For τ = 0, λ = β(η+σβ)p(α+μ+γ )b–β2(η+σβ)2(ε+μ+σβ)–μp(μ+p)(α+μ+γ )2

β2(η+σβ)2 . Obviously, if R0 < 1 +
β2(η+σβ)2(ε+μ+σβ)
μp(μ+p)(α+μ+γ )2 , then φ < 0, which illustrates the roots of (9) for some φ > 0 and τ > 0.

From (9), we have

⎧
⎨

⎩

φ = – (α+μ+γ )p(bβ(η+σβ)–μ(μ+p)(α+μ+γ ))
β2(η+σβ)2 sinφτ ,

(ε + μ + σβ) = (α+μ+γ )p(sβ(η+σβ)–μ(μ+p)(α+μ+γ ))
β2k2 cosφτ ,

(10)

which implies that φ2 = p2[ (α+μ+γ )p(bβ(η+σβ)–μ(μ+p)(α+μ+γ ))
β2(η+σβ)2 ]2 – (ε + μ + σβ)2.
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Note that if 1 < R0 < 1 + β2(η+σβ)2(ε+μ+σβ)
μp(μ+p)(α+μ+γ )2 , then φ2 < 0. If 1 < R0 < 1 + β2(η+σβ)2(ε+μ+σβ)

μp(μ+p)(α+μ+γ )2 , then

the COVID-19 infection E1 is locally asymptotic stable. If 1 < R0 > 1+ β2(η+σβ)2(ε+μ+σβ)
μp(μ+p)(α+μ+γ )2 , then

the COVID-19 infection E1 is unstable.

3.3 Stability of COVID-19 infection present equilibrium
In COVID-19 infection, the effects of time delay τ is a bifurcation parameter and it goes
through a stationary values. The COVID-19-present equilibrium occurs direct stabil-
ity and Hopf bifurcation. As a matter of first importance, we interpret the equilibrium
Ē = (S̄, Ē, Ī, R̄) of system (2) to the source. Let S1(t) = S(t) – S̄, E1(t) = E(t) – Ē, I1(t) =
I(t) – Ī, R1(t) = R(t) – R̄. For effortlessness, we likewise use S(t), E(t), I(t), R(t) rather than
S1(t), E1(t), I1(t), R1(t). The system (2) becomes

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dS(t)
dt = –((μ + p) + β Ī)S(t) – βS(t)I(t) – βS̄I(t),

dE(t)
dt = βS(t)I(t) + β ĪS(t) – (μ + ηR̄)E(t) + βS̄I(t) – ηĒR(t) – ηE(t)R(t),

dI(t)
dt = (η + σβ)E(t) – (α + μ + γ )I(t),

dR(t)
dt = pS(t – τ )E(t – τ )R(t – τ ) + pĒS(t – τ )R(t – τ ) + pS̄E(t – τ )R(t – τ )

+ pS̄ĒR(t – τ ) + pR̄S(t – τ )E(t – τ ) + pĒR̄S(t – τ ) + pS̄R̄E(t – τ )

– (ε + μ + σβ)R(t).

(11)

Then the origin (0, 0, 0, 0)T is a steady state of (11) and the linearized system of equation
(11) at the origin is

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dS(t)
dt = –((μ + p) + β Ī)S(t) – βS(t)I(t) – βS̄I(t),

dE(t)
dt = βS(t)I(t) + β ĪS(t) – (μ + ηR̄)E(t) + βS̄I(t) – ηĒR(t) – ηE(t)R(t),

dI(t)
dt = (η + σβ)E(t) – (α + μ + γ )I(t),

dR(t)
dt = pS(t – τ )E(t – τ )R(t – τ ) + pĒS(t – τ )R(t – τ ) + pS̄E(t – τ )R(t – τ )

+ pS̄ĒR(t – τ ) + pR̄S(t – τ )E(t – τ ) + pĒR̄S(t – τ ) + pS̄R̄E(t – τ )

– (ε + μ + σβ)R(t).

(12)

The trivial solution of Eq. (12) is asymptotic stable and Eq. (11) is locally asymptotic
stable. The strength of the polynomial equation (12) is given by

�(λ) = λ4 + x1λ
3 + x2λ

2 + x3λ + x4 –
(
x5λ

3 + x6λ
2 + x7λ + x8

)
e–λτ , (13)

where

x1 = (ε + μ + σβ) + (μ + p) + β Ī + (α + μ + γ ) + μ + ηR̄,

x2 = (ε + μ + σβ)(μ + p) + (ε + μ + σβ)β Ī + (ε + μ + σβ)(α + μ + γ )

+ (μ + p)(α + μ + γ ) + β Ī(α + μ + γ ) + (μ + ηR̄)
(
(ε + μ + σβ) + (μ + p) + β Ī

)
,

x3 = (ε + μ + σβ)(μ + p)(α + μ + γ ) + (ε + μ + σβ)β Ī(α + μ + γ )

+ (μ + ηR̄)
(
(ε + μ + σβ)(μ + p) + (ε + μ + σβ)β Ī

)
+ (η + σβ)β2S̄Ī,

x4 = (ε + μ + σβ)(η + σβ)β2S̄Ī,



Radha and Balamuralitharan Advances in Difference Equations        (2020) 2020:523 Page 10 of 20

x5 = (ε + μ + σβ),

x6 = (ε + μ + σβ)(μ + p) + (ε + μ + σβ)β Ī + (ε + μ + σβ)(α + μ + γ ) + μ(ε + μ + σβ),

x7 = (ε + μ + σβ)(μ + p)(α + μ + γ ) + (ε + μ + σβ)β Ī(α + μ + γ )

+ (μ + ηR̄)
(
(ε + μ + σβ)(μ + p) + (ε + μ + σβ)β Ī

)

– (ε + μ + σβ)ηR̄
(
(μ + p) + β Ī + (α + μ + γ )

)
,

x8 = (ε + μ + σβ)(η + σβ)β2S̄Ī – (ε + μ + σβ)(μ + p)(α + μ + γ )ηR̄.

Theorem 3.2 If the solution of (12) is locally asymptotic stable, then τ = 0 and R0 > 1 +
β2(η+σβ)2(ε+μ+σβ)
μp(μ+p)(α+μ+γ )2 .

Proof Let τ = 0. From (13),

λ4 + (x1 + x5)λ3 + (x2 – x6)λ2 + (x3 – x7)λ + x4 – x8 = 0. (14)

Since R0 > 1 + β2(η+σβ)2(ε+μ+σβ)
μp(μ+p)(α+μ+γ )2 , S̄ > 0, Ē > 0, Ī > 0, R̄ > 0.

By the method of the Routh–Hurwitz criteria, we get

x9 = x1 – x5 = β Ī + ηR̄ + 3μ + p + α + γ > 0,

x10 = (x1 – x5)(x2 – x6) – (x3 – x7)

=
(
(μ + p) + β Ī + (α + μ + γ ) + μ + ηR̄

[
(μ + p)(α + μ + γ ) + β Ī(α + μ + γ )

+ (μ + ηR̄)
(
(ε + μ + σβ) + (μ + p) + β Ī

)
– μ(ε + μ + σβ)

]

– (ε + μ + σβ)(η + σβ)β2S̄Ī – (ε + μ + σβ)ηR̄
(
(μ + p) + β Ī + (α + μ + γ )

)

(
(μ + p) + β Ī + (α + μ + γ )

)[
(μ + p)(α + μ + γ ) + (α + μ + γ )β Ī

+ (μ + ηR̄)
(
(μ + p) + ηR̄

)(
(μ + p) + β Ī

)]
+

[
(μ + p)(α + μ + γ )

+ (μ + ηR̄)
(
(μ + η) + β Ī

)
+ (ε + μ + σβ)ηR̄

]
x11

=

∣
∣
∣
∣
∣
∣
∣

x1 – x5 x3 – x7 0
1 x2 – x6 x4 – x8

0 x1 – x5 x3 – x7

∣
∣
∣
∣
∣
∣
∣

= (x1 – x5)[(x2 – x6)(x3 – x7) – (x1 – x5)(x4 – x8)](x3 – x7)2.

Let m = μ + ηR̄, n = (μ + p) + β Ī . Thus,

x11 =
[
(α + μ + γ )m

(
n – (μ + p)

)
+ η(ε + μ + σβ)R̄n + η(ε + μ + σβ)R̄(α + μ + γ )

]

(
(α + μ + γ )n2 + mn2 + (α + μ + γ )2n + (α + μ + γ )mn

+ (μ + p)(α + μ + γ )m + m2n + (ε + μ + σβ)mηR̄
)

– (ε + μ + σβ)(μ + p)(α + μ + γ )ηR̄
(
n2 + (α + μ + γ )2 + 2(α + μ + γ )n

+ m2 + 2mn + 2m(α + μ + γ )
)

= (α + μ + γ )m
(
n – (μ + p)

)(
(α + μ + γ )n2 + mn2 + (α + μ + γ )2n
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+ (α + μ + γ )mn + (μ + p)(α + μ + γ )m + m2n + (ε + μ + σβ)mηR̄
)

+ (ε + μ + σβ)ηR̄(α + μ + γ )2m
(
n – (μ + p)

)

+ (ε + μ + σβ)(α + μ + γ )3ηR̄(n – d)

+ 2(ε + μ + σβ)ηR̄(α + μ + γ )2n
(
n – (μ + p)

)

+ (ε + μ + σβ)ηR̄(α + μ + γ )m2(n – (μ + p)
)

+ 2(ε + μ + σβ)ηR̄(α + μ + γ )mn
(
n – (μ + p)

)

+ (ε + μ + σβ)ηR̄(α + μ + γ )2m
(
n – (μ + p)

)

+ (ε + μ + σβ)ηR̄mn3 + (ε + μ + σβ)ηR̄(μ + p)(α + μ + γ )mn

+ (ε + μ + σβ)ηR̄m2n2 + (ε + μ + σβ)2mη2R̄2n

+ (ε + μ + σβ)2η2R̄2(α + μ + γ )m.

We have x11 > 0, since n – (μ + p) > 0.

x12 =

∣
∣
∣
∣
∣
∣
∣
∣
∣

x1 – x5 x3 – x7 0 0
1 x2 – x6 x4 – x8 0
0 x1 – x5 x3 – x7 0
0 1 x2 – x6 x4 – x8

∣
∣
∣
∣
∣
∣
∣
∣
∣

= a4x11.

Taking note of a4 = (ε +μ+σβ)(μ+ p)(α +μ+γ )ηx̄, it is anything but difficult to acquire
that x12 > 0. Subsequently, the real parts are negative in (14). This completes the verifica-
tion of Theorem 3.2. Here the roots of �(λ) = 0 have negative real roots. Hence, there
exists a τ0 > 0 to such that τ ∈ [0, τ0) in (13), and we have

�(λ) = 0, Re(λ) < 0 for τ ∈ [0, τ0), (15)

moreover, when τ = τ0, Re(λ) < 0. To decide on this τ0 and the related simply φ0i(φ0 > 0)
imaginary roots, we understand (13) with λ = φ0i. For straightforwardness, we use τ ,φ
rather than τ0,φ0. From (13), we have

φ4 – x1φ
3i – x2φ

2 + x3φi + x4 –
(
–x5φ

3i – x6φ
2 + x7φ + x8

)

(cosφτ – i sinφτ ) = 0. (16)

Comparing the coefficients of real and imaginary parts, we get

⎧
⎨

⎩

(x8 – x6φ
2) cosφτ + (x7φ – x5φ

3) sinφτ = φ4 – x2φ
2 + x4,

(x5φ
3 – x7φ) cosφτ + (x8 – x6φ

2) sinφτ = x1φ
3 – x3φ,

(17)

cosφτ =
1
�

∣
∣
∣
∣
∣

φ4 – x2φ
2 + x4 x7φ – x5φ

3

x1φ
3 – x3φ x8 – x6φ

2

∣
∣
∣
∣
∣

=
1
�

[
(x1x5 – x6)φ6 + (x8 + x2x6 – x1x7 – x3x5)φ4

+ (x3x7 – x2x8 – x4x6)φ2 + x4x8
]
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=
1
�

(
c1φ

6 + c2φ4 + c3φ
2 + c4

)
,

sinφτ =
1
�

∣
∣
∣
∣
∣

x8 – x6φ
2 φ4 – x2φ

2 + x4

x5φ
3 – x7φ x1φ

3 – x3φ

∣
∣
∣
∣
∣

=
(

–
φ

�

)
(
x5φ

6 + (x1x6 – x7 – x2x5)φ4 + (x2x7 + x4x5 – x3x6 – x1x8)φ2

+ (x3x8 – x4x7)
)

= –
φ

�

(
x9φ

6 + x10φ
4 + x11φ

2 + x12
)
,

where

� =

∣
∣
∣
∣
∣

x8 – x6φ
2 x7φ – x5φ

3

x4φ
3 – x7φ x8 – x6φ

2

∣
∣
∣
∣
∣

=
(
x8 – x6φ

2)2 +
(
x7 – x5φ

3)2 = x5φ
6 + (x6 – 2x5x7)φ4 +

(
x2

7 – 2x6x8
)
φ2

+ x2
8 =

(
e1φ

6 + e2φ
4 + e3φ

2 + e4
)

> 0.

Here sin2 φτ + cos2 φτ = 1, it follows that

φ14 + x13φ
12 + x14φ

10 + x15φ
8 + x16φ

6 + x17φ
4 + x18φ

2 + x19 = 0, (18)

where

x13 =
1
x2

9

(
c2

1 + 2x9x10 – e2
1
)
,

x14 =
1
x2

9

(
2c1c2 + x2

10 + 2x9x11 – 2e1e3
)
,

x15 =
1
x2

9

(
c2

2 + 2c1c3 + 2x9x12 + 2x10x11 – e2
2 – 2e1e3

)
,

x16 =
1
x2

9

(
2c1c4 + 2c2c3 + x2

11 + 2x10x12 – 2e1e4 – 2e2e3
)
,

x17 =
1
x2

9

(
c2

3 + 2c2c4 + 2x11x12 – e2
3 – 2e2e4

)
,

x18 =
1
x2

9

(
2c3c4 + x2

12 – 2e3e4
)
,

x19 =
1
x2

9

(
c2

4 – e2
4
)
.

Denoting: x = φ2, (18) becomes

x7 + x13x6 + x14x5 + x15x4 + x16x3 + x17x2 + x18x + x19 = 0. (19)

First, x = 0 is not a root of (19) if x8 �= 0. There is no positive real root in (19). Therefore
φ =

√
x does not get the solution. Hence the bifurcation parameter τ does not occur and

a Hopf bifurcation is not evaluated. Equation (19) always has positive real roots. Let the
hypothesis be as follows:
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(�1): Equation (19) has possibly one positive real root;
(�2): �

�= [4φ6 + 3(x2
1 – 2x2 – x2

5)φ4 + 2(x2
2 – x2

6 + 2x4 + x5x7 – 2x1x3)φ2 + x2
3 – x2

7 + 2x6x8 –
2x2x4] > 0 for any φ > 0.

Let x0 be the positive roots of (19), denoting φ0 = √x0. From the above, we get

τj =
1
φ0

(

cos–1
(

c1φ
6
0 + c2φ

4
0 + c3φ

2
0 + c4

e1φ
6
0 + e2φ

4
0 + e3φ

2
0 + e4

)

+ 2jπ
)

, j = 0, 1, 2, 3, . . . ,

and

τ0 =
1
φ0

cos–1
(

c1φ
6
0 + c2φ

4
0 + c3φ

2
0 + c4

e1φ
6
0 + e2φ

4
0 + e3φ

2
0 + e4

)

, j = 0.

The set of ordered pair is (φ0, τ0) to find the polynomial roots of (13) in a neighborhood
of τ0 and differentiating with respect to τ , we get

[
dλ

dτ

]–1

=
–(4λ3 + 3x1λ

2 + 2x2λ + x3)eλτ

λ(x5λ3 + x6λ2 + x7λ + x8)
+

3x5λ
2 + 2x6λ + x7

λ(x5λ3 + x7λ2 + x7λ + x8)
–

τ

λ
. (20)

Letting (20), we have

Re

[
dλ

dτ

]–1

=
1

φ∇
{(

3x1φ
2 – x3

)[(
x5φ

3 – x7φ
)

cosφτ +
(
x8 – x8φ

2) sinφτ
]

+
(
4φ3 – 2x2φ

)[(
x8 – x6φ

2) cosφτ –
(
x5φ

3 – x7φ
)

sinφτ
]

+
(
x7 – 3x5φ

2)(x5φ
3 – x7φ

)
+ 2x6φ

(
x8 – x6φ

2)}

=
1
∇

[
4φ6 + 3

(
x2

2 – 2x2 – x2
5
)
φ4 + 2

(
x2

2 – x2
6 + 2x4 + 2x5x7 – 2x1x3

)
φ2

+ x2
3 – x2

7 + 2x6x8 – 2x2x4
]
,

where ∇ = (x5φ
3 – x7φ)2 + (x8 – x6φ

2)2 > 0. If (�2) is satisfied, then (20) > 0 will hold for
any φ > 0.

So, sign{Re[ dλ
dτ

]|τ = τ0} = sign{Re[ dλ
dτ

]|τ = τ0} �= sign(·) = 1.
Therefore, the roots of (14) have negative real parts. If τ = τ0, then other negative real

roots have �(λ) = 0. In (14), if τ ∈ [0, τ0) and (�1,�2) assumption, then the COVID-19
infection is stable. Similarly, if τ > τ0, then the COVID-19 infection is unstable and Eq. (2)
shows bifurcation at τ = τ0. �

4 Analysis of sensitivity parameters
The effects of changing parameter values on the functional value of the reproduction num-
ber R0 are obtainable in this section. The essential parameter must be found, which could
be an important threshold for disease management. The algebraic representations of the
sensitivity index of R0 to the parameters η,β ,σ ,γ ,α, b, p are as follows:

∂R0

∂β
=

2βσb
μ(μ + p)(μ + γ + α)

,
∂R0

∂b
=

β(η + σβ)
μ(μ + p)(μ + γ + α)

,

∂R0

∂η
=

βb
μ(μ + p)(μ + γ + α)

,
∂R0

∂p
=

–βb(η + σβ)
μ(μ + p)2(μ + γ + α)

,
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∂R0

∂σ
=

β2σ

μ(μ + p)(μ + γ + α)
,

∂R0

∂α
=

–βb(η + σβ)
μ(μ + p)(μ + γ + α)2 ,

∂R0

∂γ
=

–βb(η + σβ)
μ(μ + p)(μ + γ + α)2 .

It is concluded that some partial derivatives are positive, with the increase of any of the
above positive value parameters η,β ,σ the basic reproductive number R0 increases. The
elasticity is estimated with the proportional response to the proportional perturbation.
We have

Eβ =
β

R0

∂R0

∂β
=

2βσ

(η + σβ)
= 0.9804, Eη =

η

R0

∂R0

∂η
=

η

(η + σβ)
= 0.5098,

Eσ =
σ

R0

∂R0

∂σ
=

βσ

(η + σβ)
= 0.4901.

From the above expressions, it is observed that Eη, Eβ and Eσ are positive. This implies an
increase in the parameters η,β and σ leads to an increase in the value of the basic repro-
duction number R0. The smallest change in these parameters can cause a high variation in
the basic reproduction number. A very sensitive parameter should be carefully calculated
since a slight variation can lead to major quantitative changes in the system.

5 Numerical experiment
The COVID 19 model has unspecified parameters of SEIR model. The model’s identities
are investigated by the iterative algorithm and the parameter values (Age-standardized
SEIR model) of the real-life data for the COVID 19 pandemic in India should be deter-
mined from these model values. COVID 19 data are therefore important in developing
and validating the nonlinear ODE. Let us consider the parameters b = 0.5,γ = 0.008, ε =
0.1,μ = 0.0018, p = 0.5,β = 0.1923,η = 0.1,σ = 0.5,α = 0.5 with (S(0), E(0), I(0), R(0)) [34].
In the event that (19) has no positive roots, at that point the COVID-19 infection present
equilibrium is locally asymptotic stable. On the off chance that R0 = 2.47, at that point the
COVID-19 disease presents equilibrium E = (3.1, 1.4, 10.01, 2.01). From (19), we have

x7 + 500.01x6 + 10,025x5 + 23,423x4 + 4099x3 + 28.1x2 + 0.1x + 6.110–5 = 0,

having real negative roots. Therefore the equilibrium is locally asymptotic stable and it
represents a Hopf bifurcation. Obviously, R0 = 1.92, and the COVID-19 infection present-
ing an equilibrium has E = (3.01, 1.3, 8.1, 3.3). From (19), we have

x7 + 477.2304x6 + 47,123x5 + 33,257x4 + 5008x3 + 27.1x2 – 1.3x – 0.001 = 0,

having positive real roots and others having negative real roots. Accordingly, φ0 =
√

x =
0.1 It is not hard to evaluate the bifurcation stationary value to be τ0 = 1.96. Also, it is
anything but difficult to prove that � = 2.8 > 0, i.e., (�2) is fulfilled. The phase diagram of
the system (2) is asymptotic stable when τ = 0.9 < τ0 (see Fig. 1). Also, the phase diagrams
of the system (2) undergoes a Hopf bifurcation when τ = 2 > τ0 (see Fig. 2). We utilize the
serious cases and deaths in the individual response work, rather than deaths as it were.
We additionally increment the power of the legislative activity to such an extent that the
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Figure 1 The phase diagrams of the system (2) is asymptotically stable when τ = 0.9

model results to a great extent in a coordinate of the watched, with a revealing proportion.
In Fig. 3 shows the numerical simulations and calculated the different R0 values such as
2.0317, 1.2922, 1.4809, 1.5972 and 0.9844 from the real-life data already published (WHO).
The range of the R0 values lies between 0.9844 and 2.0317. The time plots of SEIR COVID-
19 model for different recruitment rate at τ = 2 (see Fig. 4). To be specific just the extent
of the model’s created cases will be accounted for as a general rule. Consequently it would
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Figure 2 The phase diagrams of the system (2) undergoes Hopf bifurcation when τ = 2

concern testing given a generally brief time frame arrangement, and a few other obscure
parameters are to be assessed. Figure 4 depicts how decreasing the transmission rate can
change the system dynamics from the limit cycle to stable focus. It implies that without the
Hopf bifurcation, the system is stable and controllable. Based on the sensitivity analysis
value, decreasing the transmission rate can change the dynamics of the system from a limit
cycle to a stable focus.
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Figure 3 The epidemic numerical simulations of (2) from real-life data
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Figure 4 The phase diagram of S, E,I, R for different transmission rates at τ = 2, the remaining parameters are
taken (β = 0.05, 0.10&0.15) as indicated as above

6 Conclusion
There is a shortage of epidemiological information about the rising coronavirus, which
would be of essential significance to structure and executing auspicious, specially ap-
pointed viable general well being intercessions, isolation and travel limitations. We have
contemplated a general SEIR model of COVID-19 infection with delay. If R0 < 1, then
stability of the disease-free equilibrium is derived by Lyapunov techniques. Furthermore
as regards the effects of time delay τ = 0, the COVID-19 infection is either absent or
presents an equilibrium when R0 > 1. Here 1 < R0 < 1 + β2(η+σβ)2(ε+μ+σβ)

μp(μ+p)(α+μ+γ )2 , then E1 is stable. If

R0 > 1 + β2(η+σβ)2(ε+μ+σβ)
μp(μ+p)(α+μ+γ )2 , then E1 is unstable. Hence, τ > 0, 1 < R0 < 1 + β2(η+σβ)2(ε+μ+σβ)

μp(μ+p)(α+μ+γ )2 , E1

is stable. The basic reproductive ratio R0 > 1 + β2(η+σβ)2(ε+μ+σβ)
μp(μ+p)(α+μ+γ )2 , if the susceptible cells birth

rate is high. Therefore the linearized system of (2) has no real positive roots and we have
stability. The polynomial equation (19) has a single real positive root when τ < τ0. The
COVID-19 infection presenting equilibrium is stable. If τ > τ0, the equilibrium solutions
are unstable and a Hopf bifurcation occurs. Supposing Eq. (19) has more than one posi-
tive root, it does not exit. In the future, further investigation is needed to this system. The
controlling of the reproduction number ratios proposes that the outbreak might be more
genuine than what has been accounted for up until now, given the specific period of ex-
panding social contacts, justifying powerful, severe general well being measures planned
to relieve the weight produced by the spreading of the new infection. Finally, as regards
the transmission rate it can be concluded that the system dynamics can be modified by
decreasing its value from a limit cycle to a stable focus. Important measures to reduce the
proportion of people susceptible to infection can be taken through increasing their im-
munity, quarantining infectious people, and decreasing their interaction with susceptible
people. By using the least square approach, we used the descendant gradient model and
identified the nearly approximate value of the parameters. The most important factor in
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preventing the spread of the virus locally is to empower the citizens with the right infor-
mation and taking precautions as per the advisories being issued by the Ministry of Health
& Family Welfare.
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