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Abstract
In the present work, a numerical technique for solving a general form of nonlinear
fractional order integro-differential equations (GNFIDEs) with linear functional
arguments using Chebyshev series is presented. The recommended equation with its
linear functional argument produces a general form of delay, proportional delay, and
advanced non-linear arbitrary order Fredholm–Volterra integro-differential equations.
Spectral collocation method is extended to study this problem as a matrix
discretization scheme, where the fractional derivatives are characterized in the
Caputo sense. The collocation method transforms the given equation and conditions
to an algebraic nonlinear system of equations with unknown Chebyshev coefficients.
Additionally, we present a general form of the operational matrix for derivatives. The
introduced operational matrix of derivatives includes arbitrary order derivatives and
the operational matrix of ordinary derivative as a special case. To the best of authors’
knowledge, there is no other work discussing this point. Numerical test examples are
given, and the achieved results show that the recommended method is very effective
and convenient.

Keywords: Chebyshev collocation method; Nonlinear fractional integro-differential
equations; Functional argument; Caputo fractional derivatives

1 Introduction
Nonlinear differential (DEs) and integro-differential equations (IDEs) have a great im-
portance in modeling of many phenomena in physics and engineering [1–17]. Fractional
differential equations involving the Caputo and other fractional derivatives, which are a
generalization of classical differential equations, have attracted widespread attention [18–
25]. In the last decade or so, several studies have been carried out to develop numerical
schemes to deal with fractional integro-differential equations (FIDEs) of both linear and
nonlinear type. The successive approximation methods such as Adomian decomposition
[26], He’s variational iteration technique [8], HPM [5], He’s HPM [27], modified HPM [28],
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finite difference method [29], a modified reproducing kernel discretization method [30],
and differential transformation method [31] were used to deal with FIDEs. Spectral meth-
ods with different basis were also applied to FIDEs, Chebyshev and Taylor collocation,
Haar wavelet, Tau and Walsh series schemes, etc. [32–39] as an example. The collocation
method is one of the powerful spectral methods which are widely used for solving frac-
tional differential and integro-differential equations [40–44]. Further, the numerical solu-
tion of delay and advanced DEs of arbitrary order has been reported by many researchers
[45–58]. Differential equations of advanced argument had fewer contributions in mathe-
matics research compared to delay differential equations, which had a great development
in the last decade [59, 60]. Monotone iterative technique was introduced with Riemann–
Liouville fractional derivative to deal with FIDEs with advanced arguments [61], while the
collocation method with Bessel polynomials treated linear Fredholm integro-differential-
difference equations [62]. In our previous work, Tau method with the Chebyshev polyno-
mials was employed to deal with linear fractional differential equations with linear func-
tional arguments [63]; therefore, the Chebyshev collocation method was extended to frac-
tional differential equations with delay [64]. The equations with functional form of argu-
ment represent mixed type equations delay, proportional delay, and advanced differential
equations. All reported works considered a generalization of equations with functional
argument with integer order derivative or with fractional derivative in the linear case.

In this work, we introduce a general form of nonlinear fractional integro-differential
equations (GNFIDEs) with linear functional arguments, which is a more general form
of nonlinear fractional pantograph and Fredholm–Volterra integro-differential equations
with linear functional arguments [65–69]. The spectral collocation method is used with
Chebyshev polynomials of the first kind as a matrix discretization method to treat the
proposed equations. An operational matrix for derivatives is presented. The introduced
operational matrix of derivatives includes fractional order derivatives and the operational
matrix of ordinary derivative as a special case. No other studies have discussed this point.

The proposed GNFIDEs with linear functional arguments are presented as follows:

n1∑

k=0

n2∑

i=0

Qk,i(x)yk(x)y(νi)(pix + ξi) +
n3∑

h=1

n4∑

j=0

Ph,j(x)y(h)(x)y(αj)(qjx + ζj)

= f (x) +
∫ b

a

n5∑

d=0

Kd(x, t)y(υd)(t) dt +
∫ φ(x)

a

n6∑

c=0

Vc(x, t)y(βc)(t) dt, (1)

where x ∈ [a, b], Qk,i(x), Ph,j(x), f (x), Vc(x, t), Kd(x, t) are well-defined functions, and
a, b, pi, ξi, qj, ζj ∈ � where pi, qj �= 0, νi ≥ 0, αj ≥ 0, υd ≥ 0, βc ≥ 0 and i – 1 < νi ≤ i,
j – 1 < αj ≤ j, d – 1 < υd ≤ d, c – 1 < βc ≤ c, ni ∈N, under the conditions

y(i)(ηi) = μi, i = 0, 1, 2, . . . , m – 1, (2)

where ηi ∈ [a, b], and m is the greatest integer order derivative, or the highest integer order
greater than the fractional derivative. The general form (1) contains at least three different
arguments, then the following corollary defines the interval that the independent variable
x belongs to. Chebyshev polynomials of the first kind are used in this work to approximate
the solution of suggested equation (1). The Chebyshev polynomials are characterized on
[–1, 1].
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Corollary 1.1 The independent variable x of (1) belongs to [a, b], which is the intersec-
tion of the intervals of the different arguments and [–1, 1] i.e. x ∈ [a, b] = [ –1+ξi

pi
, 1+ξi

pi
] ∩

[ –1+ζj
qj

, 1+ζj
qj

] ∩ [–1, 1].

2 General notations
In this section, some definitions and properties for the fractional derivative and Chebyshev
polynomials are listed [63, 64, 70, 71].

2.1 The Caputo fractional derivative
The Caputo fractional derivative operator Dγ

t of order γ is characterized in the following
form:

Dγ
t Ψ (x) =

1
Γ (n – γ )

∫ x

0

Ψ (n)(t)
(x – t)γ –n+1 dt, γ > 0, (3)

where x > 0, n – 1 < γ ≤ n, n ∈N0, and N0 = N – {0}.
• Dγ

t
∑m

i=0 λiΨi(x) =
∑m

i=0 λiDγ
t Ψi(x), where λi and γ are constants.

• The Caputo fractional differentiation of a constant is zero.
• Dγ

t xk =
{ 0 for k ∈ N0 and k < �γ 	,

Γ (k+1)xk–γ

Γ (k+1–γ ) for k ∈ N0 and k ≥ �γ 	,

where �γ 	 denotes to the smallest integer greater than or equal to γ .

2.2 Chebyshev polynomials
The Chebyshev polynomials Tn(x) of the first kind are defined as follows: orthogonal poly-
nomials in x of degree n are defined on [–1, 1] such that

Tn(x) = cos nθ ,

where x = cos θ and θ ∈ [0,π ]. The polynomials Tn(x) are generated by using the following
recurrence relations:

Tn+1(x) = 2xTn(x) – Tn–1(x),

with initials

T0(x) = 1, T1(x) = x, n = 1, 2, . . . .

Corollary 2.1 The Chebyshev polynomials Tn(x) are explicitly expressed in terms of xn in
the following form:

Tn(x) =
[n/2]∑

k=0

w(n)
k xn–2k , (4)

where

w(n)
k = (–1)k2n–2k–1 n

n – k

(
n – k

k

)
, 2k ≤ n.
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3 Procedure solution using the collocation method
The solution y(x) of (1) may be expanded by Chebyshev polynomial series of the first kind
as follows [64]:

y(x) =
∞∑

n=0

cnTn(x). (5)

By truncating series (5) to N < ∞, the approximate solution is expressed in the following
form:

y(x) ∼=
N∑

n=0

cnTn(x)

= T(x)C, (6)

where T(x) and C are matrices given by

T(x) =
[

T0(x) T1(x) · · · TN (x)
]

, C =
[

1
2

c0, c1, c2, . . . , cN

]T

.

Now, using (4), relation (6) may written in the following form:

y(x) = X(x)W T C, (7)

where W is a square lower triangle matrix with size (N + 1) × (N + 1) given by

Wij =

⎧
⎪⎪⎨

⎪⎪⎩

1 if i = j = 0,

(–1)k2i–2k–1 i
i–k
( i–k

k

)
if i + j even and j ≤ i,

0 if j > i, i + j odd,

(8)

where

k =

⎧
⎨

⎩

i
2 , . . . , 1, 0 for even i,
i–1
2 , . . . , 1, 0 for odd i,

i, j = 0, 1, 2, . . . , N .

For example,

W =

⎛

⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0
0 1 0 0 0

–1 0 2 0 0
0 –3 0 4 0
1 0 –8 0 8

⎞

⎟⎟⎟⎟⎟⎟⎠

N=4

, W =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0
0 1 0 0 0 0

–1 0 2 0 0 0
0 –3 0 4 0 0
1 0 –8 0 8 0
0 5 0 –20 0 16

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

N=5

.

Then, by substituting from (6) in (1), we get

n1∑

k=0

n2∑

i=0

Qk,r(x)
(
T(x)C

)kDνi T(pix + ξi)C
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+
n3∑

h=1

n4∑

j=0

Ph,j(x)
(
T (h)(x)C

)
DαjT(qjx + ζj)C

–
∫ b

a

n5∑

d=0

Kd(x, t)T (υd)(t)C dt –
∫ φ(x)

a

n6∑

c=0

Vc(x, t)T (βc)(t)C dt = f (x). (9)

We can write (9) as follows:

[ n1∑

k=0

n2∑

i=0

Qk,r(x)
(
T(x)C

)kDνi T(pix + ξi)

+
n3∑

h=1

n4∑

j=0

Ph,j(x)
(
T (h)(x)C

)
Dαj T(qjx + ζj)

–
∫ b

a

n5∑

d=0

Kd(x, t)Dυd T(t) dt –
∫ φ(x)

a

n6∑

c=0

Vc(x, t)Dβc T(t) dt

]
C = f (x). (10)

The collocation points are defined in the following form:

xl = lh + a, (11)

where

h =
b – a

N
, l = 0, 1, 2, . . . , N .

By substituting the collocation points (11) in (10), we get

[ n1∑

k=0

n2∑

i=0

Qk,i(xl)
(
T(xl)C

)kDνi T(pixl + ξi)

+
n3∑

h=1

n4∑

j=0

Ph,j(xl)
(
T (h)(xl)C

)
Dαj T(qjxl + ζj)

–
∫ b

a

n5∑

d=0

Kd(xl, t)Dυd T(t) dt –
∫ φ(xl)

a

n6∑

c=0

Vc(xl, t)Dβc T(t) dt

]
C = f (xl). (12)

In the following theorem we introduce a general form of operational matrix of the row
vector T(x) in the representation as (7), such that the process includes the fractional order
derivatives, and ordinary operational matrix given as a special case when αi → �αi	.

Theorem 1 Assume that the Chebyshev row vector T(x) is represented as (7), then the
fractional order derivative of the vector Dαi T(x) is

Dαi T(x) = Xαi (x)Bαi W
T , (13)

where

Xαi (x) =
[
x–αi+i x1–αi+i x2–αi+i · · · xN–1–αi+i], i – 1 < αi ≤ i, (14)
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where Bαi is an (N + 1) × (N + 1) square upper diagonal matrix, the elements br,s of Bαi can
be written as follows:

⎧
⎨

⎩
br,r+i = Γ (r+i+1)

Γ (r+i–αi)
r, s = 0, 1, 2, . . . , N ,

0 otherwise,
(15)

where i – 1 < αi ≤ i, N ≥ �αi	.

Proof Since

Dαi T(x) = Dαi
[
1 x x2 · · · xN]W T

= Xαi Bαi W
T , (16)

if 0 < α1 ≤ 1, using Caputo’s fractional properties, we get

Xα1 =
[
x1–α1 x2–α1 x3–α1 · · · xN+1–α1

]
, (17)

Bα1 =

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

0 2
Γ (2–α1) 0 · · · 0

0 0 Γ (3)
Γ (3–α1) · · · 0

...
...

...
...

0 0 0 · · · Γ (N)
Γ (N–α1)

0 0 0 · · · 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

. (18)

As α1 −→ 1, the system reduces to the ordinary case (Bα1 −→ B) (see [64]).
Also 1 < α2 ≤ 2, then

Xα2 =
[
x2–α2 x3–α2 x4–α2 · · · xN+2–α2

]
, (19)

Bα2 =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 3
Γ (3–α2) · · · 0 0

0 0 0 Γ (4)
Γ (4–α2) · · · 0

...
...

...
...

...
0 0 0 · · · 0 Γ (N)

Γ (N–α2)
0 0 0 · · · 0 0
0 0 0 · · · 0 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (20)

As α2 −→ 2, the system reduces to the ordinary case (Bα2 −→ B2) (see [64]).
By the same way, if we take 2 < α3 ≤ 3, then

Xα3 =
[
x3–α3 x4–α3 x5–α3 · · · xN+3–α3

]
, (21)

Bα3 =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 4
Γ (4–α3) · · · 0 0

0 0 0 0 Γ (5)
Γ (5–α3) 0

...
...

...
...

...
...

0 0 0 · · · 0 0 Γ (N)
Γ (N–α3)

0 0 0 · · · 0 0 0
0 0 0 · · · 0 0 0
0 0 0 · · · 0 0 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (22)
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As α3 −→ 3, the system reduces to the ordinary case (Bα3 −→ B3) (see [64]).
By induction, i – 1 < αi ≤ i, then

Xαi (x) =
[
x–αi+i x1–αi+i x2–αi+i · · · xN–1–αi+i], i – 1 < αi ≤ i, (23)

and Bαi as in (15), where the proposed operational matrix represents a kind of unification
of ordinary and fractional case. �

Now, we give the matrix representation for all terms in (12) as representation (13).
∗ The first term in (12) can be written as follows:

n1∑

k=0

n2∑

i=0

Qk,i(xl)
(
T(xl)C

)kDνi T(pixl + ξi)

=
n1∑

k=0

n2∑

i=0

Qk,i(xl)
(
X̄W̄ T C̄

)kXνi Bνi Hpi Eξi W
T C, (24)

where

X̄ =

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

X(x0) 0 0 · · · 0
0 X(x1) 0 · · · 0
0 0 X(x2) · · · 0
...

...
...

...
0 0 0 · · · X(xN )

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

,

W̄ T =

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

W T 0 0 · · · 0
0 W T 0 · · · 0
0 0 W T · · · 0
...

...
...

...
0 0 0 · · · W T

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

, C̄ =

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

C 0 0 · · · 0
0 C 0 · · · 0
0 0 C · · · 0
...

...
...

...
0 0 0 · · · C

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

.

In addition, Hpi is a square diagonal matrix of the coefficients for the linear argument, and
the elements of Hpi can be written as follows:

hrs =

⎧
⎨

⎩
0 if r �= s;

pr
i if r = s.

Moreover, Eξi is a square upper triangle matrix for the shift of the linear argument, and
the form of Eξi is

Eξi =

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

( 0
0

)
(ξi)0 ( 1

0

)
(ξi)1–0 ( 2

0

)
(ξi)2–0 · · · (N

0

)
(ξi)N–0

0
( 1

1

)
(ξi)1–1 ( 2

1

)
(ξi)2–1 · · · (N

1

)
(ξi)N–1

0 0
( 2

2

)
(ξi)2–2 · · · (N

2

)
(ξi)N–2

...
...

...
...

0 0 0 · · · ( N
N

)
(ξi)N–N

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

.
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∗ The second term in (12) can be written as follows:

n3∑

h=1

n4∑

j=0

Ph,j(xl)
(
T (h)(xl)C

)
Dαj T(qjxl + ζj)

=
n3∑

h=1

n4∑

j=0

Ph,j(xl)
(
X̄B̄hW̄ T C̄

)
Xαj Bαj HPiEζ jW T C, (25)

where

B̄h =

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

0 Bh 0 · · · 0
0 0 Bh · · · 0
...

...
...

...
0 0 0 · · · Bh

0 0 0 · · · 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

,

and Bh is the same as Bαi when h = �αi	.
The matrix representation for the variable coefficients takes the form

Qi,j =

⎛

⎜⎜⎜⎜⎝

Qi,j(x0) 0 0 . . . 0
0 Qi,j(x1) 0 . . . 0
...

...
...

...
...

0 0 0 . . . Qi,j(xN )

⎞

⎟⎟⎟⎟⎠
.

∗ Matrix representation for integral terms: Now, we try to find the matrix form corre-
sponding to the integral term. Assume that Kd(x, t) can be expanded to univariate Cheby-
shev series with respect to t as follows:

Kd(x, t) ∼=
N∑

r=0

ud,r(x)Tr(t). (26)

Then the matrix representation of the kernel function Kd(x, t) is given by

Kd(x, t) ∼= Ud(x)TT (t), (27)

where

Ud(x) =
[
ud,0(x) ud,1(x) · · · ud,N (x)

]
.

Substituting relations (13) and (27) in the present integral part, we obtain

∫ b

a
Kd(x, t)y(υd)(t) dt

=
∫ b

a
Ud(x)TT (t)T (υd)(t)C dt

=
∫ b

a
Ud(x)WXT (t)Xυd (t)Bυd W T C dt



Ali et al. Advances in Difference Equations        (2020) 2020:494 Page 9 of 23

=
∫ b

a
Ud(x)W

[
t0 t1 · · · tN]T[t0–υd+d t1–υd+d t2–υd+d · · · tN–1–υd+d]Bυd W T C dt

= Ud(x)W
(∫ b

a
tptq–υd+d dt

)
Bυd W T C

= Ud(x)W
(∫ b

a
tp+q–υd+d dt

)
Bυd W T C

= Ud(x)WZυd Bυd W T C, p, q = 0, 1, . . . , N , (28)

where

Zd =
∫ b

a
tp+q–υd+d dt, p, q = 0, 1, . . . , N ,

or

Zd = [zpq] =
bp+q–υd+d+1 – ap+q–υd+d+1

p + q – υd + d + 1
, p, q = 0, 1, . . . , N .

So, the present integral term can be written as:

∫ b

a

n5∑

d=0

Kd(xl, t)y(υd)(t) dt =
n5∑

d=0

Ud(xl)WZdBυd W T C

=
n5∑

d=0

UdWZdBυd W T C, (29)

where

Ud =

⎛

⎜⎜⎜⎜⎝

Ud(x0)
Ud(x1)

...
Ud(xN )

⎞

⎟⎟⎟⎟⎠
.

∗ Matrix representation for integral terms: Now, we try to find the matrix form corre-
sponding to the integral term. By the same way Vc(x, t) can be expanded as (26)

Vc(x, t) ∼=
N∑

r=0

gc,r(x)Tr(t). (30)

Then the matrix representation of the kernel function Vc(x, t) is given by

Vc(x, t) ∼= Gc(x)TT (t), (31)

where

Gc(x) =
[
gc,0(x) gc,1(x) · · · gc,N (x)

]
.
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Substituting relations (13) and (31) in the present integral part, we obtain

∫ φ(x)

a
Vc(x, t)y(βc)(t) dt

=
∫ φ(x)

a
Uc(x)TT (t)Dβc T(t)C dt

=
∫ φ(x)

a
Uc(x)WXT (t)Xβc (t)Bβc W T C dt

=
∫ φ(x)

a
Uc(x)W

[
t0 t1 · · · tN]T[t0–βc+c t1–βc+c t2–βc+c · · · tN–1–βc+c]Bβc W T C dt

= Uc(x)W
(∫ φ(x)

a
tptq–βc+c dt

)
Bβc W T C

= Uc(x)W
(∫ φ(x)

a
tp+q–βc+c dt

)
Bβc W T C

= Uc(x)WZβc (x)Bβc W T C, p, q = 0, 1, . . . , N , (32)

where

Zβc (x) =
∫ φ(x)

a
tp+q–βc+c dt, p, q = 0, 1, . . . , N ,

or

Zβc (x) =
[
zpq(x)

]
=

φ(x)(p+q–βc+c+1) – ap+q–βc+c+1

p + q – βc + c + 1
, p, q = 0, 1, . . . , N .

So, the present integral term can be written as follows:

∫ φ(x)

a

n6∑

c=0

Vc(xl, t)y(βc)(t) dt =
n6∑

c=0

Gc(xl)WZβc (xl)Bβc W T C

=
n6∑

c=0

ḠcW̄ Z̄βc B̄βc W̄ T C̄, (33)

where

Ḡc =

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

Gc(x0) 0 0 · · · 0
0 Gc(x1) 0 · · · 0
0 0 Gc(x2) · · · 0
...

...
...

...
0 0 0 · · · Gc(xN )

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

,

Z̄βc =

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

Zc(x0) 0 0 · · · 0
0 Zc(x1) 0 · · · 0
0 0 Zc(x2) · · · 0
...

...
...

...
0 0 0 · · · Zc(xN )

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

.
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Now, by substituting equations (24), (25), and (29) into (12), we have the fundamental
matrix equation

[ n1∑

k=0

n2∑

i=0

Qk,i(x)
(
X̄W̄ T C̄

)kXνiBνiHPiDξi W
T C

+
n3∑

h=1

n4∑

j=0

Ph,j(x)
(
X̄B̄hW̄ T C̄

)
XαjBαj HqjEζ jW T C

–
n5∑

d=0

UdWZdBυd W T C –
n6∑

c=0

ḠcW̄ Z̄cB̄βc W̄ T C̄

]
= F . (34)

We can write (34) in the form

OC = F or [O; F], (35)

where

O =
n1∑

k=0

n2∑

i=0

Qk,i(x)
(
X̄W̄ T C̄

)kXνiBνiHPiEξi W
T

+
n3∑

h=1

n4∑

j=0

Ph,j(x)
(
X̄B̄hW̄ T C̄

)
XαjBαj HqjEζ jW T

–
n5∑

d=0

UdWZdBυd W T C –
n6∑

c=0

ḠcW̄ Z̄cB̄βc W̄ T C̄,

F =

⎛

⎜⎜⎜⎜⎝

f (x1)
f (x2)

...
f (xN )

⎞

⎟⎟⎟⎟⎠
.

(36)

Corollary 3.1 Suppose k ≥ 2, then the matrix representation for the terms free of deriva-
tives in (1), by using (6), we obtain

yk(x) = yk–1(x)y(x) =
(
X(x)W T C

)k–1X(x)W T C. (37)

We can achieve the matrix form of (37) by using the collocation points as follows:

yk(x) =
(
X̄W̄ T C̄

)k–1XW T C. (38)

∗ We can achieve the matrix form for conditions (2) by using (6) on the form

X(ηi)BiW T C = μi, i = 0, 1, 2, . . . , m – 1, (39)

or

MiC = [μi], (40)
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where

Mi = X(ηi)BiW T .

Consequently, replacing m rows of the augmented matrix [O; F] by rows of the matrix
[Mi;μi], we have [Ō; F̄] or

ŌC = F̄ .

System (34), together with conditions, gives (N + 1) nonlinear algebraic equations which
can be solved for the unknown cn, n = 0, 1, 2, . . . , N . Consequently, y(x) given as equation
(6) can be calculated.

4 Numerical examples
In this section, several numerical examples are given to illustrate the accuracy and the
effectiveness of the method.

4.1 Error estimation
if the exact solution of the proposed problem is known, then the absolute error will be
estimated from the following:

eN (x) =
∣∣yexact(x) – yapproximate(x)

∣∣, (41)

where yExact(x) is the exact solution and yApproximate(x) is the achieved solution at some N .
The calculation of L2 error norm also can obtained as follows:

l2 =

√√√√h
I∑

I=0

(∣∣yI
exact(x) – yI

approximate(x)
∣∣)2, (42)

where h is the step size along the given interval. We can easily check the accuracy of the
suggested method by the residual error. When the solution yApproximate(x) and its deriva-
tives are substituted in (1), the resulting equation must be satisfied approximately, that is,
for x ∈ [a, b], l = 0, 1, 2, . . .

eN =

∣∣∣∣∣

n1∑

k=0

n2∑

I=0

qk,I(xl)yk(xl)y(νI )(pIxl + ξI) +
n3∑

h=1

n4∑

j=0

ph,j(xl)y(h)(xl)y(αj)(qjxl + ζj)

– F(xl) –
∫ b

a

n5∑

d=0

kd(xl, t)y(υd)(t) dt –
∫ φ(xl)

a

n6∑

C=0

vC(xl, t)y(βC )(t) dt

∣∣∣∣∣, (43)

where EN ≤ 10–$ ($ positive integer) and y(x) considered as yApproximate(x).

Example 1 Consider the following NFIDE with linear functional argument:

y2(x)Dν2 y(x) + y4(x)y′(2x + 1) + y4(x) + y′(x)Dα3 y(x)

= f (x) +
∫ x

0
(3t – 2x)y(1.5)(t) dt +

∫ 1

0
texy(1.8)(t) dt, x ∈ [0, 1]. (44)
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The ICs are y(1) = 2, y′(1) = 2, and y′′(1) = 2 and the exact solution is y(x) = x2 +x at ν2 = 1.5,
α3 = 2.5, υ2 = 1.5, β2 = 1.8, where f (x) = –0.990113ex + 0.300901x2.5 + 2.25676x0.5(x + x2)2 +
(x + x2)4 + (x + x2)4(2 + 4(1 + 2x)). We apply the suggested method with N = 4, and by the
fundamental matrix equation of the problem defined by (34), we have

[
Q2,2
(
X̄W̄ T C̄

)2Xν2 Bν2 W T C + Q2,0
(
X̄W̄ T C̄

)4XB1H2E1(W )T C

+ Q3,0
(
X̄W̄ T C̄

)3XW T C + P1,3X̄B̄1W̄ T C̄Xα3 Bα3 (W )T C

– Ḡ2W̄ ¯Zβ2
¯Bβ2 W̄ T C̄ – U2WZυ2 Bυ2 W T C

]
= F , (45)

where

X =

⎛

⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0
1 1

4
1

16
1

64
1

256
1 1

2
1
4

1
8

1
16

1 3
4

9
16

27
64

81
256

1 1 1 1 1

⎞

⎟⎟⎟⎟⎟⎟⎠
, B1 =

⎛

⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 0
0 0 2 0 0
0 0 0 3 0
0 0 0 0 4
0 0 0 0 0

⎞

⎟⎟⎟⎟⎟⎟⎠
,

E1 =

⎛

⎜⎜⎜⎜⎜⎜⎝

1 1 1 1 1
0 1 2 3 4
0 0 1 3 6
0 0 0 1 4
0 0 0 0 1

⎞

⎟⎟⎟⎟⎟⎟⎠
,

F =

⎛

⎜⎜⎜⎜⎜⎜⎝

–2.70811
–1.75983
3.17448
41.4935
249.328

⎞

⎟⎟⎟⎟⎟⎟⎠
, Xα3 =

⎛

⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0
0 0.125 0.03125 0.0078125 0.00195313
0 0.353553 0.176777 0.0883883 0.0441942
0 0.649519 0.487139 0.365354 0.274016
0 1 1 1 1

⎞

⎟⎟⎟⎟⎟⎟⎠
,

H2 =

⎛

⎜⎜⎜⎜⎜⎜⎝

2 0 0 0 0
0 4 0 0 0
0 0 8 0 0
0 0 0 16 0
0 0 0 0 32

⎞

⎟⎟⎟⎟⎟⎟⎠
,

Bα3 =

⎛

⎜⎜⎜⎜⎜⎜⎝

0 0 0 6.77028 0
0 0 0 0 18.0541
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

⎞

⎟⎟⎟⎟⎟⎟⎠
,

W =

⎛

⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0
0 1 0 0 0

–1 0 2 0 0
0 –3 0 4 0
1 0 –8 0 8

⎞

⎟⎟⎟⎟⎟⎟⎠
,
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Bν2 = Bυ2 =

⎛

⎜⎜⎜⎜⎜⎜⎝

0 0 2.25676 0 0
0 0 0 4.51352 0
0 0 0 0 7.22163
0 0 0 0 0
0 0 0 0 0

⎞

⎟⎟⎟⎟⎟⎟⎠
,

Xν2 =

⎛

⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0
0.5 0.125 0.03125 0.0078125 0.00195313

0.707107 0.353553 0.176777 0.0883883 0.0441942
0.866025 0.649519 0.487139 0.365354 0.274016

1 1 1 1 1

⎞

⎟⎟⎟⎟⎟⎟⎠
,

Zυ2 =

⎛

⎜⎜⎜⎜⎜⎜⎝

0 0 0.666667 0.4 0.285714
0 0 0.4 0.285714 0.222222
0 0 0.285714 0.222222 0.181818
0 0 0.222222 0.181818 0.153846
0 0 0.181818 0.153846 0.133333

⎞

⎟⎟⎟⎟⎟⎟⎠
, G2 =

⎛

⎜⎜⎜⎜⎜⎜⎝

0 3 0 0 0
– 1

2 3 0 0 0
–1 3 0 0 0
– 3

2 3 0 0 0
–2 3 0 0 0

⎞

⎟⎟⎟⎟⎟⎟⎠
,

Bβ2 =

⎛

⎜⎜⎜⎜⎜⎜⎝

0 0 2.17825 0 0
0 0 0 5.44562 0
0 0 0 0 9.90113
0 0 0 0 0
0 0 0 0 0

⎞

⎟⎟⎟⎟⎟⎟⎠
,

X̄ =

⎛

⎜⎜⎜⎜⎜⎜⎝

1 0 –1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 1

4 – 7
8 – 11

16
17
32 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 1
2 – 1

2 –1 – 1
2 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 3
4

1
8 – 9

16 – 31
32 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1

⎞

⎟⎟⎟⎟⎟⎟⎠
.

Equation (45) and conditions present a nonlinear system of (N + 1) algebraic equations in
the coefficients ci. The solution of this system at N = 4 gives the Chebyshev coefficients as
follows:

c0 =
1
2

, c1 = 1, c2 =
1
2

, c3 = 0, c4 = 0.

Therefore, the approximate solution of this example using (6) is given by

y4(x) =
1
2

T0(x) + T1(x) +
1
2

T2(x) = x2 + x, (46)

which is the exact solution of problem (44).

Example 2 Consider the following nonlinear fractional integro-differential equation:

y′′(x)Dα2 y(x) + y3(x)Dν2 y(x – 1) + y′(x)

= f (x) +
∫ 0

–1
texy′(t) dt +

∫ x

–1
(3t + 2x)y(t) dt, x ∈ [–1, 0]. (47)
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The ICs are y(0) = 1, y′(0) = 1, and the exact solution is y(x) = x3 + 1 at α2 = 1.8, ν2 = 2,
where f (x) = 9

10 + 3ex

4 – 3x
4 – x2

2 + 32.6737x2.2 – 11x5

10 + 6(–1 + x)(1 + x3)3.
The matrix representation of equation (47) is

[
P2,2X̄B̄2W̄ T C̄Xα2 Bα2 W T C + Q3,2

(
X̄W̄ T C̄

)3Xν2 Bν2 H1E–1W T C

+ Q0,1XB1W T C – U1WZυ1 Bυ1 W T C – Ḡ0W̄ ¯Zβ0
¯Bβ0 W̄ T C̄

]
= F . (48)

Equation (48) and conditions present a nonlinear system of (N + 1) algebraic equations in
the coefficients ci, the solution of this system at N = 4 gives the Chebyshev coefficients

c0 = 1, c1 =
3
4

, c2 = 0, c3 =
1
4

.

Thus, the solution of this problem becomes

y4(x) = T0 +
3
4

T1(x) +
1
4

T3(x) = x3 + 1, (49)

which is the exact solution of problem (47).

Example 3 Consider the following nonlinear fractional integro-differential equation with
advanced argument:

y3(x)Dα2 y(x) + y2(x)y′′(x + 1) + xy′(x + 1)

= f (x) +
∫ 1

0
(5t – 4x)y(t) dt +

∫ 1

0

(
3t + 2ex)y(0.7)(t) dt +

∫ 3x+1

0
(3t + 2x)y(0.5)(t) dt,

x ∈ [0, 1]. (50)

The subjected conditions are y(1) = 3, y′(1) = 3, and the exact solution is y(x) = x2 + x + 1
at α2 = 1.6, where f (x) = –8.42841 – 3.20484ex + (22x)/3 – 1.35406(1 + 3x)2.5 – 1.28958(1 +
3x)3.5 + 2(1 + x + x2)2 + 2.25412x0.4(1 + x + x2)3 + x(1 + 2(1 + x)) – x(1.50451(1 + 3x)1.5 +
1.2036(1 + 3x)2.5). The fundamental matrix equation of the problem becomes as follows:

[
Q3,2
(
X̄W̄ T C̄

)3Xα2 Bα2 W T C + Q2,2
(
X̄W̄ T C̄

)2Xν2 B2H1E1W T C

+ Q0,1X1B1H1E1W T C – U0WZυ0 W T C

– U1WZυ1 Bυ1 W T C – Ḡ1W̄ ¯Zβ1
¯Bβ1 W̄ T C̄

]
= F . (51)

Equation (50) and conditions present a nonlinear system of (N + 1) algebraic equations in
the coefficients ci. The solution of this system at N = 4 gives the Chebyshev coefficients in
the following form:

c0 =
3
2

, c1 = 1, c2 =
1
2

, c3 = 0, c4 = 0.

Thus, the solution of the proposed problem becomes

y4(x) =
3
2

T0(x) + T1(x) +
1
2

T2(x) = x2 + x + 1, (52)

which is the exact solution of problem (50).
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Table 1 Comparison of the absolute errors for Example 4 for different N values at ν2 = 2

x Present method N = 4 Ref [65] at N = 8 Ref [65] at N = 10

0 8.88178×10–16 0.67000×10–15 0.12300×10–12

0.1 1.77636×10–15 0.22193×10–2 0.39880×10–4

0.2 8.88178×10–16 0.95897×10–2 0.22276×10–3

0.3 1.33227×10–15 0.22995×10–1 0.87128×10–3

0.4 8.88178×10–16 0.70446×10–1 0.20625×10–2

Table 2 Numerical solution of Example 4 for different N values

x Exact solution Present method N = 4 Ref [65] at N = 8

0 4.000000 4.000000 4.000000
0.1 3.610000 3.610000 3.607781
0.2 3.240000 3.240000 3.230410
0.3 2.890000 2.890000 2.867005
0.4 2.560000 2.560000 2.779554

Example 4 Consider the following linear fractional integro-differential equation with ar-
gument [65]:

x2Dν2 y(x) + xy′(x) + y(x – 1) + y(x) = f (x) +
∫ 1

0

(
12x2

7
– 2
)

y(t) dt, x ∈ [0, 1]. (53)

The ICs are y(0) = 4, y′(0) = –4, and the exact solution is y(x) = x2 – 4x + 4 at ν2 = 2, where
f (x) = 53

3 – 14x + 2x2. We apply the suggested method with N = 4, then the fundamental
matrix equation of the problem becomes as follows:

[
Q0,2Xν2 Bν2 W T C + Q0,1X1B1W T C

+ Q0,0Xν0 Bν0 H1E–1W T C – U0WZυ0 Bυ0 W T C
]

= F . (54)

Equation (53) and conditions present a linear system of (N + 1) algebraic equations in the
coefficients ci. The solution of this system at N = 4 gives the Chebyshev coefficients as
follows:

c0 =
9
2

, c1 = –4, c2 =
1
2

, c3 = 1.73868×10–16, c4 = –6.61509×10–18.

Thus, the solution of this problem becomes

y4(x) =
9
4

T0(x) – 4T1(x) +
1
2

T2(x) + 1.73868 × 10–16T3(x) – 6.61509 × 10–18T4(x). (55)

In Table 1 the comparison of the absolute errors for the present scheme at N = 4, where
ν2 = 2, and the method of reference [65] at N = 8, 10 is presented. Also, Table 2 shows the
numerical values of the approximate solution for various N with reference [65] and the
exact solution. The residual error according to (43) is given in Tables 3 and 4 as follows:
E8 and E10 for various values of ν2. Figure 1 provides the comparison of y(x) for N = 4
with various values of ν2, where ν2 = 2, 1.8, 1.7, and 1.6. The same comparison is made for
N = 10 in Fig. 2, and the comparison of the error function for the present method at N = 4
and [65] at N = 8 and 10 is given in Fig. 3 for Example 4.
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Table 3 Residual error E8 at ν2 = 1.9, 1.8, 1.7 for Example 4

xl ν2 = 1.9 ν2 = 1.8 ν2 = 1.7

0 3.1997 ×10–2 6.13977 ×10–3 9.50079 ×10–2

0.1 1.24881 ×10–2 5.86362 ×10–3 4.48177 ×10–2

0.2 6.01862 ×10–3 5.77562 ×10–3 2.69324 ×10–2

0.3 2.51885 ×10–3 5.84015 ×10–3 1.61229 ×10–2

0.4 1.69053 ×10–3 5.68434 ×10–3 1.7053 ×10–3

Table 4 Residual error E10 at ν2 = 1.9, 1.8, 1.7 for Example 4

xl ν2 = 1.9 ν2 = 1.8 ν2 = 1.7

0 1.06581 ×10–14 1.24345 ×10–14 6.53699 ×10–13

0.1 1.13687 ×10–14 9.9476 ×10–14 1.36424 ×10–12

0.2 3.41061 ×10–14 2.84217 ×10–14 1.59162 ×10–12

0.3 5.68434 ×10–14 1.7053 ×10–13 4.54747 ×10–12

0.4 2.269969 ×10–13 2.27374 ×10–13 8.18545 ×10–12

Figure 1 Comparison of y(x) for N = 4 with ν2 = 2, 1.8, 1.7, and 1.6 for Example 4

Example 5 Let us assume the fractional integro-differential equation [68, 69]

Dν4 y(x) – y(x) = x
(
1 + ex) + 3ex –

∫ x

0
y(t) dt, x ∈ [0, 1]. (56)

The subjected conditions are y(1) = 1 + e, y′(1) = 2e, y′′(1) = 3e, y′′′(1) = 4e, the exact so-
lution of this FIDE is y(x) = 1 + xex when ν4 = 4. For solving this challenge, we apply the
present scheme for various values of N .

In Table 5, we contribute the numerical results y(xl), for N = 9, of our proposed scheme
together with numerical results y(xl), for N = 10, of the Legendre collocation method
(LCM) [69] and [68]. It is observed that the proposed scheme reaches the same results
of [69] with lower degree of approximation. Moreover, the proposed scheme has superior
results with regard to the ADM [66] as shown in [69]. In addition, the numerical results as-
sociated with our presented method LCM and generalized differential transform method
(GDTM) [67] for N = 10 and ν4 = 3.75 are given in Table 6. As shown in Table 4 of [69],
the ADM has very weak approximations with regard to GDTM and LCM. Therefore, we
do not consider ADM in Table 6. From this table, we can find that our achieved results
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Figure 2 Comparison of y(x) for N = 10 with ν2 = 2, 1.9, 1.8, and 1.7 for Example 4

Figure 3 Comparison of error function for the present method at N = 4 and [65] at N = 8 and 10 for Example 4

are the same as those of LCM, but GDTM results are away from our proposed scheme
and LCM results. Achieved evidences confirm the capability of our scheme. For showing
the authenticity of the proposed scheme, we depicted the numerical solution y(x) for var-
ious values of ν4 such as: 3.50, 3.75, and 4. Also, Fig. 5 compares the error function for the
present method at N = 8, N = 9 and 12 with ν4 = 4, and the comparison of the absolute
errors for different values of N at ν4 = 4 is given in Table 7. The residual error E10 is given
in Table 8 for different values of ν4 as follows: 3.75, 3.5.

Finally, since problem (56) defines on [0, 1] the proposed method applied with the
Chebyshev nodes (zeros of Chebyshev polynomials) as collocation points. Table 9 com-
pares the absolute errors for different values of N at ν4 = 4 using Chebyshev nodes col-
location points, namely 1

2 (1 + cos iπ
N ), i = 0, 1, . . . , N . Also, the comparison of the L2 er-

ror norm according to (42) using both equally spaced (11) and Chebyshev nodes collo-
cation points is given in Table 10. Comparing Table 7 with Table 9 and the L2 results
in Table 10, one finds that the nodes of Chebyshev fall on [–1, 1] and they are chosen
with the collocation method as collocation points if the problem is also defined in the
same interval, and better results will be obtained than any choice of other form of collo-



Ali et al. Advances in Difference Equations        (2020) 2020:494 Page 19 of 23

Table 5 Numerical results of Example 5 for different N values at ν4 = 4

x Exact solution PM for N = 9 LCM for N = 10 Ref [68] for N = 8

0 1.0000000 1.0000000 1.0000000 1.0000000
0.1 1.11051709 1.1105709 1.11051709 1.11051709
0.2 1.24428055 1.24428055 1.24428055 1.24428055
0.3 1.40495764 1.4049564 1.40495764 1.40495765
0.4 1.59672988 1.59672988 1.59672988 1.59672989
0.5 1.82436064 1.82436064 1.82436064 1.82436063
0.6 2.09327128 2.09327128 2.09327128 2.09327126

Table 6 Numerical results of Example 5 for ν4 = 3.75

x PM LCM GDTM Ref [68]

0 1.0000000 1.0000000 1.0000000 1.0000000
0.1 1.11580022 1.11580022 1.11580022 1.11576401
0.2 1.25417406 1.25417406 1.25417406 1.25472311
0.3 1.41835392 1.41835392 1.41835392 1.41826880
0.4 1.61225031 1.61225031 1.61225031 1.61225425
0.5 1.840149469 1.840149469 1.840149469 1.840149953
0.6 2.10850149 2.10850149 2.108501549 2.10850524

Table 7 Comparison of the absolute errors for Example 5 for different N values at ν4 = 4

x PM N = 8 PM N = 9 PM N = 12

0 1.31521×10–5 4.5665909×10–8 1.365685×10–12

0.1 3.92192×10–6 1.9078572×10–9 1.114663×10–13

0.2 9.13696×10–7 5.4609468×10–9 2.48912×10–13

0.3 1.30555×10–7 3.38934×10–9 1.985078×10–13

0.4 7.09891×10–9 1.94735×10–9 1.234568×10–13

0.5 1.22285×10–8 1.08624 ×10–9 6.94999×10–14

Table 8 Residual error E10 at ν4 = 3.75, 3.5 for Example 5

xl ν4 = 3.75 ν4 = 3.5

0 7.04992×10–15 6.99441 ×10–15

0.1 2.40086 ×10–15 9.99201 ×10–16

0.2 4.8633 ×10–15 7.77156 ×10–15

0.3 3.06005 ×10–15 5.9952 ×10–16

0.4 2.42167 ×10–15 8.32667 ×10–16

0.5 2.61596 ×10–15 2.80331 ×10–15

Table 9 Comparison of the absolute errors for Example 5 for different N values at ν4 = 4 using
Chebyshev nodes collocation points

x PM N = 8 PM N = 9 PM N = 12

0 4.59517×10–4 1.09547×10–5 2.06403 ×10–9

0.1 3.24835×10–4 7.48071 ×10–6 1.44816 ×10–9

0.2 2.19655 ×10–4 4.84424 ×10–6 9.69587 ×10–10

0.3 1.40277 ×10–4 2.92682 ×10–6 6.10813 ×10–10

0.4 8.30159×10–5 1.61034 ×10–6 3.54423 ×10–10

0.5 4.41922 ×10–5 7.7671 ×10–7 1.83025×10–10

cation points, and any modification in the nodes to fit the interval of the problem does
not give the good results as expected than the original zeros of the Chebyshev polynomi-
als.
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Table 10 Comparison of the L2 error norm for Example 5 using both equally spaced and Chebyshev
nodes collocation points

N L2 Using equally spaced collocation points L2 Using Chebyshev nodes collocation points

8 8.14861 ×10–11 2.87505×10–7

9 5.65635 ×10–16 1.50223 ×10–9

12 8.72978 ×10–25 5.68544 ×10–18

Figure 4 y(x) for different N and ν4 values for Example 5

Figure 5 Comparison of error function for the present method at N = 8, N = 9 and 12 for Example 5, where
ν4 = 4

5 Conclusion
A numerical study for a generalized form of nonlinear arbitrary order integro-differential
equations (GNFIDEs) with linear functional arguments is introduced using Chebyshev
series. The suggested equation with its linear functional argument represents a general
form of delay, proportional delay, and advanced nonlinear fractional order Fredholm–
Volterra integro-differential equations. Additionally, we have presented a general form of
the operational matrix of derivatives. The fractional and ordinary order derivatives have
been obtained and presented in one general operational matrix. Therefore, the proposed
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operational matrix represents a kind of unification of ordinary and fractional case. To the
best of authors knowledge, there is no other work discussing this point. We have presented
many numerical examples that greatly illustrate the accuracy of the presented study to the
proposed equation and also show how that the propose scheme is very competent and
acceptable.
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