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Abstract
In this article, some high-order compact finite difference schemes are presented and
analyzed to numerically solve one- and two-dimensional time fractional Schrödinger
equations. The time Caputo fractional derivative is evaluated by the L1 and L1-2
approximation. The space discretization is based on the fourth-order compact finite
difference method. For the one-dimensional problem, the rates of the presented
schemes are of order O(τ 2–α + h4) and O(τ 3–α + h4), respectively, with the temporal
step size τ and the spatial step size h, and α ∈ (0, 1). For the two-dimensional
problem, the high-order compact alternating direction implicit method is used.
Moreover, unconditional stability of the proposed schemes is discussed by using the
Fourier analysis method. Numerical tests are performed to support the theoretical
results, and these show the accuracy and efficiency of the proposed schemes.

Keywords: Time-fractional Schrödinger equation; L1-2 and L1 formulas; Compact
finite difference method; ADI; Stability

1 Introduction
Nowadays fractional differential equations have been widely studied in many fields, owing
to their diverse applications in physics, biology, chemistry, mechanics, and finance theory
[1–9]. These applications have contributed to the emergence of various fractional differ-
ential equations in the mathematical and physical world. In [10–14], the authors have pub-
lished some new results of fractional operators and their applications. In fact, it is difficult
to gain analytic solutions of fractional differential equations. Therefore, it is important to
obtain highly accurate numerical methods for solving these fractional differential equa-
tions.

For time-fractional partial differential equations, many different numerical methods
have been introduced, including theoretical analysis and numerical computing. Authors
in [15, 16] have proposed various spatial second-order finite difference methods for a one-
dimensional problem. For two-dimensional time-fractional partial differential equations,
several numerical methods have been proposed [17, 18]. To improve the numerical accu-
racy, some fourth-order compact finite difference methods have been proposed for one-
and two-dimensional time-fractional partial differential equations. Cui [19] constructed
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high-order compact alternating direction implicit schemes for two-dimensional time-
fractional diffusion equations. Gao and Sun [20] focused on the study of spatial sixth-order
accurate combined compact alternating direction implicit difference schemes for solving
two-dimensional time-fractional advection-diffusion equations. Zhai and Feng [21] in-
vestigated several compact alternating direction implicit methods for a two-dimensional
time-fractional diffusion equation.

In this paper, we consider the following multidimensional time-fractional Schrödinger
equation (TFSE):

i
∂αu(x, t)

∂tα
= ∇2u(x, t) + f (x, t), x ∈ �, t ∈ (0, T], (1.1)

with the initial and boundary conditions

u(x, 0) = u0(x), x ∈ �, (1.2)

u(x, t) = ϕ(x, t), x ∈ ∂�, t ∈ (0, T], (1.3)

where � is a rectangular domain in Rd (d = 1, 2), ∂� is the boundary of �, i =
√

–1, and
u0 and f are known smooth functions. The fractional derivative ∂αu(x, t)/∂tα is the αth
order Caputo time fractional derivative defined by

∂αu(x, t)
∂tα

=
1

�(1 – α)

∫ t

0
(t – s)–α∂su(x, s) ds (1.4)

with α ∈ (0, 1).
In recent years, some researchers have presented numerical solutions for the time-

fractional Schrödinger equation. Mohebbi et al. [22] investigated meshless method
based on collocation method for the numerical solutions of time fractional nonlinear
Schrödinger equation. Wei et al. [23] proposed an implicit fully discrete local discon-
tinuous Galerkin method for the TFSE. Li et al. [24] proposed L1-Galerkin finite element
method for the numerical and stability analysis of multidimensional TFSEs. In [25], the
space–time Jacobi spectral collocation method is used to solve the time-fractional non-
linear Schrödinger equations subject to the appropriate initial and boundary conditions.
Chen et al. [26] also proposed linearized compact alternating direction implicit schemes
for nonlinear TFSEs.

The main purpose of this paper is to construct some efficient high-order compact dif-
ference schemes for solving TFSE (1.1) with (1.2) and (1.3). We apply the L1 and L1-2
formulas to approximate the time-fractional derivative and use compact operators to ap-
proximate spatial second-order derivatives. We treat the two-dimensional problem using
the compact alternating direction implicit (ADI) scheme. The computational complexity
is reduced to some extent. The L1 formula is the main approximation formula for approx-
imating the time-fractional derivative, in which the truncation error is O(τ 2–α) [27, 28]. In
[29], Gao et al. proposed a new difference analog of the Caputo fractional derivative with
convergence order O(τ 3–α), called the L1-2 formula.

The remainder of our paper is organized as follows. In Sect. 2, we introduce some no-
tations and useful results, and then two high-order compact finite difference schemes are
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constructed for the one-dimensional TFSE. We use the Fourier analysis method to in-
vestigate the stability of the two schemes. In Sect. 3, we extend our methods to the two-
dimensional case and propose two compact ADI difference schemes by adding the pertur-
bation term. Furthermore, a stability analysis is presented. In Sect. 4, we present numerical
examples and detailed numerical results to confirm our theoretical analysis. Finally, a brief
conclusion is provided in Sect. 5.

2 High-order compact difference schemes for the one-dimensional TFSE
In this section, we consider the following one-dimensional (1D) TFSE:

i
∂αu(x, t)

∂tα
=

∂2u(x, t)
∂x2 + f (x, t), x ∈ � = (0, L), t ∈ [0, T], (2.1)

u(x, 0) = u0(x), x ∈ �, (2.2)

u(x, t)|∂� = ϕ(x, t), (x, t) ∈ ∂� × (0, T], (2.3)

where L and T are positive constants. u0(x), ϕ(x, t), and f (x, t) are given smooth functions.
We first present some notations and useful results, which provide the basis for the the-

oretical analysis of our numerical methods. Let Nx and N be two positive integers, h = L
Nx

be the spatial step size, and τ = T
N be the time step size. Define �h = {xj|0 ≤ j ≤ Nx} with

xj = jh, and �τ = {tn|0 ≤ n ≤ N} with tn = nτ . Then the domain [0, L] × [0, T] is covered
by �h × �τ . Let û = {un

j |0 ≤ j ≤ Nx, 0 ≤ n ≤ N} be a grid function on �h × �τ , and define

⎧⎨
⎩

δ2
x un

j = 1
h2 (un

j–1 – 2un
j + un

j+1),

Lxun
j = (I + h2

12 δ2
x )un

j .
(2.4)

Next we introduce some useful results and design several compact finite difference
schemes.

Lemma 2.1 (The L1 formula, see [30, 31]) Suppose that α ∈ (0, 1) and u(t) ∈ C2[0, T].
Then we have

C
0 Dα

t u(tn) =
1

τα�(2 – α)

[
a0un –

n–1∑
l=1

(an–l–1 – an–l)ul – an–1u0

]
+ O

(
τ 2–α

)
, (2.5)

where al = (l + 1)1–α – l1–α , l ≥ 0, and the coefficients al satisfy

1 = a0 > a1 > a2 > · · · > al > · · · → 0,

(1 – α)(l + 1)–α < al < (1 – α)l–α .

Lemma 2.2 (The L1-2 formula, see [29]) Suppose that α ∈ (0, 1) and u(t) ∈ C3[0, T]. Then
we have

C
0 Dα

t u(tn) =
1

τα�(2 – α)

[
c0un –

n–1∑
l=1

(cn–l–1 – cn–l)ul – cn–1u0

]
+ O

(
τ 3–α

)
, (2.6)
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where c0 = a0 = 1 for n = 1; and for n ≥ 2,

cl =

⎧⎪⎪⎨
⎪⎪⎩

a0 + b0, l = 0,

al + bl – bl–1, 1 ≤ l ≤ n – 2,

al – bl–1, l = n – 1,

with

al = (l + 1)1–α – l1–α ,

bl =
1

2 – α

[
(l + 1)2–α – l2–α

]
–

1
2
[
(l + 1)1–α – l1–α

]
.

Now, we consider the derivation of the high-order compact finite difference schemes.
Applying the fourth-order Padé scheme for the second-order derivative, we have

∂2u
∂x2 (xj, tn) = L–1

x δ2
x un

j + O
(
h4). (2.7)

Using (2.7), we obtain the following semi-discrete fourth-order approximation for the
1D problem (2.1):

i
[C

0 Dα
t u

]n
j = L–1

x δ2
x un

j + f n
j + O

(
h4). (2.8)

Then, plugging (2.4)–(2.5) into (2.8) and neglecting the small truncation errors, we ob-
tain the high-order compact scheme (CS1DI) for (2.1)–(2.3) as follows:

CS1DI :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[ia0 – 12
h2 τα�(2 – α)]u1

j–1 + [10ia0 + 24
h2 τα�(2 – α)]u1

j

+ [ia0 – 12
h2 τα�(2 – α)]u1

j+1

= ia0u0
j–1 + 10ia0u0

j + ia0u0
j+1

+ τα�(2 – α)[f 1
j–1 + 10f 1

j + f 1
j+1], n = 1;

[ia0 – 12
h2 τα�(2 – α)]un

j–1 + [10ia0 + 24
h2 τα�(2 – α)]un

j

+ [ia0 – 12
h2 τα�(2 – α)]un

j+1

= i[
∑n–1

l=1 (an–l–1 – an–l)ul
j–1 + an–1u0

j–1]

+ 10i[
∑n–1

l=1 (an–l–1 – an–l)ul
j + an–1u0

j ] + i[
∑n–1

l=1 (an–l–1 – an–l)ul
j+1

+ an–1u0
j+1] + τα�(2 – α)[f n

j–1 + 10f n
j + f n

j+1], 2 ≤ n ≤ N ;

u0
j = u0(xj), 0 ≤ j ≤ Nx,

un
j = ϕ(xj, tn), j ∈ ∂�h, 1 ≤ n ≤ N .

(2.9)

We now present the second difference scheme for (2.1)–(2.3). Substituting (2.4) and (2.6)
into (2.8) and omitting the small terms, we obtain the second high-order compact scheme
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(CS1DII) in the form of

CS1DII :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[ic0 – 12
h2 τα�(2 – α)]u1

j–1 + [10ic0 + 24
h2 τα�(2 – α)]u1

j

+ [ic0 – 12
h2 τα�(2 – α)]u1

j+1

= ic0u0
j–1 + 10ic0u0

j + ic0u0
j+1

+ τα�(2 – α)[f 1
j–1 + 10f 1

j + f 1
j+1], n = 1;

[ic0 – 12
h2 τα�(2 – α)]un

j–1 + [10ic0 + 24
h2 τα�(2 – α)]un

j

+ [ic0 – 12
h2 τα�(2 – α)]un

j+1

= i[
∑n–1

l=1 (cn–l–1 – cn–l)ul
j–1 + cn–1u0

j–1]

+ 10i[
∑n–1

l=1 (cn–l–1 – cn–l)ul
j + cn–1u0

j ] + i[
∑n–1

l=1 (cn–l–1 – cn–l)ul
j+1

+ cn–1u0
j+1] + τα�(2 – α)[f n

j–1 + 10f n
j + f n

j+1], 2 ≤ n ≤ N ;

u0
j = u0(xj), 0 ≤ j ≤ Nx,

un
j = ϕ(xj, tn), j ∈ ∂�h, 1 ≤ n ≤ N .

(2.10)

From Lemma 2.1, Lemma 2.2, and (2.7), it is obvious that schemes CS1DI and CS1DII
have truncation errors of order O(τ 2–α + h4) and O(τ 3–α + h4), respectively.

We now investigate the stability of the above schemes by using the Fourier analysis
method. For the simplicity of illustration, we consider the case that f (x, t) = 0.

Let the numerical solution be represented by

un
j = vneiθ jh, (2.11)

where i =
√

(–1), vn is the amplitude at time tn, and θ is the wave number in the x direction.
We define the discrete L2 norm by ‖un‖2

L2 = h
∑Nx

j=1 |un
j |2. For the fully discrete schemes

CS1DI and CS1DII, we have the following stability results.

Theorem 1 Schemes CS1DI and CS1DII, defined by (2.9) and (2.10) respectively, are un-
conditionally stable for α ∈ (0, 1).

Proof We will complete the proof using mathematical induction. For convenience, we only
give the proof for scheme CS1DI, and the case for scheme CS1DII can be completed using
a similar idea.

We rewrite (2.9) as follows:

[
12ia0 +

(
ia0h2 – 12τα�(2 – α)

)
δ2

x
]
u1

j =
[
12ia0 + ia0h2δ2

x
]
u0

j (2.12)

for n = 1, and for n ≥ 2 we rewrite it as

[
12ia0 +

(
ia0h2 – 12τα�(2 – α)

)
δ2

x
]
un

j

=
[
12i + ih2δ2

x
][ n–1∑

l=1

(an–l–1 – an–l)ul
j + an–1u0

j

]
. (2.13)
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Substituting (2.11) into (2.12) and (2.13), we obtain

[
12ia0 – 4ia0 sin2 θh

2
+

48
h2 τα�(2 – α) sin2 θh

2

]
v1

=
[

12ia0 – 4ia0 sin2 θh
2

]
v0 (2.14)

and

[
12ia0 – 4ia0 sin2 θh

2
+

48
h2 τα�(2 – α) sin2 θh

2

]
vn

=
[

12i – 4i sin2 θh
2

][ n–1∑
l=1

(an–l–1 – an–l)vl + an–1v0

]
. (2.15)

Then

v1 =
[12ia0 – 4ia0 sin2 θh

2 ]
[12ia0 – 4ia0 sin2 θh

2 + 48
h2 τα�(2 – α) sin2 θh

2 ]
v0.

Since a0 = 1, we can easily obtain

∣∣v1∣∣ ≤ ∣∣v0∣∣.

Suppose that |vm| ≤ |v0| holds for m = 1, 2, . . . , n – 1. Then, using (2.15) and Lemma 2.1,
we have

∣∣vn∣∣ ≤
n–1∑
l=1

(an–l–1 – an–l)
∣∣vl∣∣ + an–1

∣∣v0∣∣

≤
[ n–1∑

l=1

(an–l–1 – an–l) + an–1

]∣∣v0∣∣ =
∣∣v0∣∣.

That is,

∣∣vn∣∣ ≤ ∣∣v0∣∣ (2.16)

holds true for all m = n. Moreover, applying (2.16) and Parseval’s equality, we obtain

∥∥un∥∥2
L2 = h

Nx∑
j=1

∣∣un
j
∣∣2 = h

Nx∑
j=1

∣∣vneiθ jh∣∣2 = h
Nx∑
j=1

∣∣vn∣∣2

≤ h
Nx∑
j=1

∣∣v0∣∣2 = h
Nx∑
j=1

∣∣v0eiθ jh∣∣2 = h
Nx∑
j=1

∣∣u0
j
∣∣2 =

∥∥u0∥∥2
L2 , n = 1, . . . , N ,

which proves that scheme CS1DI is unconditionally stable. Thus, the proof is com-
pleted. �
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3 High-order compact ADI schemes for the two-dimensional TFSE
In this section, we develop two high-order compact ADI schemes for two-dimensional
(2D) TFSE with the following initial and boundary conditions:

i
∂αu(x, y, t)

∂tα
=

(
∂2

∂x2 +
∂2

∂y2

)
u(x, y, t) + f (x, y, t), (x, y) ∈ �, t ∈ (0, T], (3.1)

u(x, y, 0) = u0(x, y), (x, y) ∈ �, (3.2)

u(x, y, t)|∂� = ϕ(x, y, t), (x, y, t) ∈ ∂� × (0, T], (3.3)

where L and T are positive constants, � = (0, L) × (0, L). u0(x, y), ϕ(x, y, t), and f (x, y, t) are
given smooth functions.

Let M, N be positive integers, h = L
M be the spatial step size, and τ = T

N be the time step
size. Define �h = {(xj, yk)|0 ≤ j, k ≤ M} with xj = jh and yk = kh; and �τ = {tn|0 ≤ n ≤ N}
with tn = nτ . Then the domain [0, L]2 × [0, T] is covered by �h ×�τ . Let û = {un

jk|0 ≤ j, k ≤
M, 0 ≤ n ≤ N} be a grid function on �h × �τ , and define

⎧⎨
⎩

δ2
x un

jk = 1
h2 (un

j–1,k – 2un
jk + un

j+1,k),

Lxun
jk = (I + h2

12 δ2
x )un

jk .
(3.4)

The notations δ2
y un

jk and Lyun
jk can be defined similarly.

Applying the fourth-order Padé scheme for the second-order derivatives, we have

∂2u
∂x2 (xj, yk , tn) = L–1

x δ2
x un

jk + O
(
h4), (3.5)

∂2u
∂y2 (xj, yk , tn) = L–1

y δ2
y un

jk + O
(
h4). (3.6)

Using (3.5) and (3.6), we can obtain the following semi-discrete fourth-order approxi-
mation for the 2D problem (3.1):

i
[C

0 Dα
t u

]n
jk = L–1

x δ2
x un

jk + L–1
y δ2

y un
jk + f n

jk + O
(
h4). (3.7)

Thus, by using Lemma 2.1 for (3.7) and neglecting the small truncation errors, we obtain
the following scheme:

i
τα�(2 – α)

[
a0un

jk –
n–1∑
l=1

(an–l–1 – an–l)ul
jk – an–1u0

jk

]

= L–1
x δ2

x un
jk + L–1

y δ2
y un

jk + f n
jk . (3.8)

Act with the operator (–iτα�(2 – α))LxLy on both sides of (3.8). By noting that a0 = 1,
after rearranging the terms we have the equivalent forms

[
LxLy + iτα�(2 – α)

(
δ2

x Ly + δ2
y Lx

)]
un

jk

= LxLy

[ n–1∑
l=1

(an–l–1 – an–l)ul
jk + an–1u0

jk

]
– iτα�(2 – α)LxLyf n

jk . (3.9)
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Next we consider the derivation of the ADI difference scheme so that some small split-
ting terms should be added onto the left-hand side of (3.9) in order to achieve the operator
splitting scheme. By adding the splitting term

[
iτα�(2 – α)

]2
δ2

xδ
2
y
(
un

jk – un–1
jk

)

to the left-hand side of (3.9) and rearranging the terms of the resulting scheme, we obtain
an approximate scheme for n > 1 as follows:

(
Lx + iτα�(2 – α)δ2

x
)(

Ly + iτα�(2 – α)δ2
y
)
un

jk

= LxLy

[ n–1∑
l=1

(an–l–1 – an–l)ul
jk + an–1u0

jk

]

+
[
iτα�(2 – α)

]2
δ2

xδ
2
y un–1

jk – iτα�(2 – α)LxLyf n
jk . (3.10)

Introducing the intermediate variables u1(∗) and un(∗), we can obtain the following high-
order compact ADI scheme (CS2DI) for (3.1)–(3.3):

CS2DI :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(Lx + iτα�(2 – α)δ2
x )u1(∗)

jk = LxLyu0
jk + [iτα�(2 – α)]2δ2

xδ
2
y u0

jk

– iτα�(2 – α)LxLyf 1
jk ,

(Ly + iτα�(2 – α)δ2
y )u1

jk = u1(∗)
jk , n = 1;

(Lx + iτα�(2 – α)δ2
x )un(∗)

jk

= LxLy[
∑n–1

l=1 (an–l–1 – an–l)ul
jk + an–1u0

jk]

+ [iτα�(2 – α)]2δ2
xδ

2
y un–1

jk – iτα�(2 – α)LxLyf n
jk ,

(Ly + iτα�(2 – α)δ2
y )un

jk = un(∗)
jk , 2 ≤ n ≤ N ;

u0
jk = u0(xj, yk), 0 ≤ j, k ≤ M,

un
jk = ϕ(xj, yk , tn), (j, k) ∈ ∂�h, 1 ≤ n ≤ N .

(3.11)

To solve (3.11), we need to give the values of u1(∗) and un(∗) on the boundary, and these
are obtained from the second and fourth equation in (3.11), respectively.

Now, we present the second difference scheme for (3.1)–(3.3). Using Lemma 2.2 for (3.7)
and omitting the small terms, the second difference scheme can be given in the form of

i
τα�(2 – α)

[
c0un

jk –
n–1∑
l=1

(cn–l–1 – cn–l)ul
jk – cn–1u0

jk

]

= L–1
x δ2

x un
jk + L–1

y δ2
y un

jk + f n
jk . (3.12)

By acting on both sides of (3.12) with the operator ( –iτα�(2–α)
c0

)LxLy and rearranging the
terms, we obtain

[
LxLy +

iτα�(2 – α)
c0

(
δ2

x Ly + δ2
y Lx

)]
un

jk
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= LxLy

[ n–1∑
l=1

cn–l–1 – cn–l

c0
ul

jk +
cn–1

c0
u0

jk

]

–
iτα�(2 – α)

c0
LxLyf n

jk . (3.13)

By adding the splitting term ( iτα�(2–α)
c0

)2δ2
xδ

2
y (un

jk – un–1
jk ) to the left-hand side of (3.13) and

rearranging the terms of the resulting scheme, we obtain the following scheme for n > 1:

(
Lx +

iτα�(2 – α)
c0

δ2
x

)(
Ly +

iτα�(2 – α)
c0

δ2
y

)
un

jk

= LxLy

[ n–1∑
l=1

cn–l–1 – cn–l

c0
ul

jk +
cn–1

c0
u0

jk

]

+
[

iτα�(2 – α)
c0

]2

δ2
xδ

2
y un–1

jk –
iτα�(2 – α)

c0
LxLyf n

jk . (3.14)

Upon introducing the intermediate variables u1(∗) and un(∗) and noticing that c0 = 1 for
n = 1, we obtain the following additional high-order compact ADI scheme (CS2DII) for
(3.1)–(3.3):

CS2DII :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(Lx + iτα�(2 – α)δ2
x )u1(∗)

jk

= LxLyu0
jk + [iτα�(2 – α)]2δ2

xδ
2
y u0

jk – iτα�(2 – α)LxLyf 1
jk ,

(Ly + iτα�(2 – α)δ2
y )u1

jk = u1(∗)
jk , n = 1;

(Lx + iτα�(2–α)
c0

δ2
x )un(∗)

jk

= LxLy[
∑n–1

l=1
cn–l–1–cn–l

c0
ul

jk + cn–1
c0

u0
jk]

+ [ iτα�(2–α)
c0

]2δ2
xδ

2
y un–1

jk – iτα�(2–α)
c0

LxLyf n
jk ,

(Ly + iτα�(2–α)
c0

δ2
y )un

jk = un(∗)
jk , 2 ≤ n ≤ N ;

u0
jk = u0(xj, yk), 0 ≤ j, k ≤ M,

un
jk = ϕ(xj, yk , tn), (j, k) ∈ ∂�h, 1 ≤ n ≤ N .

(3.15)

To solve (3.15), we need to give the values of u1(∗) and un(∗) on the boundary, and these
are obtained from the second and fourth equations in (3.15), respectively.

From (3.7), it is obvious that schemes CS2DI and CS2DII can maintain fourth-order
accuracy in space, and from Lemmas 2.1 and 2.2 we know that schemes (3.9) and (3.13)
have temporal convergence rates of O(τ 2–α) and O(τ 3–α), respectively. We note the fact
that if the splitting errors are much larger than the truncation error, as pointed out by
Douglas and Kim [32], a splitting term will play an important role in the accuracy of the
solution. This phenomenon has also been pointed out by Zhai et al. [33]. From the splitting
term [iτα�(2–α)]2δ2

xδ
2
y (un

jk –un–1
jk ), we find that the splitting errors are O(τ 2α+1) in schemes

CS2DI and CS2DII, respectively. This means that the temporal convergence rates for these
schemes will tend to α + 1. The numerical results in Sect. 4 further confirm this judgment.

In the following, we investigate the stability of the high-order compact ADI schemes
(CS2DI and CS2DII) using the Fourier analysis method. Here, in order to simplify the
notations and without loss of generality, we consider the case that f (x, y, t) = 0.
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Suppose that the numerical solution is represented by

un
jk = vnei(θxjh+θykh), (3.16)

where i =
√

(–1), vn is the amplitude at time tn, and θx, θy are the wave numbers in the x and
y directions, respectively. We define the discrete L2 norm by ‖un‖2

L2 = h2 ∑M
j=1

∑M
k=1 |un

jk|2.
For the fully discrete schemes CS2DI and CS2DII, we have the following stability results.

Theorem 2 Schemes CS2DI and CS2DII, defined by (3.11) and (3.15) respectively, are
unconditionally stable for α ∈ (0, 1).

Proof We apply mathematical induction to complete the proof. For convenience, we only
give the proof for scheme CS2DI, and the case for scheme CS2DII can be completed using
a similar idea.

First, we rewrite (3.11) as

(
Lx + iτα�(2 – α)δ2

x
)(

Ly + iτα�(2 – α)δ2
y
)
u1

jk

= LxLyu0
jk +

[
iτα�(2 – α)

]2
δ2

xδ
2
y u0

jk (3.17)

for n = 1, and for 2 ≤ n ≤ N , we write this as follows:

(
Lx + iτα�(2 – α)δ2

x
)(

Ly + iτα�(2 – α)δ2
y
)
un

jk

= LxLy

[ n–1∑
l=1

(an–l–1 – an–l)ul
jk + an–1u0

jk

]

+
[
iτα�(2 – α)

]2
δ2

xδ
2
y un–1

jk . (3.18)

Substituting (3.16) into (3.17) and (3.18) and denoting r = τα�(2 – α)/h2, s1 = sin2 θxh
2 , and

s2 = sin2 θyh
2 for simplicity, where 0 ≤ s1, s2 ≤ 1, for n = 1 we obtain

[(
1 –

1
3

s1

)
– 4irs1

][(
1 –

1
3

s2

)
– 4irs2

]
v1

=
[(

1 –
1
3

s1

)(
1 –

1
3

s2

)
– 16r2s1s2

]
v0,

and for 2 ≤ n ≤ N we obtain

[(
1 –

1
3

s1

)
– 4irs1

][(
1 –

1
3

s2

)
– 4irs2

]
vn

=
(

1 –
1
3

s1

)(
1 –

1
3

s2

)[ n–1∑
l=1

(an–l–1 – an–l)vl + an–1v0

]
– 16r2s1s2vn–1

=
[(

1 –
1
3

s1

)(
1 –

1
3

s2

)
(1 – a1) – 16r2s1s2

]
vn–1

+
(

1 –
1
3

s1

)(
1 –

1
3

s2

)[ n–2∑
l=1

(an–l–1 – an–l)vl + an–1v0

]
.
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Consequently, we have
⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

v1 = (1– 1
3 s1)(1– 1

3 s2)–16r2s1s2
(1– 1

3 s1)(1– 1
3 s2)–16r2s1s2–i[4rs2(1– 1

3 s1)+4rs1(1– 1
3 s2)]

v0 ≡ μ0v0,

vn = (1– 1
3 s1)(1– 1

3 s2)(1–a1)–16r2s1s2
(1– 1

3 s1)(1– 1
3 s2)–16r2s1s2–i[4rs2(1– 1

3 s1)+4rs1(1– 1
3 s2)]

vn–1

+ (1– 1
3 s1)(1– 1

3 s2)
[(1– 1

3 s1)–4irs1][(1– 1
3 s2)–4irs2]

[
∑n–2

l=1 (an–l–1 – an–l)vl + an–1v0],

2 ≤ n ≤ N .

(3.19)

We note that 0 ≤ s1, s2 ≤ 1, and from the first equation of (3.19) we can easily see that
0 ≤ |μ0| ≤ 1. Therefore,

|v1| = |μ0||v0| ≤ |v0|.

Assume that we have proved that

∣∣vm∣∣ ≤ ∣∣v0∣∣, m = 1, 2, . . . , n – 1.

Then, applying Lemma 2.1 and (3.19), we obtain

∣∣vn∣∣ ≤ |(1 – 1
3 s1)(1 – 1

3 s2)(1 – a1) – 16r2s1s2|
|(1 – 1

3 s1)(1 – 1
3 s2) – 16r2s1s2 – i[4rs2(1 – 1

3 s1) + 4rs1(1 – 1
3 s2)]|

∣∣vn–1∣∣

+
|(1 – 1

3 s1)(1 – 1
3 s2)|

|[(1 – 1
3 s1) – 4irs1][(1 – 1

3 s2) – 4irs2]|

[ n–2∑
l=1

(an–l–1 – an–l)
∣∣vl∣∣ + an–1

∣∣v0∣∣
]

≤ |(1 – 1
3 s1)(1 – 1

3 s2)(1 – a1) – 16r2s1s2|
|(1 – 1

3 s1)(1 – 1
3 s2) – 16r2s1s2 – i[4rs2(1 – 1

3 s1) + 4rs1(1 – 1
3 s2)]|

∣∣v0∣∣

+
|(1 – 1

3 s1)(1 – 1
3 s2)a1|

|(1 – 1
3 s1) – 4irs1||(1 – 1

3 s2) – 4irs2|
∣∣v0∣∣,

and it is not difficult to prove that the following inequalities hold:
∣∣∣∣
(

1 –
1
3

s1

)(
1 –

1
3

s2

)
– 16r2s1s2 – i

[
4rs2

(
1 –

1
3

s1

)
+ 4rs1

(
1 –

1
3

s2

)]∣∣∣∣
≥

∣∣∣∣
(

1 –
1
3

s1

)(
1 –

1
3

s2

)
(1 – a1) – 16r2s1s2

∣∣∣∣
and

∣∣∣∣
(

1 –
1
3

s1

)
– 4irs1

∣∣∣∣
∣∣∣∣
(

1 –
1
3

s2

)
– 4irs2

∣∣∣∣ ≥
∣∣∣∣
(

1 –
1
3

s1

)(
1 –

1
3

s2

)
a1

∣∣∣∣.

That is,

∣∣vn∣∣ ≤ ∣∣v0∣∣ (3.20)

holds for all m = n. Furthermore, using (3.20) and Parseval’s equality, we obtain

∥∥un∥∥2
L2 = h2

M∑
j=1

M∑
k=1

∣∣un
jk
∣∣2 = h2

M∑
j=1

M∑
k=1

∣∣vnei(θxjh+θykh)∣∣2 = h2
M∑
j=1

M∑
k=1

∣∣vn∣∣2
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≤ h2
M∑
j=1

M∑
k=1

∣∣v0∣∣2 = h2
M∑
j=1

M∑
k=1

∣∣v0ei(θxjh+θykh)∣∣2 = h2
M∑
j=1

M∑
k=1

∣∣u0
jk
∣∣2

=
∥∥u0∥∥2

L2 , n = 1, . . . , N ,

and the proof is completed. �

4 Numerical results
In this section, three numerical examples, which verify the efficiency and accuracy of the
proposed schemes, are presented.

Example 1 Let us consider the following 1D time-fractional Schrödinger equation:

⎧⎪⎪⎨
⎪⎪⎩

i ∂αu(x,t)
∂tα = ∂2u(x,t)

∂x2 + f (x, t),

f (x, t) = (1 + i)t2π2 sinπx + 2t2–α

�(3–α) (i – 1) sinπx,

x ∈ � = [0, 2], t ∈ (0, 1),

with the exact solution u(x, t) = (1 + i)t2 sinπx. The initial and boundary conditions can
be obtained from the exact solution.

Now, we investigate the spatial convergence rates for schemes CS1DI and CS1DII. We
choose N = 1000 to avoid the influence of the temporal approximation. Table 1 gives the
L∞-norm errors (denoted by L∞-error) and convergence orders at time T = 1 for α = 0.25
(or α = 0.5) and various values of Nx. From Table 1, we conclude that schemes CS1DI and
CS1DII are verified to have fourth-order accuracy in space. Regarding the time accuracy,
by fixing Nx to eliminate the contamination of the spatial error, the numerical results at
T = 1 for different α and N values are presented in Table 2. In Fig. 1, we also present the
errors in the L∞-norm and L2-norm as a function of the time step sizes for α = 0.25, where
Nx = 50 in scheme CS1DI and Nx = 250 in scheme CS1DII. From these results, we find that
the convergence order in time for schemes CS1DI and CS1DII is close to 2 – α and 3 – α,
respectively.

Table 1 Numerical comparison results of schemes CS1DI and CS1DII for Example 1, at T = 1 with
N = 1000 and different Nx and α

α Nx Scheme CS1DI Scheme CS1DII

L∞-error Order L∞-error Order

0.25 4 0.0394 – 0.0394 –
8 2.281e–3 4.111 2.281e–3 4.111
16 1.399e–4 4.027 1.400e–4 4.027
32 8.700e–6 4.008 8.707e–6 4.007

0.5 4 0.0393 – 0.0393 –
8 2.278e–3 4.111 2.278e–3 4.110
16 1.396e–4 4.029 1.397e–4 4.027
32 8.752e–6 3.995 8.694e–6 4.007
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Table 2 Numerical comparison results of schemes CS1DI and CS1DII for Example 1, at T = 1 with
Nx = 2000 and different N and α

α N Scheme CS1DI Scheme CS1DII

L∞-error Order L∞-error Order

0.1 10 1.554e–4 – 2.365e–6 –
20 4.563e–5 1.768 2.871e–7 3.042
40 1.322e–5 1.787 3.538e–8 3.021
80 3.793e–6 1.802 4.391e–9 3.010

0.5 10 0.0020 – 8.694e–6 –
20 7.191e–4 1.472 1.188e–6 2.872
40 2.577e–4 1.480 1.830e–7 2.699
80 9.199e–5 1.486 3.130e–8 2.547

0.9 10 9.995e–3 – 1.334e–3 –
20 4.699e–3 1.089 5.067e–4 1.397
40 2.139e–3 1.136 1.272e–4 1.995
80 9.592e–4 1.157 2.840e–5 2.162

Figure 1 Time errors as a function of the time step sizes with α = 0.25 for Example 1. (a) Scheme CS1DI,
(b) scheme CS1DII

Example 2 Here, we consider the alternative 1D time-fractional Schrödinger equation

⎧⎪⎪⎨
⎪⎪⎩

i ∂αu(x,t)
∂tα = ∂2u(x,t)

∂x2 + f (x, t),

f (x, t) = i( 2t2–α cos x
�(3–α) + t2 sin x) – 2t2–α sin x

�(3–α) + t2 cos x,

x ∈ � = [0, 2π ], t ∈ (0, 1).

The exact solution to the problem is u(x, t) = t2(cos x + i sin x). The initial and boundary
conditions can be obtained from the exact solution.

In this example, we first use schemes CS1DI and CS1DII to verify the spatial conver-
gence rates. Table 3 presents the L∞-errors and convergence orders with N = 1000 and
various values of Nx and α at time T = 1, from which we find that schemes CS1DI and
CS1DII both achieve fourth-order accuracy regardless of the value of α. Next, we test the
temporal convergence rate for the case that T = 1 and Nx = 2000. The results for different
N and α values are listed in Table 4. In Fig. 2, we plot the errors in the L∞-norm and L2-
norm as a function of the time step sizes for Nx = 50 in scheme CS1DI and Nx = 250 in
scheme CS1DII, where α = 0.75. It shows that the slopes of the error curves obtained for
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Table 3 Numerical comparison results of schemes CS1DI and CS1DII for Example 2, at T = 1 with
N = 1000 and different Nx and α

α Nx Scheme CS1DI Scheme CS1DII

L∞-error Order L∞-error Order

0.25 4 0.0218 – 0.0218 –
8 1.277e–3 4.094 1.277e–3 4.093
16 7.812e–5 4.031 7.841e–5 4.026
32 4.823e–6 4.018 4.906e–6 3.999

0.5 4 0.0181 – 0.0181 –
8 1.056e–3 4.096 1.062e–3 4.089
16 6.186e–5 4.094 6.624e–5 4.003
32 3.860e–6 4.002 4.138e–6 4.001

Table 4 Numerical comparison results of schemes CS1DI and CS1DII for Example 2, at T = 1 with
Nx = 2000 and different N and α

α N Scheme CS1DI Scheme CS1DII

L∞-error Order L∞-error Order

0.1 10 1.020e–3 – 2.044e–5 –
20 3.004e–4 1.764 2.537e–6 3.010
40 8.722e–5 1.784 3.212e–7 2.981
80 2.506e–5 1.800 4.115e–8 2.965

0.5 10 0.0154 – 9.402e–4 –
20 5.644e–3 1.448 1.602e–4 2.553
40 2.042e–3 1.468 2.786e–5 2.524
80 7.330e–4 1.478 4.886e–6 2.511

0.9 10 0.0889 – 0.0156 –
20 0.0429 1.051 3.679e–3 2.086
40 0.0204 1.074 8.439e–4 2.124
80 9.588e–3 1.087 1.968e–4 2.100

Figure 2 Time errors as a function of the time step sizes with α = 0.75 for Example 2. (a) Scheme CS1DI,
(b) scheme CS1DII

scheme CS1DI is 1.25, which accords with the theoretical estimates 2-α. However, scheme
CS1DII yields a temporal approximation order 3-α, i.e., the slopes of the error curves is
2.25. Again, as expected it is clearly shown that scheme CS1DII has higher accuracy than
scheme CS1DI.
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Example 3 We consider the following 2D time-fractional Schrödinger equation:

⎧⎪⎪⎨
⎪⎪⎩

i ∂αu
∂tα = ∂2u

∂x2 + ∂2u
∂y2 + f (x, y, t),

f (x, y, t) = (1 + i)(2t2((1 – y)y + (1 – x)x) + i(1 – x)(1 – y)xy 2t2–α

�(3–α) ),

(x, y) ∈ � = [0, 1] × [0, 1], t ∈ [0, 1].

Its exact solution is u(x, y, t) = (1+ i)(1–x)(1–y)xyt2. The initial and boundary conditions
of this problem can be extracted from the exact solution.

First, the spatial accuracy is numerically examined. We decrease the mesh size of h to
h/2 and τ to τ /24/1+α , and the errors and orders for schemes CS2DI and CS2DII are shown
in Table 5 for different α values. We can see that the experimental convergence order is
approximately four. Second, the numerical accuracy in time is verified. The numerical re-
sults at T = 1 for α = 0.1, 0.5, and 0.9 are listed in Table 6. Meanwhile, the numerical results
are plotted in Fig. 3. From these results, we find that schemes CS2DI and CS2DII yield a
temporal approximation order close to 1 + α, i.e., the slopes of the error curves are 1.25
and 1.75, respectively, for α = 0.25 and α = 0.75. We also plot the contour graphs of the
numerical errors using schemes CS2DI and CS2DII with N = M = 100 for α = 0.1, 0.5, 0.9

Table 5 Errors and convergence orders of schemes CS2DI and CS2DII for Example 3, at T = 1 with
different α , M, and N

α M N Scheme CS2DI Scheme CS2DII

L∞-error Order L∞-error Order

0.25 5 50 5.328e–3 – 5.277e–3 –
10 460 3.587e–4 3.893 3.552e–4 3.892
20 4222 2.247e–5 3.997 2.226e–5 3.996

0.5 5 50 1.935e–3 – 1.911e–3 –
10 317 1.309e–4 3.885 1.293e–4 3.885
20 2016 8.175e–6 4.002 8.075e–6 4.002

0.75 50 50 7.654e–4 – 7.580e–4 –
10 244 5.351e–5 3.838 5.289e–5 3.841
20 1189 3.614e–6 3.888 3.558e–6 3.894

Table 6 Numerical comparison results of schemes CS2DI and CS2DII for Example 3, at T = 1 with
M = 100 and different N and α

α N Scheme CS1DI Scheme CS1DII

L∞-error Order L∞-error Order

0.1 10 6.742e–2 – 6.735e–2 –
20 3.129e–2 1.107 3.111e–2 1.114
40 1.393e–2 1.168 1.385e–2 1.168
80 6.438e–3 1.114 6.404e–3 1.113

0.5 10 2.181e–2 – 2.141e–2 –
20 8.062e–3 1.436 7.964e–3 1.427
40 2.886e–3 1.482 2.850e–3 1.482
80 1.028e–3 1.489 1.015e–3 1.489

0.9 10 9.789e–3 – 9.750e–3 –
20 2.759e–3 1.827 2.747e–3 1.828
40 7.797e–4 1.823 7.757e–4 1.824
80 2.243e–4 1.798 2.229e–4 1.799
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Figure 3 Time errors as a function of the time step sizes for Example 3. (a) Scheme CS2DI with α = 0.25,
(b) scheme CS2DII with α = 0.75

Figure 4 The contour plot of the L∞-error using two schemes at T = 1, with N =M = 100, and different α for
Example 3. Left panel for scheme CS2DI and right panel for scheme CS2DII, respectively

in Fig. 4. From these results, we find that two methods have the same temporal conver-
gence rates, and the convergence rate of scheme CS2DII is lower than 3 – α because of the
splitting term.
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5 Conclusions
In this paper, we have proposed two kinds of high-order compact finite difference schemes
with order O(τ 2–α + h4) and O(τ 3–α + h4), respectively, for solving the one-dimensional
time-fractional Schrödinger equation. Here, the time discretization is replaced by the L1
and L1-2 formulas, and the space discretization is derived using the high-order compact
finite difference method. Then, the extension to the two-dimensional problem is consid-
ered. We have designed two high-order compact ADI difference schemes with accuracy
O(τ 1+α + h4). In the two-dimensional case, it is worth noting that the splitting term can
affect the local truncation error for the time accuracy. Moreover, both theoretical analysis
and numerical examples show that all schemes are unconditionally stable for α ∈ (0, 1) and
have the high accuracy. Evidently, the proposed schemes are easy to be implemented and
extended to solve other fractional PDEs.
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