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Abstract
It is known that every solution to the second-order difference equation
xn = xn–1 + xn–2 = 0, n ≥ 2, can be written in the following form xn = x0fn–1 + x1fn, where
fn is the Fibonacci sequence. Here we find all the homogeneous linear difference
equations with constant coefficients of any order whose general solution have a
representation of a related form. We also present an interesting elementary
procedure for finding a representation of general solution to any homogeneous
linear difference equation with constant coefficients in terms of the coefficients of the
equation, initial values, and an extension of the Fibonacci sequence. This is done for
the case when all the roots of the characteristic polynomial associated with the
equation are mutually different, and then it is shown that such obtained
representation also holds in other cases. It is also shown that during application of the
procedure the extension of the Fibonacci sequence appears naturally.
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1 Introduction
Let N denote the set of all positive integers, N0 = N ∪ {0}, and Z be the set of all integers.
If p, q ∈ Z are such that p ≤ q, then we use the notation j = p, q for the expression j =
p, p + 1, . . . , q.

There has been some interest in difference equations and their applications for a long
time (see, e.g., [1–37] and the references therein). Since the time of de Moivre it has been
known that the homogeneous linear difference equations with constant coefficients are
solvable (see [6–8], see also [4, 9]). For some later presentations of the theory, see, e.g.,
[5, 10, 11, 13, 14, 17, 18]. For some recent results on solvability, invariants, and their ap-
plications, see, e.g., [2, 3, 19–22, 24–36] and the related references therein.

From a formula by de Moivre for solving homogeneous linear difference equations of
second order [7, 8], general solution to the following equation is specially obtained:

xn – xn–1 – xn–2 = 0, n ≥ 2. (1)
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The Fibonacci sequence (fn)n≥0 is the solution to equation (1) with x0 = 0 and x1 = 1
(the solution can be explicitly found in D. Bernoulli’s paper [4], as well as the method that
is usually used in solving homogeneous linear difference equations with constant coef-
ficients nowadays). The sequence has been investigated for several centuries, and there
are a lot of properties and relations which are satisfied by the sequence (see, for example,
[1, 12, 16, 37]). The sequence is usually defined on N or N0, but it is easy to see that it can
be defined on any set of integers of the form n ≥ n0, where n0 ∈ Z is fixed, as well as on
the whole Z (see also the end of this section).

An interesting fact related to the Fibonacci sequence is that every solution to equation
(1) can be written in the following form:

xn = x0fn–1 + x1fn, n ∈N0. (2)

There are several ways to prove (2). One of the ways is by using known theory. It is well
known that general solution to the equation

Lk,�a(xn) := xn – a1xn–1 – · · · – akxn–k = 0, n ∈ N0, (3)

where k ∈ N, �a = (a1, . . . , ak), aj ∈ R, j = 1, k, and ak �= 0, is a k-dimensional linear space
[5, 10, 11, 13, 14, 17, 18]. Let Sol(Lk,�a) := {(xn)n≥–k : Lk,�a(xn) ≡ 0} (the space of all solutions
to equation (3)). It is also known that there is a natural linear isomorphism Ik between
the k-dimensional real vector space R

k and the space Sol(Lk,�a). Namely, if (�ej)k
j=1 ⊂ R

k is
the canonical basis of Rk , i.e., �ej = (0, . . . , 0, 1, 0, . . . , 0), j = 1, k, where 1 is the jth coordinate
in the vector, and x̃(�v) = (xn(�v))n≥–k ∈ Sol(Lk,�a) is the solution corresponding to the vector
�v ∈R

k (the set of initial values), then for every �v =
∑k

j=1 vj�ej ∈R
k we have

x̃(�v) = Ik(�v) = Ik

( k∑

j=1

vj�ej

)

=
k∑

j=1

vjIk(�ej) =
k∑

j=1

vjx̃(�ej). (4)

If k = 2, then equation (3) becomes

xn – a1xn–1 – a2xn–2 = 0, n ∈N0, (5)

where a2 �= 0, and we have �e1 = (1, 0) and �e2 = (0, 1). Since

f–1 = 1, f0 = 0 and f1 = 1, (6)

we see that the solution to equation (1) corresponding to the vector �e1 is (fn–1)n∈N0 , while
the one corresponding to the vector �e2 is (fn)n∈N0 . Since every �v ∈ R

2 has the form �v =
v1�e1 + v2�e2, by using the relations in (4), we have

(
xn(�v)

)
n∈N0

= I2(�v) = v1I2(�e1) + v2I2(�e2) = v1(fn–1)n∈N0 + v2(fn)n∈N0 . (7)

From (7) with n = 0 and n = 1, it follows respectively that x0(�v) = v1f–1 + v2f0 and
x1(�v) = v1f0 + v2f1, from which along with (6) it follows that v1 = x0(�v) and v2 = x1(�v).
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Hence

xn(�v) = x0(�v)fn–1 + x1(�v)fn, n ∈N0, (8)

which is a known theoretical way how relation (2) is obtained.

Remark 1 Relation (2) can be also obtained in a quite simple elementary way by using the
de Moivre formula (see, e.g., [30]).

Representation formula (2) suggests the following natural and interesting question.

Question Which homogeneous linear difference equations with constant coefficients
have the general solution representation formula of the form in (2)?

Some recent representations of general solutions to some solvable difference equations
and systems can be found, e.g., in [26–31, 33–36].

Here we give an answer to the question. Beside this we also explain an interesting el-
ementary procedure for finding a representation of general solution to equation (3) in
terms of the coefficients a1, a2, . . . , ak , initial values x0, x1, . . . , xk–1, and an extension of the
Fibonacci sequence. The representation and some details should be folklore, but the whole
procedure leading to it could be new and is interesting.

Before we state and prove the main results in this note, recall that since ak �= 0, every
solution to equation (3) can be defined for all negative values of indices n, by using the
following obvious consequence of the equation:

xn–k =
xn –

∑k–1
j=1 ajxn–j

ak
.

For example, for n = –1, we get

x–(k+1) =
x–1 –

∑k–1
j=1 ajx–(j+1)

ak
,

(this is, for example, used to get the value of f–1 in (6)).

2 Main results
This section formulates and proves the main results in this paper. First, we give an answer
to the above question.

2.1 Answer to the question
Now we turn to the above question when k = 2, a1 ∈ R, and a2 �= 0, that is, to find all a1

and a2 such that the following representation holds:

xn(�v) = x0(�v)yn–1(�v0) + x1(�v)yn(�v0), n ∈N0, (9)

for some �v0 ∈ R
2 and for every solution to equation (5), as well as to the corresponding

question for the case of equation (3) for arbitrary k ∈N \ {1}.
The following theorem gives an answer to the question.
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Theorem 1 Consider equation (3) with n ≥ k ≥ 2, aj ∈ R, j = 1, k, and ak �= 0. Then there
is a vector �v0 = (v1

0, . . . , vk
0) ∈R

k and ỹ(�v0) ∈ Sol(Lk,�a) such that

yj(�v0) = vj+1
0 , j = 0, k – 1,

and that

xn(�v) = x0(�v)yn–1(�v0) + x1(�v)yn(�v0) + · · · + xk–1(�v)yn+k–2(�v0) (10)

for every n ∈N0, vector �v ∈R
k , and solution x̃(�v) to equation (3) if and only if k = 2, a2 = 1,

and �v0 = (v1
0, v2

0) = (0, 1).

Proof Assume that representation (10) holds. Then for n = 0 we have

x0(�v) = x0(�v)y–1(�v0) + x1(�v)y0(�v0) + · · · + xk–1(�v)yk–2(�v0) (11)

for every �v ∈R
k , i.e., the identity

(
y–1(�v0) – 1

)
x0 + y0(�v0)x1 + · · · + yk–2(�v0)xk–1 ≡ 0 (12)

must hold for every (x0, x1, . . . , xk–1) ∈R
k , from which it follows that

y–1(�v0) = 1, yj(�v0) = 0, j = 0, k – 2. (13)

From this and using the fact that ỹ(�v0) ∈ Sol(Lk,�a), we get

yk–1(�v0) =
k∑

j=1

ajyk–1–j(�v0) = ak . (14)

For n = 1 we have

x1(�v) = x0(�v)y0(�v0) + x1(�v)y1(�v0) + · · · + xk–2(�v)yk–2(�v0) + xk–1(�v)yk–1(�v0) (15)

for every �v ∈R
k . From (13)–(15), it follows that the identity

x1 – akxk–1 ≡ 0 (16)

must hold for every x1, xk–1 ∈ R, which is only possible if k = 2 and ak = a2 = 1, from which
along with (13) and (14) it follows that 0 = y0(�v0) = v1

0 and 1 = y1(�v0) = v2
0.

Now assume that k = 2, a2 = 1 and �v0 = (0, 1). Then (3) becomes

xn – a1xn–1 – xn–2 = 0, n ≥ 2. (17)

An easy computation shows that

yn(�v0) =
λn

1 – λn
2

λ1 – λ2
=

λn
1 – λn

2√
a2

1 + 4
, (18)
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where

λ1 =
a1 +

√
a2

1 + 4
2

and λ2 =
a1 –

√
a2

1 + 4
2

.

On the other hand, by calculating the solution to (17) with initial values x0(�v) = v1 and
x1(�v) = v2, using (18) and Viete’s formulas, we obtain

xn(�v) =
(x0(�v)λ2 – x1(�v))λn

1 + (x1(�v) – x0(�v)λ1)λn
2

λ2 – λ1

= –x0(�v)λ1λ2
λn–1

1 – λn–1
2

λ1 – λ2
+ x1(�v)

λn
1 – λn

2
λ1 – λ2

= x0(�v)yn–1(�v0) + x1(�v)yn(�v0) (19)

for every �v = (v1, v2) = (x0(�v), x1(�v)), showing that representation (10) holds in this case, as
desired. �

2.2 A representation of general solution to equation (3)
Theorem 1 shows that for the case k = 2 the solution to equation (3) satisfying the initial
conditions x0 = 0 and x1 = 1 is of some representation importance for the general solution
to the difference equation.

It is interesting to find the solution to equation (3) which naturally generalizes the Fi-
bonacci sequence and at the same time plays the corresponding role in representation of
general solution to the equation. Here we present an analysis which naturally leads to the
solution. The analysis will show that the solution satisfies the initial conditions

xj = 0, j = 0, k – 2,

xk–1 = 1.
(20)

The solution can be found also by using some other methods, but our aim is to get it in a
direct and elementary way, that is, without using any non-elementary theorem.

To give an answer to the problem, we use here the procedure which some readers might
have seen rather in linear algebra (in finding nth powers of matrices) than in dealing with
real or complex numbers. This time we will apply it to the nth powers of numbers.

Since the roots

λ1,2 =
1 ± √

5
2

of the characteristic polynomial

P2(λ) = λ2 – λ – 1

associated with difference equation (1) are different, here we assume that the zeros λj,
j = 1, k, of the characteristic polynomial

Pk(λ) = λk –
k∑

i=1

aiλ
k–i (21)
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associated with equation (3) are mutually different, that is, λi �= λj, i �= j, for i, j ∈
{1, 2, . . . , k}.

In this case, general solution to equation (3) has the following form:

xn =
k∑

j=1

cjλ
n
j , n ∈ N0, (22)

(the result essentially known to D. Bernoulli yet, [4]).
Note that

λk
j =

k∑

i=1

aiλ
k–i
j (23)

for each j ∈ {1, 2, . . . , k}.
By multiplying equality (23) by λj, then using again the equality and some simple calcu-

lations, we have

λk+1
j =

k∑

i=1

aiλ
k–i+1
j = a1λ

k
j +

k∑

i=2

aiλ
k–i+1
j

= a1

( k∑

i=1

aiλ
k–i
j

)

+
k–1∑

i=1

ai+1λ
k–i
j

= a1akλ
0
j +

k–1∑

i=1

(a1ai + ai+1)λk–i
j

=
k∑

i=1

a(1)
k+1λ

k–i
j , (24)

where

a(i)
k+1 := a1ai + ai+1, i = 1, k – 1, a(i)

k+1 := a1ak . (25)

Hence, the quantity λk+1
j has the same type of representation as λk

j , but with different
coefficients, which are given by the relations in (25).

Assume that we have proved

λn
j =

k∑

i=1

a(i)
n λk–i

j (26)

for some n ≥ k + 1.
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Then, as above, by multiplying relation (26) by λj, suitable grouping of summands, and
application of equality (23), after some simple calculations, it follows that

λn+1
j =

k∑

i=1

a(i)
n λk–i+1

j = a(1)
n λk

j +
k∑

i=2

a(i)
n λk–i+1

j

= a(1)
n

( k∑

i=1

aiλ
k–i
j

)

+
k–1∑

i=1

a(i+1)
n λk–i

j

= aka(1)
n λ0

j +
k–1∑

i=1

(
aia(1)

n + a(i+1)
n

)
λk–i

j

=
k∑

i=1

a(i)
n+1λ

k–i
j , (27)

where

a(i)
n+1 := aia(1)

n + a(i+1)
n , i = 1, k – 1,

a(k)
n+1 := aka(1)

n .
(28)

From the relations in (23), (28), and the method of mathematical induction, it follows that
relation (26) holds for every n ≥ k, where the sequences (a(i)

n )n≥0, i = 1, k, satisfy the system
of difference equations (28) and the initial conditions

a(i)
k = ai, i = 1, k.

To define the sequences (a(i)
n ), i = 1, k, for every n ∈ N0, we should choose the initial

values in the following natural way:

λn
j =

k∑

i=1

a(i)
n λk–i

j

for n = 0, k – 1, so that

a(i)
n = 0, i �= k – n, a(i)

n = 1, i = k – n. (29)

From (28) we have

a(1)
n = a1a(1)

n–1 + a(2)
n–1

= a1a(1)
n–1 + a2a(1)

n–2 + a(3)
n–2

· · ·
= a1a(1)

n–1 + a2a(1)
n–2 + · · · + aka(1)

n–k (30)

for n ≥ k, while from (29) we have

a(1)
n = 0, n = 0, k – 2, a(1)

k–1 = 1. (31)
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Hence, the sequence (a(1)
n )n∈N0 is the solution to difference equation (3) satisfying initial

conditions (20), and this is one of the ways how the solution appears naturally.
From the relations in (28) we also have

a(i)
n = aia(1)

n–1 + a(i+1)
n–1

= aia(1)
n–1 + ai+1a(1)

n–2 + a(i+2)
n–2

· · ·
= aia(1)

n–1 + ai+1a(1)
n–2 + · · · + aka(1)

n–k+i–1

=
k∑

l=i

ala(1)
n–l+i–1 (32)

for n ≥ k.
Employing relation (32) in (26), we obtain the following representation of the sequence

(λn
j )n∈N0 in terms of the powers λl

j , l = 0, k – 1, coefficients of equation (3), and the sequence
(a(1)

n )n∈N0 :

λn
j =

k∑

i=1

λk–i
j

k∑

l=i

ala(1)
n–l+i–1, n ∈ N0. (33)

By changing the order of summation in formula (33) and using a change of variables of
indices, we have

λn
j =

k∑

i=1

λk–i
j

k∑

l=i

ala(1)
n–l+i–1 =

k∑

l=1

l∑

i=1

λk–i
j ala(1)

n–l+i–1

=
k∑

s=1

a(1)
n–s

k–s+1∑

t=1

λk–t
j at+s–1. (34)

Employing (34) in (22), it follows that the general solution to equation (3) in the case when
all the roots λj, j = 1, k, of the characteristic polynomial associated with the equation are
mutually different has the following representation:

xn =
k∑

j=1

cj

k∑

s=1

a(1)
n–s

k–s+1∑

t=1

λk–t
j at+s–1, n ∈N0. (35)

By changing the order of summation in (35), we have

xn =
k∑

s=1

a(1)
n–s

k–s+1∑

t=1

at+s–1

k∑

j=1

cjλ
k–t
j , n ∈N0. (36)

Now note that

k∑

j=1

cjλ
k–t
j = xk–t (37)

(see (22)).



Stević et al. Advances in Difference Equations        (2020) 2020:486 Page 9 of 13

Combining (36) and (37), we have

xn =
k∑

s=1

a(1)
n–s

k–s+1∑

t=1

at+s–1xk–t , n ∈N0. (38)

By using the change of variables j = k – t, relation (38) can be written in the following way:

xn =
k∑

s=1

a(1)
n–s

k–1∑

j=s–1

ak–j+s–1xj, n ∈N0, (39)

which is a formula for general solution to equation (3) in terms of the roots λj, j = 1, k, of
the characteristic polynomial associated with the equation, coefficients of the equation,
and the sequence a(1)

n .
By changing the order of summation in formula (39), we get

xn =
k–1∑

j=0

xj

j∑

i=0

ak–j+ia(1)
n–i–1, n ∈N0, (40)

or in the developed form, the following nice formula:

xn = x0
(
aka(1)

n–1
)

+ x1
(
ak–1a(1)

n–1 + aka(1)
n–2

)
+ · · · + xk–1

(
a1a(1)

n–1 + · · · + aka(1)
n–k

)

for n ∈N0.
From the above consideration we see that we have given an interesting elementary proof

of the following theorem, which should be folklore.

Theorem 2 Consider equation (3) with n ≥ k ≥ 2, aj ∈ R, j = 1, k, ak �= 0. Assume that the
zeros λj, j = 1, k, of the characteristic polynomial associated with the equation are mutu-
ally different. If (a(1)

n )n∈N0 is the solution to the equation satisfying the initial conditions in
(20), then general solution to the equation can be written in the form (39), as well as in the
equivalent form (40).

Remark 2 In the case when all the zeros λj, j = 1, k, of the characteristic polynomial asso-
ciated with equation (3) are mutually different, then the solution (a(1)

n )n∈N0 in Theorem 2
has the following nice closed form formula:

a(1)
n =

k∑

j=1

λn
j

∏
i�=j(λj – λi)

=
k∑

j=1

λn
j

P′
k(λj)

, n ∈ N0. (41)

Formula (41) follows from the following relations:

k∑

j=1

λl
j

P′
k(λj)

= 0

for l = 0, k – 2, and

k∑

j=1

λk–1
j

P′
k(λj)

= 1,
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discovered by Lagrange (see, for example, [12], and also Lemma 1 in [35]), and the form
of general solution to equation (3). We have used formula (41) recently in several papers
on solvability of difference equations and systems of difference equations (see, e.g., [27–
29, 34–36]).

By using (41) in (39), we also obtain the following representation of general solution
to equation (3) for the case when the zeros λj, j = 1, k, of the characteristic polynomial
associated with the equation are mutually different:

xn =
k∑

s=1

k∑

i=1

λn–s
i

P′
k(λi)

k–1∑

j=s–1

ak–j+s–1xj, n ∈N0.

Remark 3 From the representation in (40) we obtain another proof of Theorem 1 for the
case when �v0 = (0, . . . , 0, 1). Namely, the coefficient at x0 in (40) is equal to aka(1)

n–1, from
which it follows that ak must be equal to one, whereas the coefficient at xk–1 in (40) is
equal to a1a(1)

n–1 + · · · + aka(1)
n–k , which by the definition must be a(1)

n , from which together
with the form of solution representation in (10) it follows that delay k must be equal to
two.

Remark 4 If k = 2, then from (40) we have

xn = x0a2a(1)
n–1 + x1a(1)

n , n ∈N0, (42)

a formula which is a consequence of the de Moivre formula for the second-order difference
equation. A detailed explanation for representation (42) can be found, for example, in [26].
We would also like to say that the formula holds also for the case when both roots of the
characteristic polynomial associated with the equation are equal (see [26]).

Remark 5 Another representation for general solution to equation (3) can be obtained
by calculating the coefficients cj, j = 1, k, in formula (22) in terms of the initial values
x0, x1, . . . , xk–1, and the roots λj, j = 1, k, of the characteristic polynomial. Namely, it must
be

c1 + c2 + · · · + ck = x0

...

c1λ
j
1 + c2λ

j
2 + · · · + ckλ

j
k = xj

...

c1λ
k–1
1 + c2λ

k–1
2 + · · · + ckλ

k–1
k = xk–1,
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from which it follows that

ci =

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

1 . . . 1 x0 1 . . . 1
...

...
...

...
...

...
...

λ
j
1 . . . λ

j
i–1 xj λ

j
i+1 . . . λ

j
k

...
...

...
...

...
...

...
λk–1

1 . . . λk–1
i–1 xk–1 λk–1

i+1 . . . λk–1
k

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

·

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

1 1 . . . 1
...

...
...

...
λ

j
1 λ

j
2 . . . λ

j
k

...
...

...
...

λk–1
1 λk–1

2 . . . λk–1
k

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

–1

=
k–1∑

j=0

xj(–1)i+j+1 Wj+1,i

Vk(λ1,λ2, . . . ,λk)
, (43)

for i = 1, k, where Vk(λ1,λ2, . . . ,λk) is the so-called Vandermonde determinant, whereas
Wj+1,i is the minor corresponding to the element xj in the first determinant in (43) (i.e.,
to the element at the position (j + 1, i)). Many determinants and methods for calculating
them can be found, e.g., in [15] and [23].

By calculating the determinants in (43), and consequently obtaining in this way some
formulas for constants ci, i = 1, k, in terms of the initial values x0, x1, . . . , xk–1 and char-
acteristic values λj, j = 1, k, and using such obtained formulas for cis in (22), after some
further calculations and algebraic manipulations, we can also obtain the representation in
Theorem 2, but this time in a more complicated way. It should be also pointed out that, if
this method is used, then the solution (a(1)

n )n∈N0 to equation (3) does not appear so directly
as it was the case in the analysis preceding formulation of Theorem 2.

Bearing in mind Remark 4, it is natural to expect that formula (40) also holds in the
case when some of the roots of the characteristic polynomial (21) are equal. Since (40) is
a solution to equation (3) (note that it is a linear combination of solutions a(1)

n–s), to prove
the claim it is enough to check that its initial values in all possible cases are x0, x1, . . . , xk–1.

Let n = 0. Then, by using the relation

a(1)
k–j = a1a(1)

k–j–1 + · · · + aka(1)
–j ,

j = 1, k, as well as (31), we have

x0
(
aka(1)

–1
)

+ x1
(
ak–1a(1)

–1 + aka(1)
–2

)
+ · · · + xk–1

(
a1a(1)

–1 + · · · + aka(1)
–k

)

= x0

(

a(1)
k–1 –

k–1∑

j=1

aja(1)
k–j–1

)

+ x1

(

a(1)
k–2 –

k–2∑

j=1

aja(1)
k–j–2

)

+ · · · + xk–1a(1)
0

= x0a(1)
k–1 = x0,

so the claim holds in this case.
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If n = i ∈ {1, 2, . . . , k – 1}, then the calculations are a bit more complicated, but still quite
simple. We have

x0
(
aka(1)

i–1
)

+ · · · + xi
(
ak–ia(1)

i–1 + · · · + aka(1)
–1

)
+ xi+1

(
ak–i–1a(1)

i–1 + · · · + aka(1)
–2

)

+ · · · + xk–1
(
a1a(1)

i–1 + · · · + aka(1)
i–k

)

= xiaka(1)
–1 + xi+1

(

a(1)
k–2 –

k–i–2∑

j=1

aja(1)
k–j–2

)

+ · · · + xk–1a(1)
i = xiaka(1)

–1 = xi,

since

aka(1)
–1 = a(1)

k–1 – a1a(1)
k–2 – · · · – ak–1a(1)

0 = a(1)
k–1 = 1.

From this we see that the following extension of Theorem 2 holds.

Theorem 3 Consider equation (3) with n ≥ k ≥ 2, aj ∈ R, j = 1, k, ak �= 0. If (a(1)
n )n∈N0 is the

solution to the equation satisfying the initial conditions in (20), then general solution to the
equation can be written in the form (39), as well as in the equivalent form (40).
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33. Stević, S., Iričanin, B., Kosmala, W., Šmarda, Z.: Note on the bilinear difference equation with a delay. Math. Methods

Appl. Sci. 41, 9349–9360 (2018)
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