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Abstract
In this paper, we present a stochastic eutrophication-chemostat model with impulsive
dredging and pulse inputting on environmental toxicant. The sufficient condition for
the extinction of microorganisms is obtained. The sufficient condition for the
investigated system with unique ergodic stationary distribution is also obtained. The
results show that the stochastic noise, impulsive dredging, and pulse input on the
environmental toxicant play important roles in the extinction of microorganisms. The
results also indicate the effective and reliable controlling strategy for water resource
management. Finally, numerical simulations are employed to illustrate our results.
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1 Introduction
The chemostat is a device for continuous and impulsive cultures of microorganisms in
laboratory [1–3]. Impulsive differential equations are found in almost every domain of ap-
plied science and have been studied in many investigations [4, 5]. With the development of
society, the increasing amount of toxicants and contaminants have entered ecological sys-
tems. Environmental pollution has become one of the most important society-ecological
problems. Therefore, it is very important to study the effects of toxicants on a population
or community. Specially, the toxicant and abundant microorganisms in the water pollu-
tion environment are also a threat to the water resource management. Consequently, it is
important to discuss chemostat models in a polluted environment [6, 7]. Zhou et al. [8]
considered that reservoir dredging is the main and effective way to improve water quality
by using a physical method. However, it is well known that many real-world systems may
be disturbed by stochastic factors. Population systems are often subjected to various types
of environmental noise. In ecology, it is critical to discover whether the presence of this
noise has significant effects on population systems. Mao [9, 10] investigated stochastic dif-
ferential equations and their applications. Lv et al. [11] presented an impulsive stochastic
chemostat model with nonlinear perturbation.
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2 The model
Inspired by the above discussion, we consider a stochastic eutrophication-chemostat
model with impulsive dredging and pulse inputting on environmental toxicant:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dx(t) = [D(x0 – x(t))
– βx(t)y(t)

k(A+x(t)+By(t)) ] dt
+ x(t)(σ11 + σ12x(t)) dB1(t),

dy(t) = [ βx(t)y(t)
A+x(t)+By(t)

– Dy(t) – rco(t)y(t)] dt
+ y(t)(σ21 + σ22y(t)) dB2(t),

dco(t) = (fce(t) – (g + m)co(t)) dt,
dce(t) = (–hce(t)) dt,

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

t �= (n + l)τ , t �= (n + 1)τ ,

�x(t) = 0,
�y(t) = –h1y(t),
�co(t) = 0,
�ce(t) = –h2ce(t),

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

t = (n + l)τ , n ∈ Z+,

�x(t) = 0,
�y(t) = 0,
�co(t) = 0,
�ce(t) = μ,

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

t = (n + 1)τ , n ∈ Z+,

(2.1)

where x(t) is the concentration of the nutrient in a lake at time t. y(t) is the concentration
of the microorganism in a lake at time t. co(t) is the concentration of the toxicant in the
organism of the microorganism in a lake at time t. ce(t) is the concentration of the toxicant
in a lake at time t. D denotes the input rate from the lakes containing the nutrient and the
wash-out rate of nutrients and microorganisms from the lake. β > 0 is the uptake constant
of the nutrient. x(t)

A+x(t)+By(t) is a functional response of the Beddington–DeAngelis type.
k > 0 is the yield of the microorganism y per unit mass of the nutrient. A > 0 and B > 0 are
the saturating parameters of the Beddington–DeAngelis functional response. r > 0 is the
depletion rate coefficient of the microorganism y due to the microorganism organismal
toxicant. f > 0 is the coefficient of the population organism’s net uptake of toxicant from
the environment in a lake. –g < 0 and –m < 0, respectively, represent coefficients of the
elimination and depuration rates of the toxicant in the organism in a lake. –h < 0 is the co-
efficient of the totality of toxicant losses from the system environment in a lake, including
processes such as biological transformation, chemical hydrolysis, volatilization, microbial
degradation, and photosynthetic degradation. τ is the period of impulsive dredging or the
pulse input environmental toxin. 0 < h1 < 1 is the effect of impulsive dredging microorgan-
ism at time t = (n+ l) (0 < l < 1). 0 < h2 < 1 is the effect of impulsive dredging environmental
toxicant at time t = (n + l) (0 < l < 1). μ ≥ 0 is the amount of pulse input of environmental
toxin concentration in a lake at t = (n + 1)τ , n ∈ Z+, and Z+ = {1, 2, . . .}.

3 The lemmas
In this paper, (Ω ,F ,Ft≥0, P) stands for a complete probability space with filtration Ft≥0

satisfying the usual conditions. Define f l = inft∈R+ f (t), f (t) is a bounded function on
[0, +∞), 〈f (t)〉 = 1

t
∫ t

0 f (s) ds, where f (t) is an integrable function on [0, +∞).
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Consider the subsystem of system (2.1) as follows:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dco(t) = (fce(t) – (g + m)co(t)) dt,
dce(t) = (–hce(t)) dt,

}

t �= (n + l)τ , t �= (n + 1)τ ,

�co(t) = 0,
�ce(t) = –h2ce(t),

}

t = (n + l)τ , n ∈ Z+,

�co(t) = 0,
�ce(t) = μ,

}

t = (n + 1)τ , n ∈ Z+.

(3.1)

With regard to system (3.1), we have the following equations with integrating and solving
the first two equations of system (3.1) between pulses:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

co(t) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

co(nτ+)e–(g+m)(t–nτ ) + fce(nτ+)(1–e–(h–g–m)(t–nτ ))
(h–g–m) ,

t ∈ (nτ , (n + l)τ ],

co((n + l)τ+)e–(g+m)(t–(n+l)τ )

+ fce((n+l)τ+)(1–e–(h–g–m)(t–(n+l)τ ))
(h–g–m) ,

t ∈ ((n + l)τ , (n + 1)τ ],

ce(t) =

⎧
⎨

⎩

ce(nτ+)e–h(t–nτ ), t ∈ (nτ , (n + l)τ ],

ce((n + l)τ+)e–h(t–(n+l)τ ), t ∈ ((n + l)τ , (n + 1)τ ].

(3.2)

The stroboscopic map of system (3.1) is obtained by the last two equations of system (3.1):

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

co((n + 1)τ+) = co(nτ+)e–(g+m)τ

+ ce(nτ+)f (e–(g+m)(1–l)τ –e–(h–g–m)lτ–(1–l)τ )
(h–1)

+ (1–h2)ce(nτ+)f (e–hlτ –e–(h–g–m)τ ))
(h–g–m) ,

ce((n + 1)τ+) = (1 – h2)e–hτ ce(nτ+) + μ.

(3.3)

We can easily have a unique fixed point (c∗
o , c∗

e ) of system (3.3) as follows:

⎧
⎪⎪⎨

⎪⎪⎩

c∗
o = μf

1–e–(g+m)τ × [ (e–(g+m)(1–l)τ –e–(h–g–m)lτ–(1–l)τ )
(h–g–m)(1–(1–h2)e–hτ )

+ (1–h2)(e–hlτ –e–(h–g–m)τ ))
(h–g–m)(1–(1–h2)e–hτ ) ],

c∗
e = μ

1–(1–h2)e–hτ .

(3.4)

The unique fixed point (c∗
o , c∗

e ) of system (3.3) is globally asymptotically stable for the eigen-
values of the coefficient matrix of system (3.3)

(
e–τ �

0 (1 – h2)e–hτ

)

are less 1, there is no need for calculating �.
Similar to Lemma 3.3 in reference [6], we can obtain the following lemma.
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Lemma 3.1 System (3.1) has a unique positive τ -periodic solution (c̃o(t), c̃e(t)), which is
also globally asymptotically stable, c̃o(t) and c̃e(t) are defined as follows:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

c̃o(t) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

c∗
oe–(g+m)(t–nτ ) + fc∗e (1–e–(h–g–m)(t–nτ ))

(h–g–m) ,

t ∈ (nτ , (n + l)τ ],

c∗∗
o e–(g+m)(t–(n+l)τ ) + fc∗∗

e (1–e–(h–g–m)(t–(n+l)τ ))
(h–g–m) ,

t ∈ ((n + l)τ , (n + 1)τ ],

c̃e(t) =

⎧
⎨

⎩

c∗
e e–h(t–nτ ), t ∈ (nτ , (n + l)τ ],

c∗∗
e e–h(t–(n+l)τ ), t ∈ ((n + l)τ , (n + 1)τ ],

(3.5)

where c∗
o , c∗

e are defined as (3.4), and

{
c∗∗

o = c∗
oe–(g+m)lτ + fc∗e (1–e–(h–g–m)lτ )

(h–g–m) ,
c∗∗

e = (1 – h2)e–hlτ c∗
e .

(3.6)

Remark 3.2 For any positive solution (co(t), ce(t)) of system (3.1) with the initial value
(co(0), ce(0)) ∈ R+

2 , we can obtain

lim
t→+∞

〈
co(t)

〉

=
c∗

o(1 – e–(g+m)lτ )
(g + m)τ

+
flc∗

e
h – g – m

–
fc∗

e (1 – e–(h–g–m)lτ )
(h – g – m)2τ

+
c∗∗

o (e–(g+m)lτ – e–(g+m)τ )
τ

+
f (1 – l)c∗∗

e
h – g – m

–
fc∗∗

e (e–(h–g–m)lτ – e–(h–g–m)τ )
(h – g – m)2τ

�= c̃0, (3.7)

where c∗
o and c∗

e are defined as (3.4), and c∗∗
o and c∗∗

e are defined as (3.6).
For convenience, we consider the following notation:

τn = nτ , τn+l = (n + l)τ , hn+l = h1.

Define (x(t), y(t)) and (w(t), z(t)) are the solutions of the subsystem of system (2.1), re-
spectively:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dx(t) = [D(x0 – x(t))
– βx(t)y(t)

k(A+x(t)+By(t)) ] dt
+ x(t)(σ11 + σ12x(t)) dB1(t),

dy(t) = [ βx(t)y(t)
A+x(t)+By(t)

– Dy(t) – rco(t)y(t)] dt
+ y(t)(σ21 + σ22y(t)) dB2(t),

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎭

t �= (n + l)τ ,

�x(t) = 0,
�y(t) = –h1y(t),

}

t = (n + l)τ , n ∈ Z+,

(3.8)
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and the following SDE without impulsive perturbations:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dw(t) = [D(x0 – w(t))

–
βw(t)

∏
0<τn+l<t (1–hn+l)z(t)

k(A+w(t)+B
∏

0<τn+l<t (1–hn+l)z(t)) ] dt

+ w(t)(σ11 + σ12w(t)) dB1(t),
dz(t) = [ βw(t)z(t)

A+w(t)+B
∏

0<τn+l<t (1–hn+l)z(t)

– Dz(t) – rco(t)z(t)] dt
+ z(t)[σ21 + σ22

∏
0<τn+l<t(1 – hn+l)z(t)] dB2(t),

(3.9)

with the initial value w(0) = x(0) and z(0) = y(0).

Lemma 3.3 The solutions (x(t), y(t)) of the subsystem of system (2.1) can also be expressed
as follows:

{
x(t) = w(t),
y(t) =

∏
0<τn+l<t(1 – hn+l)z(t),

(3.10)

where (w(t), z(t)) is the solution of (3.10).

Proof One can find that (x(t), y(t)) is continuous on the interval (τn, τn+l), and for t �= τn+l ,
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dx(t) = dw(t)

= [D(x0 – w(t)) –
βw(t)

∏
0<τn+l<t (1–hn+l)z(t)

k(A+w(t)+B
∏

0<τn+l<t (1–hn+l)z(t)) ] dt

+ w(t)(σ11 + σ12w(t)) dB1(t)
= [D(x0 – w(t)) – βw(t)y(t)

k(A+w(t)+By(t)) ] dt
+ w(t)(σ11 + σ12w(t)) dB1(t),

dy(t) =
∏

0<τn+l<t(1 – hn+l)dz(t)
=
∏

0<τn+l<t(1 – hn+l){[ βw(t)z(t)
A+w(t)+B

∏
0<τn+l<t (1–hn+l)z(t)

– Dz(t) – rco(t)z(t)] dt
+ z(t)[σ21 + σ22

∏
0<τn+l<t(1 – hn+l)z(t)] dB2(t)}

= [
βw(t)

∏
0<τn+l<t (1–hn+l)z(t)

A+w(t)+B
∏

0<τn+l<t (1–hn+l)z(t)

– D
∏

0<τn+l<t(1 – hn+l)z(t) – rco(t)
∏

0<τn+l<t(1 – hn+l)z(t)] dt
+
∏

0<τn+l<t(1 – hn+l)z(t)[σ21 + σ22
∏

0<τn+l<t(1 – hn+l)z(t)] dB2(t)
= [ βw(t)y(t)

A+w(t)+By(t) – Dy(t) – rco(t)y(t)] dt
+ y(t)[σ21 + σ22y(t)] dB2(t).

(3.11)

For every n ∈ N , and τn+l ∈ [0, +∞),

y
(
τ+

n+l
)

= lim
t→τ+

n+l

∏

0<τj<t

(1 – hj)z(t)

=
∏

0<τj≤τn+l

(1 – hτj)z
(
τ+

n+l
)

= (1 – hτn+l)
∏

0<τj<τn+l

(1 – hτj)z(τn+l)

= (1 – hτn+l)y(τn+l), (3.12)
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and

y
(
τ–

n+l
)

= lim
t→τ–

n+l

∏

0<τj<t

(1 – hj)z(t)

=
∏

0<τj<τn+l

(1 – hτj)z
(
τ–

n+l
)

=
∏

0<τj<τn+l

(1 – hτj)z(τn+l) = y(τn+l). (3.13)

�

Assumption 3.4 ([12]) There exists a bounded domain U ⊂ Ed with regular boundary,
then

(A1) In the open domain U and some neighborhood thereof, the smallest eigenvalue of
the diffusion matrix A(x) is bounded away from zero;

(A2) If x ∈ Ed \ U , the mean time τ at which a path issuing from x reaches the set U is
finite, and supx∈K Exτ < ∞ for every compact subset K ⊂ Ud .

Assumption 3.4 is a general assumption which is the condition for Lemma 3.6.

Lemma 3.5 ([12]) If Assumption 3.4 holds, the Markov process X(t) has a stationary dis-
tribution μ(·), and

P

{

lim
T→∞

1
T

∫ T

0
f
(
x(t)

)
dt =

∫

Ed

f (x)μ(dx)
}

= 1,

where f is an integrable function with respect to the measure μ.

4 The dynamics
In the following theorem, we devote ourselves to investigating system (3.10).

Theorem 4.1 If β

A
∫∞

0 wφ(w) dw < D + rc̃o + σ 2
21
2 holds, then

lim
t→+∞ z(t) = 0 a.s., (4.1)

where for x ∈ (0, +∞)

φ(x) = Cx
–2– 2(2Dx0σ12+Dσ11)

σ3
1 × (σ11 + σ12x)

–2+ 2(2Dx0σ12+Dσ11)
σ3

11

× e– 2
σ11(σ11+σ12x) ( Dx0

x + 2Dx0σ12+Dσ11
σ11

),
(4.2)

and constant C satisfies that
∫∞

0 φ(x) dx = 1.

Proof Constructing the following auxiliary differential equation:

dW (t) =
[
D
(
x0 – W (t)

)]
dt + W (t)

(
σ11 + σ12W (t)

)
dB1(t), (4.3)

with the initial value W (0) = x(0) > 0, we assume that W (t) is the solution of (4.3). Obvi-
ously, the following inequality can be obtained by the comparison theorem for stochastic
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differential equations:

w(t) ≤ W (t) a.s. (4.4)

We set

a(w) = D
(
x0 – w(t)

)
, σ (w) = w(σ11 + σ12w), w ∈ (0, +∞), (4.5)

and compute the following indefinite integral:
∫ a(t)

σ 2(t)
dt =

∫ D(x0 – t)
t2(σ11 + σ12t)2 dt

=
2Dx0σ12 + Dσ11

σ 3
11

ln
σ11 + σ12t

t

–
Dx0

σ11t(σ11 + σ12t)
–

2Dx0σ12 + Dσ11

σ 2
11t(σ11 + σ12t)

+ C. (4.6)

Then

e
∫ a(t)

σ2(t)
dt = eC

(
σ11 + σ12t

t

) 2Dx0σ12+Dσ11
σ3

11 e– 1
σ11(σ11+σ12t) ( Dx0

t + 2Dx0σ12+Dσ11
σ11

). (4.7)

Hence,

∫ ∞

0

1
σ 2(w)

e
∫ w

0
2a(s)
σ2(s)

ds dw =
∫ ∞

0
w–2(σ11 + σ12w)2

(
σ11 + σ12w

w

) 2(2Dx0σ12+Dσ11)
σ3

11

× e
– 2

σ11(σ11+σ12w) ( 2(2Dx0σ12+Dσ11)
σ3

11
)
dw < ∞. (4.8)

This indicates that SDE (4.3) has the ergodic property. By the ergodic theorem, we have

lim
t→+∞

1
t

∫ t

0
w(s) ds =

∫ ∞

0
wφ(w) dw a.s. (4.9)

Applying Itô’s formula, we have

d ln z(t) =
[

βw(t)
A + w(t) + B

∏
0<τn+l<t(1 – hn+l)z(t)

– D – rc0(t)

–
1
2

(

σ21 + σ22
∏

0<τn+l<t

(1 – hn+l)z(t)
)2]

dt

+
(

σ21 + σ22
∏

0<τn+l<t

(1 – hn+l)z(t)
)

dB2(t)

≤
[

βw(t)
A

– D – rco(t) –
σ 2

21
2

– σ21σ22
∏

0<τn+l<t

(1 – hn+l)z(t) –
(
∏

0<τn+l<t(1 – hn+l)σ22)2

2
z2(t)

]

dt

+
(

σ21 + σ22
∏

0<τn+l<t

(1 – hn+l)z(t)
)

dB2(t). (4.10)
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Integrating with respect to t from 0 to t on both sides of (4.10), we have

ln z(t) ≤ β

A

∫ t

0
w(s) ds –

(

D +
σ 2

21
2

)

t –
∫ t

0
rco(s) ds

–
(σ22

∏
0<τn+l<t(1 – hn+l))2

2

∫ t

0
z2(s) ds + σ21B2(t) + M(t) + ln y(0), (4.11)

where M(t) = σ22
∏

0<τn+l<t(1 – hn+l)
∫ t

0 z(s) dB2(t) and its quadratic variation is given by

〈M, M〉(t) =
(

σ22
∏

0<τn+l<t

(1 – hn+l)
)2 ∫ t

0
z2(s) ds. (4.12)

According to the exponential martingales inequality, for any positive τ , α, β ,

P
{

sup
0≤t≤T

[

M(t) –
a

2〈M, M〉 (t)
]

> b
}

≤ e–ab. (4.13)

Let T = k1, a = 1, b = ln k1, then

P
{

sup
0≤t≤T

[

M(t) –
1

2〈M, M〉 (t)
]

> ln k1

}

≤ 1
k1

. (4.14)

There exists random k0
1 ∈ k1(ω) such that k1 > k0

1 for almost all ω ∈ Ω . We can obtain the
following by the Borel–Cantelli lemma:

sup
0≤t≤T

[

M(t) –
1

2〈M, M〉 (t)
]

≤ ln k1. (4.15)

Therefore

M(t) ≤ ln k1 +
1
2
〈M, M〉(t)

= ln k1 +
(σ22

∏
0<τn+l<t(1 – hn+l))2

2

∫ t

0
z2(s) ds,

for all 0 < t < k1, k1 > k0
1 a.s. (4.16)

Considering (4.11) and (4.16), we have

ln z(t) ≤ β

A

∫ t

0
w(s) ds –

(

D +
σ 2

21
2

)

t –
∫ t

0
rco(s) ds + σ21B2(t) + ln k1 + ln y(0). (4.17)

Then, for 0 ≤ k1 – 1 ≤ t ≤ k1, we have

ln z(t)
t

≤ β

At

∫ t

0
w(s) ds –

(

D +
σ 2

21
2

)

–
1
t

∫ t

0
rco(s) ds +

σ21B2(t)
t

+
ln k1

k1 – 1
+

ln y(0)
t

. (4.18)
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Taking the superior limit on both sides of (4.18), note that

lim
t→+∞ B2(t) = 0 a.s. (4.19)

and t → +∞ ⇒ k1 → +∞, we have

lim
k1→+∞

ln k1

k1
= lim

k1→+∞
1
k1

= 0. (4.20)

Then we obtain

lim sup
t→+∞

ln z(t)
t

≤ β

A

∫ +∞

0
wφ(w) dw –

(

D + rc̃o +
σ 2

21
2

)

. (4.21)

This implies that if β

A
∫∞

0 wφ(w) dw < D + rc̃o + σ 2
21
2 holds, then

lim
t→+∞ z(t) = 0 a.s.

This completes the proof. �

Remark 4.2 According to Lemma 3.3 and Theorem 4.1, one can easily obtain

lim
t→+∞ y(t) = 0 a.s.

Theorem 4.3 If β

A
∫∞

0 wφ(w) dw < D + rc̃o + σ 2
21
2 holds, the distribution of x(t) converges

weakly to the measure which has the density π (x).

Proof For any small ε > 0, there exist t0 and a set Ωε ⊂ Ω such that P(Ωε) > 1 – ε and
xy

k(A+x+By) ≤ εx for t ≥ t0 and ω ∈ Ωε . Then

[(
x0 – x(t)

)
– εx(t)

]
dt + x(t)

(
σ11 + σ12x(t)

)
dB1(t)

≤ dx(t) ≤ [(x0 – x(t)
)]

dt + x(t)
(
σ11 + σ12x(t)

)
dB1(t).

This shows that the distribution of the process x(t) converges weakly to the measure with
density π (x). �

Theorem 4.4 If Dx0β > (D + σ 2
11 + 2σ12Dx0

σ11
)(D + rcu

o + 1
2σ 2

21) holds, system (3.10) admits a
unique stationary distribution and it has ergodic property for initial (w(0), z(0)) ∈R

2
+.

Proof Define

V ∗(w, z)

= M
[

–c1 ln w – c2l ln z +
2c1

θ (1 – θ )σ θ
11

(σ11 + σ12w)θ
]

+
1
p

wp +
1
p

zp

�= MV ∗
1 + V ∗

2 ,
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where θ , p ∈ (0, 1), and M is a sufficiently large constant satisfying the following condition:

M
[

–2Dw0

(√
Dx0β

(D + σ 2
11 + 2σ12Dx0

σ11
)(D + rcu

o + 1
2σ 2

21)
– 1
)]

+ f u + gu ≤ –2,

where

c1 =
Dw0

1 + σ 2
11 + 2σ12Dw0

(D–θ )σ11

,

c2 =
Dw0

D + rcu
o + 1

2σ 2
21

,

f u = sup
w∈R+

{

Dw0wp–1 – Dwp –
1 – p

2
σ 2

12wp+2
}

,

gu = sup
w∈R+

{

–Dzp – rcl
ozp –

1 – p
2

[

σ22
∏

0<τn+l<t

(1 – hn+l)
]2

yp+2
}

.

It shows that

lim inf
ε→0,(w,z)∈R+\D

V ∗(w, z) = +∞,

where D = (ε, 1
ε
) × (ε, 1

ε
) and V ∗(w, z) is a continuous function. Therefore, V ∗(w, z) has

a minimum point (w0, z0) in the interior of R2
+. Thus,we can define a nonnegative C2-

function V : R2
+ →R+

V (w, z) = V ∗(w, z) – V ∗(w0, z0).

We can obtain the following equation by It̂o’s formula:

LV = LV ∗ = MLV ∗
1 + LV ∗

2 .

Therefore,

LV ∗
1 = –

c1Dw0

w
+ c1D +

c1β(
∏

0<τn+l<t(1 – hn+l)z)
K[A + w + B(

∏
0<τn+l<t(1 – hn+l)z)]

+
2c1σ12Dw0

(1 – θ )σ θ
11

(σ11 + σ12w)θ–1 –
2c1σ12w

(1 – θ )σ θ
11

(σ11 + σ12w)θ–1

–
2c1σ12βw(

∏
0<τn+l<t(1 – hn+l)z)

(1 – θ )σ θ
11k[A + w + B(

∏
0<τn+l<t(1 – hn+l)z)]

(σ11 + σ12w)θ–1

+
c1

2
(σ11 + σ12w)2 –

c1σ
2
12

σ θ
11

(σ11 + σ12w)θ w2

–
c2βw

A + w + B(
∏

0<τn+l<t(1 – hn+l)z)
+ c2D + c2rco(t)

+
c2

2

[

σ21 + σ22
∏

0<τn+l<t

(1 – hn+l)z
]2
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≤ –
c1Dw0

w
– c1βw + c2βw + c1D +

c1βw
kA

+
2c1σ12Dw0

(1 – θ )σ11

+ c1σ
2
11 –

c1

2
(σ11 – σ12w)2 + c2D + c2rcu

o +
c2

2

(

σ21 + σ22
∏

0<τn+l<t

(1 – hn+l)z
)2

≤ –2
√

c1c2Dw0β + c1

[

D + σ 2
11 +

2σ12Dw0

(1 – θ )σ11

]

+ c2

[

D + rcu
o +

σ 2
21
2

]

+
[

c1β

kA
+ c2σ21

(

σ22
∏

0<τn+l<t

(1 – hn+l)
)]

w

+
c2(σ22

∏
0<τn+l<t(1 – hn+l))2z2

2
+ c2βw

= –2w0

(√
w0

(1 + σ 2
11 + 2σ12w0

σ11
)(1 + rcu

0 + 1
2σ 2

21)
– 1
)

+
[

c1β

kA
+ c2σ21

(

σ22
∏

0<τn+l<t

(1 – hn+l)
)]

z

+
c2(σ22

∏
0<τn+l<t(1 – hn+l))2

2
z2 + c2βw,

where c1 and c2 are such that

c1

[

D + σ 2
11 +

2σ12Dw0

(1 – θ )σ11

]

= c2

[

D + rcu
o +

1
2
σ 2

21

]

= Dw0.

The function Dw0β

(D+σ 2
11+ 2σ12Dw0

σ11
)(D+rcu

o + 1
2 σ 2

21)
> 1 is continuous. Choose ε > 0 sufficiently small

such that

LV ∗
1 ≤ –2Dw0

(√
Dw0β

(D + σ 2
11 + 2σ12Dw0

σ11
)(D + rcu

o + 1
2σ 2

21)
– 1
)

+
[

c1β

kA
+ c2σ21

(

σ22
∏

0<τn+l<t

(1 – hn+l)
)]

z

+
c2(σ22

∏
0<τn+l<t(1 – hn+l))2z2

2
+ c2βw.

We can also have

LV ∗
2 ≤ Dw0wp–1 – Dwp –

β
∏

0<τn+l<t(1 – hn+l)zwp

k(A + w + B(
∏

0<τn+l<t(1 – hn+l)z)])

–
1 – p

2
wp–2w2(σ11 + σ12w)2 +

βw[
∏

0<τn+l<t(1 – hn+l)z]p

A + w + B(
∏

0<τn+l<t(1 – hn+l)z

– Dwp – rco(t)wp –
1 – p

2

[ ∏

0<τn+l<t

(1 – hn+l)z
]p(

σ21 + σ22

[ ∏

0<τn+l<t

(1 – hn+l)z
]2)

≤ Dw0wp–1 – Dwp –
1 – p

2
σ 2

12wp+2 – Dwp – rcl
ozp

–
1 – p

2
σ 2

22

[ ∏

0<τn+l<t

(1 – hn+l)z
]p+2

+
βw(

∏
0<τn+l<t(1 – hn+l)z)p

A
.
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Therefore,

LV ≤ M
{

–2Dw0

(√
Dw0β

(D + σ 2
11 + 2σ12Dw0

σ11
)(D + rcu

o + 1
2σ 2

21)
– 1
)

+
[

c1β

kA
+ c2σ21σ22

∏

0<τn+l<t

(1 – hn+l)
]

z +
c2(σ22

∏
0<τn+l<t(1 – hn+l))2

2
z2 + c2βw

}

+ Dw0xp–1 – Dxp – rcl
ozp

–
1 – p

2
σ 2

22

[ ∏

0<τn+l<t

(1 – hn+l)z
]p+2

+
βx(
∏

0<τn+l<t(1 – hn+l)z)p

A
.

Let

H(w, z) = M
{

–2Dw0

(√
Dw0β

(D + σ 2
11 + 2σ12Dw0

σ11
)(D + rcu

o + 1
2σ 2

21)
– 1
)

+
[

c1β

kA
+ c2σ21σ22

∏

0<τn+l<t

(1 – hn+l)
]

z

+
c2(σ22

∏
0<τn+l<t(1 – hn+l))2

2
z2 + c2βw

}

+ f (x) + g(z) +
βx(
∏

0<τn+l<t(1 – hn+l)z)p

A
,

where f (x) = Dw0wp–1 – Dxp – 1–p
2 σ 2

12xp+2 and g(z) = –Dxp – rcl
ozp – 1–p

2 σ 2
22[
∏

0<τn+l<t(1 –
hn+l)z]p+2. Then we can get

H(w, z) ≤

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

H(+∞, z) → –∞, as w → +∞,

H(w, +∞) → –∞, as z → +∞,

M[–2Dw0(
√

Dw0β

(D+σ 2
11+ 2σ12Dw0

σ11
)(D+rcu

o + 1
2 σ 2

21)
– 1)]

+ f u + gu ≤ –2, as w → 0+, z → 0+.

(4.22)

Therefore, there exists sufficiently small ε > 0 such that

LV ≤ –1, for any (w, z) ∈R
2
+ \D,

where D = (ε, 1
ε
) × (ε, 1

ε
).

On the other hand, the diffusion matrix of system (3.10) is given by

2∑

i,j=1

aij(w, z)ξiξj =
(
(
σ11w + σ12w2)ξ1,

(

σ21z + σ22
∏

0<τn+l<t

(1 – hn+l)z2
)

ξ2

)

×
(

(σ11w + σ12w2)ξ1

(σ21z + σ22
∏

0<τn+l<t(1 – hn+l)z2)ξ2

)
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=
(
σ11w + σ12w2)ξ 2

1 +
(

σ21z + σ22
∏

0<τn+l<t

(1 – hn+l)z2
)

ξ 2
2

≥ G‖ξ‖2 for any (w, z) ∈ De ⊂D
2
+,

where ξ = (ξ1, ξ2) ∈ D
2
+, G = min(w,z)∈De{(σ11w + σ12w2)ξ 2

1 + (σ21z + σ22
∏

0<τn+l<t(1 –
hn+l)z2)ξ 2

2 }, and De = [ 1
e , e] × [ 1

e , e].
From Theorem 4.7 in reference [9], it can be known that system (3.11) is ergodic and

has a unique stationary distribution, and the distribution of the process converges weakly
to the measure with density. �

Remark 4.5 From Lemma 3.3 and Theorem 4.4, we can easily know that if Dx0β > (D +
σ 2

11 + 2σ12Dx0
σ11

)(D + rcu
o + 1

2σ 2
21) holds, system (2.1) admits a unique stationary distribution

and it has ergodic property for initial (x(0), y(0)) ∈R
2
+.

5 Numerical simulations
If it is assumed that x(0) = 0.8, y(0) = 0.3, co(0) = 0.9, ce(0) = 0.9, D = 1, β = 0.1, k = 0.1A =
0.05, B = 0.002, r = 0.1, f = 0.1, g = 0.5, m = 0.5, h = 0.1, h1 = 0.02, h2 = 0.2, σ11 = 0.01,
σ12 = 0.01, σ21 = 0.01, σ22 = 0.01, l = 0.25, τ = 4, when μ = 0.1, the microorganism y(t)
will survive (it can be seen in (a) of Fig. 1), when μ = 0.9, the microorganism y(t) will be
extinct(it can be seen in (b) of Fig. 1). From Theorem 4.1, Remark 4.5, and the computer
simulations in Fig. 1, we conjecture that there must exist a threshold μ∗, if μ > μ∗, the
microorganism y(t) will be extinct, if μ < μ∗, the microorganism y(t) will survive. If it is
assumed that x(0) = 0.8, y(0) = 0.3, co(0) = 0.9, ce(0) = 0.9, D = 1, β = 0.1, k = 0.1, A = 0.05,
B = 0.002, r = 0.1, f = 0.1, g = 0.5, m = 0.5, h = 0.1, μ = 0.1, h2 = 0.2, σ11 = 0.01, σ12 = 0.01,
σ21 = 0.01, σ22 = 0.01, l = 0.25, τ = 4, when h1 = 0.01, the microorganism y(t) will survive
(it can be seen in (c) of Fig. 2), when h1 = 0.1 the microorganism y(t) will be extinct(it can
be seen in (d) of Fig. 2). From Theorem 4.1, Remark 4.5, and the computer simulations in
Fig. 2, we conjecture that there must exist a threshold h∗

2, if h2 < h∗
2, the microorganism

y(t) will be extinct, if h2 > h∗
2, the microorganism y(t) will survive. If it is assumed that

x(0) = 0.8, y(0) = 0.3, co(0) = 0.9, ce(0) = 0.9, D = 1, β = 0.1, k = 0.1, A = 0.05, B = 0.002,

Figure 1 Threshold analysis of parameter μ in system (2.1) with x(0) = 0.8, y(0) = 0.3, co(0) = 0.9, ce(0) = 0.9,
D = 1, β = 0.1, k = 0.1, A = 0.05, B = 0.002, r = 0.1, f = 0.1, g = 0.4,m = 0.5, h = 0.1, h1 = 0.02, h2 = 0.2, σ11 = 0.01,
σ12 = 0.01, σ21 = 0.01, σ22 = 0.01, l = 0.25, τ = 4, (a): y(t) survival with parameter μ = 0.1; (b): y(t) extinction
with parameter μ = 0.9
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Figure 2 Threshold analysis of parameter h1 in system (2.1) with x(0) = 0.8, y(0) = 0.3, co(0) = 0.9, ce(0) = 0.9,
D = 1, β = 0.1, k = 0.1, A = 0.05, B = 0.002, r = 0.1, f = 0.1, g = 0.5,m = 0.5, h = 0.1, μ = 0.1, h2 = 0.2, σ11 = 0.01,
σ12 = 0.01, σ21 = 0.01, σ22 = 0.01, l = 0.25, τ = 4, (c): y(t) survival with parameter h1 = 0.01; (d): y(t) extinction
with parameter h1 = 0.1

Figure 3 Threshold analysis of parameter h2 in system (2.1) with x(0) = 0.8, y(0) = 0.3, co(0) = 0.9, ce(0) = 0.9,
D = 1, β = 0.1, k = 0.1, A = 0.05, B = 0.002, r = 0.1, f = 0.1, g = 0.5,m = 0.5, h = 0.1, μ = 0.1, h1 = 0.07, σ11 = 0.01,
σ12 = 0.01, σ21 = 0.01, σ22 = 0.01, l = 0.25, τ = 4, (e): y(t) survival with parameter h2 = 0.9; (f): y(t) extinction
with parameter h2 = 0.1

Figure 4 Threshold analysis of parameter σ11 in system (2.1) with x(0) = 0.3, y(0) = 0.3, co(0) = 0.3, ce(0) = 0.3,
D = 1, β = 0.1, k = 0.1, A = 1.5, B = 1, r = 0.2, f = 0.1, g = 0.5,m = 0.5, h = 0.1, μ = 0.2, h1 = 0.3, h2 = 0.2,
σ12 = 0.01, σ21 = 0.01, σ22 = 0.01, l = 0.25, τ = 4. (g): y(t) survival with parameter σ11 = 0.03; (h): y(t) extinction
with parameter σ11 = 0.4
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r = 0.1, f = 0.1, G = 0.5, M = 0.5, h = 0.1, μ = 0.1, h1 = 0.07, σ11 = 0.01, σ12 = 0.01, σ21 =
0.01, σ22 = 0.01, l = 0.25, τ = 4, when h2 = 0.9, the microorganism y(t) will survive (it can
be seen in (e) of Fig. 3), when h2 = 0.1, the microorganism y(t) will be extinct (it can be
seen in (f ) of Fig. 3). From Theorem 4.1, Remark 4.5, and the computer simulations in
Fig. 3, we conjecture that there must exist a threshold h∗

1, if h1 < h∗
1, the microorganism

y(t) will be extinct, if h1 > h∗
1, the microorganism y(t) will survive. If it is assumed that

x(0) = 0.8, y(0) = 0.3, co(0) = 0.9, ce(0) = 0.9, D = 1, β = 0.1, k = 0.1, A = 0.05, B = 0.002,
r = 0.1, f = 0.1, g = 0.5, m = 0.5, h = 0.1, μ = 0.1, h1 = 0.02, h2 = 0.1, σ12 = 0.1, σ21 = 0.05,
σ22 = 0.05, l = 0.25, τ = 4, and when σ11 = 0.3, the microorganism y(t) will survive (it can
be seen in (g) of Fig. 4), when σ11 = 0.6, the microorganism y(t) will be extinct(it can be
seen in (h) of Fig. 4). From Theorem 4.1, Remark 4.5, and the computer simulations in
Fig. 4, we conjecture that there must exist a threshold σ ∗

11, if σ11 < σ ∗
11, the microorganism

y(t) will be extinct, if σ11 > σ ∗
11, the microorganism y(t) will survive.

6 Discussion
In this work, we consider a stochastic eutrophication-chemostat model with impulsive
dredging and pulse inputting on environmental toxicant. The sufficient condition for the
extinction of microorganisms is obtained. The sufficient condition for the investigated
system with unique ergodic stationary distribution is also obtained by the Lyapunov func-
tions method. The results of mathematical analysis and numerical analysis show that the
stochastic noise, impulsive diffusion, and pulse input on environmental toxicant play im-
portant roles in the extinction and survival of the microorganisms. These results indicate
the effective and reliable controlling strategy for water resource management with eu-
trophication.
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