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Abstract
This study investigates the solutions of an impulsive fractional differential equation
incorporated with a pantograph. This work extends and improves some results of the
impulsive fractional differential equation. A differential equation of an impulsive
fractional pantograph with a more general anti-periodic boundary condition is
proposed. By employing the well-known fixed point theorems of Banach and
Krasnoselskii, the existence and uniqueness of the solution of the proposed problem
are established. Furthermore, two examples are presented to support our theoretical
analysis.
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1 Introduction
Fractional differential equations are generally applicable in many fields such as chemistry,
mechanics, fluid systems, electronics, electromagnetic and other fields; for an overview,
the reader should see the literature on fractional differential equations, e.g., [3, 4, 12, 17, 21,
24, 26, 33–36, 39] and the references therein. Fractional and impulsive differential equa-
tions were used as a powerful method to gain insight into certain emerging problems from
various science and engineering fields [32, 40, 46]. In particular, much attention has been
given to the theoretical studies such as existence, uniqueness, and stability of analytical
solutions, in recent years (we refer, for example, to [1, 2, 6, 14–16, 38, 43]).

Several works on boundary value problems for an impulsive differential equation with
anti-periodic boundary conditions were conducted, and results on the existence of so-
lutions for mixed-type fractional integro-differential equation were established (see, e.g.,
[5, 19, 30, 42, 51, 52, 54, 55]). More recently, the theory of existence, uniqueness, and stabil-
ity analysis for impulsive fractional differential equations with different kinds of fractional
operators and initial/boundary conditions has attracted the attention of many researchers;
for an overview of the literature, we refer the reader to [8–11, 49, 50]. For example, in [47]
Wang and Lin investigated the impulsive fractional anti-periodic boundary value prob-
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lem with constant coefficients. Recently, motivated by [47], Zuo et al. [56] investigated the
existence results for an equation with impulsive and anti-periodic boundary conditions
described by:

⎧
⎪⎪⎨

⎪⎪⎩

cDq
0+u(t) + λu(t) = f (t, u(t), Tu(t), Su(t)), t ∈ J ′ = J\{t1, . . . , tm},

�u|t=tk = Ik(u(tk)), k = 1, 2, . . . , m,

u(0) = –u(1),

(1.1)

where cDq is the Caputo fractional derivative of order q ∈ (0, 1), λ > 0, Ik ∈ R, 0 = t0 < t1 <
· · · < tm < tm+1 = 1, f ∈ C(J ×R

3,R), J = [0, 1], R is the set of real numbers, �u|t=tk denotes
the jump of u(t) at t = tk , S and T are linear operators. Under Lipschitz and nonlinear
growth conditions, they established sufficient conditions for the existence and unique-
ness of a solution to (1.1) using Banach mapping principle and Krasnoselskii’s fixed point
theorem.

On the other hand, in the deterministic situation there is a very special delay differential
equation known as the pantograph equation given by

z′(τ ) = αz(τ ) + βz(λτ ), 0 ≤ τ ≤ T ,

where 0 < λ < 1. It is used in various fields of applied and pure mathematics, such as num-
ber theory, probability, dynamic system, and quantum mechanics. In particular, an im-
portant studies were conducted on the properties of both the analytical and numerical
solutions of this equation (see [18, 22, 23, 31]), also recently multi-pantograph and gen-
eralized nonlinear multi-pantograph equations were studied in [29, 37, 53]. Owing to the
increasing interest and importance of this equation, Balachandran et al. [13] established
the solution of abstract fractional pantograph equation via fractional calculus techniques
and fixed point method. They consider the following equation:

⎧
⎨

⎩

cDp
0+y(t) = f (t, y(t), y(λt)), t ∈ J ,

y(0) = y0,
(1.2)

where 0 < p < 1, 0 < λ < 1, and f : J × X × X → X is a continuous function.
In this paper, motivated by [13, 47, 56], we consider the following impulsive fractional

pantograph differential equation:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

cDα
0+x(t) + λx(t) = f (t, x(t), x(γ t)),

t ∈ J∗ = J\{t1, . . . , tk}, 0 < α < 1, 0 < γ < 1,

�x|t=tm (0) = Im(x(tm)), m = 1, 2, . . . , k,

ax(0) + bx(1) = 0, a ≥ b > 0,

(1.3)

where cDα is the Caputo fractional derivative of order α, 0 = t0 < t1 < · · · < tk < tk+1 = 1,
f ∈ C(J × R

2,R), J = [0, 1],�x|t=tm = x(t+
m) – x(t–

m), with x(t+
m) and x(t–

m) representing the
right and left limits of x(t) at t = tm.

The main aim of this paper is to establish the existence and uniqueness of solutions for
the boundary value problem (1.3), by using the contraction principle of Banach and the
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fixed point theorem of Krasnoselskii. Presently, different techniques have been extensively
applied in obtaining solutions to the impulsive fractional differential equations (see, e.g.,
[20, 41, 44]). However, in this article, we adopt the solution approach used in [47] to solve
the impulsive fractional equation (1.3).

We highlight the main contributions of this paper as follows:
• We consider the impulsive pantograph fractional differential equation.
• We consider more general anti-periodic boundary value problems with constant

coefficients.
In general, this paper contributes toward the development of qualitative analysis of frac-
tional differential equations.

This paper is organized as follows: the statement of the problem, preliminaries, and
some useful lemmas that will be required for the later sections are presented in Sect. 2. In
Sect. 3, we prove the existence and uniqueness of solutions for problem (1.3) via Banach
and Krasnoselskii’s fixed point theorems with some illustrative examples. Conclusions on
our findings are presented in the last section.

2 Preliminaries and lemmas
Let J0 = (0, t1], J1 = (t1, t2], . . . , Jk–1, Jk = (tk , 1], and PC(J ,R) = {x : J → R : x ∈ C(Jm,R)},
where m = 0, 1, 2, . . . , k, x(t+

m) and x(t–
m) exist, m = 1, 2, . . . , k, is a space of continuous real-

valued functions on the interval J , and x(t–
m) = x(tm).

Then, clearly, PC(J ,R) is a Banach space with the norm ‖x‖PC = sup{|x(t)| : t ∈ J}, and
let the norm of a measurable function ϕ : J →R be defined by:

‖ϕ‖Lp(J) =

⎧
⎨

⎩

(
∫

J |ϕ(t)|p dt)1/p, 1 ≤ p < ∞,

infmes(J̄)=0{supt∈J\J̄ |x(t)|}, p = ∞.

Then Lp(J ,R) is a Banach space of Lebesque-measurable functions with ‖ϕ‖Lp(J) < ∞.

Definition 2.1 (see [26]) The fractional integral of order ρ with the lower limit zero for a
function g is defined as

Iρ
0+g(t) =

1
Γ (ρ)

∫ t

0
(t – τ )ρ–1f (τ ) dτ , ρ > 0, n ∈N,

provided the right-hand side is pointwise defined on [0,∞), where Γ (·) denotes the
Gamma function.

Definition 2.2 (see [26]) The Riemann–Liouville derivative of order ρ with the lower
limit zero for a function g is defined as

LDρ
0+g(t) =

1
Γ (n – ρ)

dn

dtn

∫ t

0
(t – τ )n–ρ–1g(τ ) dτ , ρ > 0, n – 1 < ρ < n,

provided the function g is absolutely continuous up to order (n – 1) derivatives, where Γ (·)
denotes the Gamma function.
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Definition 2.3 (see [26]) The Caputo derivative of order ρ > 0 with the lower limit zero
for a function g is defined as

cDρ
0+g(t) =

1
Γ (n – ρ)

dn

dtn

∫ t

0
(t – τ )n–ρ–1

(

g(τ ) –
n–1∑

l=0

sl

l!
g(l)(0)

)

dτ , n = [ρ] + 1, n ∈N,

provided the function g : [0,∞) → R, where Γ (·) denotes the Gamma function.

Remark 2.4 (see [28]) If g ∈ Cn[0, +∞), then

cDρ
0+g(t) =

1
Γ (n – ρ)

∫ t

0
(t – τ )n–ρ–1g(n)(τ ) dτ = In–ρg(n)(t), t > 0, n = [ρ] + 1.

Since in this paper we deal with an impulsive problem, Definition 2.3 is appropriate.

Definition 2.5 A function x ∈ PC(J ,R) is said to be a solution of problem (1.3) if it satisfies
the equation cDα

0+x(t) + λx(t) = f (t, x(t), x(γ t)) a.e. on J∗ and the conditions �x|t=tm (0) =
Im(x(tm)), m = 1, 2, . . . , k, and ax(0) + bx(1) = 0, with a ≥ b > 0.

Lemma 2.6 (see [45]) The nonnegative functions Eα and Eα,α given by

Eα(u) =
∞∑

m=0

um

Γ (αm + 1)
, Eα,α(u) =

∞∑

m=0

um

Γ (αm + α)
,

have the following properties:
(1) For any λ > 0 and t ∈ J ,

Eα

(
–tαλ

) ≤ 1, Eα,α
(
–tαλ

) ≤ 1
Γ (α)

.

Moreover, Eα(0) = 1, Eα,α(0) = 1
Γ (α) .

(2) For any λ > 0 and t1, t2 ∈ J ,

Eα

(
–tα

2 λ
) → Eα

(
–tα

1 λ
)

as t2 → t1,

Eα,α
(
–tα

2 λ
) → Eα,α

(
–tα

1 λ
)

as t2 → t1.

(3) For any λ > 0 and t1, t2 ∈ J such that t1 ≤ t2,

Eα

(
–tα

2 λ
) ≤ Eα

(
–tα

1 λ
)
, Eα,α

(
–tα

2 λ
) ≤ Eα,α

(
–tα

1 λ
)
.

Lemma 2.7 (see [27]) Let P be a closed, convex, and nonempty subset of a Banach space
X, and let F1, F2 be operators such that:

(1) F1x + F2y ∈ M whenever x, y ∈ P,
(2) F1 is compact and continuous,
(3) F2 is a contraction mapping.

Then there exists z ∈ P such that z = F1z + F2z.
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Lemma 2.8 (see [48]) Let X be a Banach space, and let J = [0, T]. Suppose that W ⊂
PC(J , X) satisfies the following conditions:

(1) W is a uniformly bounded subset of PC(J , X),
(2) W is equicontinuous in (tm, tm+1), m = 0, 1, . . . , k, where t0 = 0, tk+1 = T ,
(3) Its t-sections W(t) = {x(t) : x ∈W , t ∈ J\{t1, . . . , tk}},W(t+

m) = {x(t+
m) : x(t+

m) : x ∈ W },
and W(t–

m) = {x(t–
m) : x(t–

m) : x ∈ W } are relatively compact subsets of X .
Then W is a relatively compact subset of PC(J , X).

Lemma 2.9 (see [47]) Let g : J →R be a continuous function. The function u given by

u(t) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

–Eq(–λ)Eq(–tqλ)
1+Eq(–λ)

∑m
i=1

yi
Eq(–tq

i λ)
+

∫ t
0 (t – s)q–1Eq,q(–(t – s)qλ)g(s) ds

– Eq(–tqλ)
1+Eq(–λ)

∫ 1
0 (1 – s)q–1Eq,q(–(1 – s)qλ)g(s) ds, t ∈ J0,

Eq(–tqλ)
1+Eq(–λ) {

∑m
i=1

yi
Eq(–tq

i λ)
–

∫ 1
0 (1 – s)q–1Eq,q(–(1 – s)qλ)g(s) ds}

– Eq(–tqλ)
∑m

j=k+1
yj

Eq(–tq
j λ)

+
∫ t

0 (t – s)q–1Eq,q(–(t – s)qλ)g(s) ds, t ∈ Jm, m = 1, 2, . . . , k – 1,
Eq(–tqλ)
1+Eq(–λ) {

∑m
i=1

yi
Eq(–tq

i λ)
–

∫ 1
0 (1 – s)q–1Eq,q(–(1 – s)qλ)g(s) ds}

+
∫ t

0 (t – s)q–1Eq,q(–(t – s)qλ)g(s) ds, t ∈ Jk ,

(2.1)

is a solution of the impulsive problem

⎧
⎪⎪⎨

⎪⎪⎩

cDq
0+u(t) + λu(t) = g(t), t ∈ J∗,

�u|t=tm (0) = ym, m = 1, 2, . . . , k,

u(0) + u(1) = 0.

(2.2)

It follows from Lemma 2.9 and by using the boundary condition ax(0) + bx(1) = 0 that
the solution of (1.3) can be expressed by

u(t) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

–Eα (–λ)Eα (–tαλ)
1+Eα (–λ)

∑k
i=1

Ii(x(ti))
Eα (–tαi λ)

+
∫ t

0 (t – s)α–1Eα,α(–(t – s)αλ)f (s, x(s), x(γ s) ds

– Eα (–tαλ)
1+κEα (–λ)κ

∫ 1
0 (1 – s)α–1Eα,α(–(1 – s)αλ)f (s, x(s), x(γ s) ds, t ∈ J0,

Eα (–tαλ)
1+κEα (–λ) {

∑k
i=1

Ii(x(ti))
Eα (–tαi λ)

– κ
∫ 1

0 (1 – s)α–1Eα,α(–(1 – s)αλ)f (s, x(s), x(γ s)) ds}
– Eα(–tαλ)

∑k
j=m+1

Ij(x(tj))
Eα (–tαj λ)

+
∫ t

0 (t – s)α–1Eα,α(–(t – s)αλ)f (s, x(s), x(γ s)) ds,

t ∈ Jm, m = 1, 2, . . . , k – 1,
Eα (–tαλ)

1+κEα (–λ) {
∑k

i=1
Ii(x(ti))

Eα (–tαi λ)

– κ
∫ 1

0 (1 – s)α–1Eα,α(–(1 – s)αλ)f (s, x(s), x(γ s)) ds}
+

∫ t
0 (t – s)α–1Eα,α(–(t – s)αλ)f (s, x(s), x(γ s)) ds, t ∈ Jk ,

(2.3)

where κ = b
a .
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3 Main results
Theorem 3.1 Consider the following hypotheses:

(C1) Function f × J ×R
2 →R is continuous and there exists a constant L1 > 0 such that

∣
∣f (t, x, y) – f (t, u, v)

∣
∣ ≤ L1

(|x – u| + |y – v|),

for all t ∈ J , x, y, u, v ∈R.
(C2) There exists a positive constant L2 such that

∣
∣Im(x) – Im(y)

∣
∣ ≤ L2|x – y|, for all x, y ∈ R, m = 1, 2, . . . , k.

(C3)

η =
(2 + κ)

|1 + κEα(–λ)|

( k∑

i=1

L2

|Eα(–tα
i λ)| +

(4κ + 2)L1

(2 + κ)Γ (α + 1)

)

< 1.

Then the boundary value problem (1.3) has a unique solution.

Proof Define a mapping T : PC(J ,R) → PC(J ,R) by

(Tx)(t) =
Eα(–tαλ)

1 + κEα(–λ)

{ k∑

i=1

Ii(x(ti))
Eα(–tα

i λ)

– κ

∫ 1

0
(1 – s)α–1Eα,α

(
–(1 – s)αλ

)
f
(
s, x(s), x(γ s)

)
ds

}

– Eα

(
–tαλ

)
k∑

j=m+1

Ij(x(tj))
Eα(–tα

j λ)

+
∫ t

0
(t – s)α–1Eα,α

(
–(t – s)αλ

)
f
(
s, x(s), x(γ s)

)
ds,

t ∈ [tm, tm+1), m = 0, 1, 2, . . . , k, (3.1)

then we show that T has a fixed point, which is a solution of problem (1.3). Letting G =
supt∈J |f (t, 0, 0)|, G∗ = max{|Ii(0)| : i = 1, 2, . . . , k}, we choose

r ≥
∑k

i=1
G∗

|Eα (–tαi λ)| + G
Γ (α+1)

|1+κEα (–λ)|
(2+κ) – [

∑k
i=1

L2
|Eα (–tαi λ)| + (4κ+2)L1

(2+κ)Γ (α+1) ]
. (3.2)

Firstly, we show that THr ⊂ Hr , where Hr = {x ∈ PC(J ,R) : ‖x‖PC ≤ r}. It follows from the
hypotheses above and Lemma 2.6 that

∣
∣(Tx)(t)

∣
∣

≤ ∣
∣Eα

(
–tαλ

)∣
∣

∣
∣
∣
∣
∣

1
1 + κEα(–λ)

{ k∑

i=1

Ii(x(ti))
Eα(–tα

i λ)
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– κ

∫ 1

0
(1 – s)α–1Eα,α

(
–(1 – s)αλ

)
f
(
s, x(s), x(γ s)

)
ds

}

–
k∑

j=m+1

Ij(x(tj))
Eα(–tα

j λ)

∣
∣
∣
∣
∣

+
∣
∣
∣
∣

∫ t

0
(t – s)α–1Eα,α

(
–(t – s)αλ

)
f
(
s, x(s), x(γ s)

)
ds

∣
∣
∣
∣

≤ 1
|1 + κEα(–λ)|

{ k∑

i=1

|Ii(x(ti))|
|Eα(–tα

i λ)| +
κ

Γ (α)

∫ 1

0
(1 – s)α–1∣∣f (s, x(s), x(γ s))

∣
∣ds

}

+
k∑

i=1

|Ii(x(ti))|
|Eα(–tα

i λ)| +
1

Γ (α)

∫ t

0
(t – s)α–1∣∣f (s, x(s), x(γ s))

∣
∣ds

≤ 1 + |1 + κEα(–λ)|
|1 + κEα(–λ)|

{ k∑

i=1

|Ii(x(ti)) – Ii(0)| + G∗

|Eα(–tα
i λ)|

}

+
κ

Γ (α)|1 + κEα(–λ)|
∫ 1

0
(1 – s)α–1[∣∣f

(
s, x(s), x(γ s)

)
– f (s, 0, 0)

∣
∣ +

∣
∣f (s, 0, 0)

∣
∣
]

ds

+
1

Γ (α)

∫ t

0
(t – s)α–1[∣∣f

(
s, x(s), x(γ s)

)
– f (s, 0, 0)

∣
∣ +

∣
∣f (s, 0, 0)

∣
∣
]

ds

≤ (2 + κ)
|1 + κEα(–λ)|

k∑

i=1

L2r + G∗

|Eα(–tα
i λ)| +

G
Γ (α + 1)|1 + κEα(–λ)| +

G
Γ (α + 1)

+
κ

Γ (α)|1 + κEα(–λ)|
∫ 1

0
(1 – s)α–1L1

(∣
∣x(s) + x(γ s)

∣
∣
)

ds

+
1

Γ (α)

∫ t

0
(t – s)α–1L1

(∣
∣x(s) + x(γ s)

∣
∣
)

ds

≤ (2 + κ)
|1 + κEα(–λ)|

{ k∑

i=1

L2r + G∗

|Eα(–tα
i λ)| +

G
Γ (α + 1)

}

+
2κL1r

Γ (α + 1)|1 + κEα(–λ)| +
2L1r

Γ (α + 1)

≤ (2 + κ)
|1 + κEα(–λ)|

{ k∑

i=1

G∗

|Eα(–tα
i λ)| +

G
Γ (α + 1)

+

[ k∑

i=1

L2

|Eα(–tα
i λ)| +

(4κ + 2)L1

(2 + κ)Γ (α + 1)

]

r

}

≤ r.

Secondly, we show that the mapping T is a contraction. Indeed, given any x, y ∈ Hr and
each t ∈ J , we obtain

∣
∣(Tx)(t) – (Ty)(t)

∣
∣

=

∣
∣
∣
∣
∣

Eα(–tαλ)
1 + κEα(–λ)

{ k∑

i=1

Ii(x(ti)) – Ii(y(ti))
Eα(–tα

i λ)

– κ

∫ 1

0
(1 – s)α–1Eα,α

(
–(1 – s)αλ

)(
f
(
s, x(s), x(γ s)

)
– f

(
s, y(s), y(γ s)

))
ds

}
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–
k∑

j=m+1

Ij(x(tj)) – Ij(y(tj))
Eα(–tα

j λ)

+
∫ t

0
(t – s)α–1Eα,α

(
–(t – s)αλ

)(
f
(
s, x(s), x(γ s)

)
– f

(
s, y(s), y(γ s)

))
ds

∣
∣
∣
∣
∣

≤
(

1
|1 + κEα(–λ)| + 1

) k∑

i=1

L2|x(ti)) – (y(ti))|
Eα(–tα

i λ)

+
κ

Γ (α)|1 + κEα(–λ)|
∫ 1

0
(1 – s)α–1L1

(∣
∣x(s) – y(s)

∣
∣ +

∣
∣x(γ s) – y(γ s)

∣
∣
)

ds

+
1

Γ (α)

∫ t

0
(t – s)α–1L1

(∣
∣x(s) – y(s)

∣
∣ +

∣
∣x(γ s) – y(γ s)

∣
∣
)

ds

≤ (2 + κ)
|1 + κEα(–λ)|

k∑

i=1

X2

Eα(–tα
i λ)

‖x – y‖PC

+
2κL1

Γ (α + 1)|1 + κEα(–λ)| ‖x – y‖PC +
2L1

Γ (α + 1)
‖x – y‖PC

≤ (2 + κ)
|1 + κEα(–λ)|

( k∑

i=1

L2

Eα(–tα
i λ)

+
(4κ + 2)L1

(2 + κ)Γ (α + 1)

)

‖x – y‖PC

= η‖x – y‖PC .

This implies that ‖Tx – Ty‖ ≤ η‖x – y‖PC . Thus, T is a contraction, Hence we conclude
the proof by applying Banach contraction principle. �

Theorem 3.2 Assume that condition (C2) and the following additional conditions are sat-
isfied:

(C4) A function ϕ ∈ L(1/ρ)(J , (0, +∞))(0 < ρ < α < 1) exists, and ω̄ ∈ C([0, +∞]) is a non-
decreasing function satisfying the following inequality:

∣
∣f

(
t, x(s), x(γ s)

)∣
∣ ≤ ϕ(t)ω̄

(‖x‖PC
)
, x ∈ PC(J ,R), t ∈ J .

(C5)

(2 + κ)
|1 + κEα(–λ)|

( (1 + 2κ)‖ϕ‖
L

1
ρ (J)

(2 + κ)Γ (α)( α–ρ

1–ρ
)1–ρ

lim inf
r→+∞

ω̄(r)
r

+
k∑

i=1

L2

|Eα(–tα
i λ)|

)

< 1.

Then problem (1.3) has at least one solution.

Proof It is easily to see that the set Hr = {x ∈ PC(J ,R) : ‖x‖PC ≤ r} is a closed, bounded,
and convex set in PC(J ,R) for all r > 0. Let M and N be two operators on Hr defined by

(Mx)(t) =
∫ t

0
(t – s)α–1Eα,α

(
–(t – s)αλ

)
f (s, x(s), x(γ s)) ds

–
κEα(–tαλ)

1 + κEα(–λ)

∫ 1

0
(1 – s)α–1Eα,α

(
–(1 – s)αλ

)
f (s, x(s), x(γ s)) ds, (3.3)
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(Nx)(t) =
Eα(–tαλ)

1 + κEα(–λ)

k∑

i=1

Ii(x(ti))
Eα(–tα

i λ)
– Eα

(
–tαλ

)
k∑

j=m+1

Ij(x(tj))
Eα(–tα

j λ)
. (3.4)

It follows from condition (C4) and Hölder inequality that for any x ∈ Hr and each t ∈ J ,

∫ t

0

∣
∣(t – s)α–1f

(
s, x(s), x(γ s)

)∣
∣ds

≤
∫ t

0

∣
∣(t – s)α–1ϕ(s)ω̄(r)

∣
∣ds

≤
(∫ t

0
(t – s)

α–1
1–ρ ds

)1–ρ(∫ t

0

(
ω̄(r)ϕ(s)

) 1
ρ ds

)ρ

≤
‖ϕ‖

L
1
ρ (J)

( α–ρ

1–ρ
)1–ρ

ω̄(r).

Repeating the same procedure as above, we obtain

∫ 1

0
(1 – s)α–1Eα,α

(
–(1 – s)αλ

)
f
(
s, x(s), x(γ s)

)
ds ≤

‖ϕ‖
L

1
ρ (J)

( α–ρ

1–ρ
)1–ρ

ω̄(r).

Next, we show that there exist r0 > 0 with Mx + Ny ∈ Hr0 for x, y ∈ Hr0 . Suppose by contra-
diction that for each r > 0 there exist xr , yr ∈ Hr0 and tr ∈ J such that |(Mxr)(tr)+(Nyr)(tr)| >
r. Assumption (C2) implies that |Ii(x(ti)| ≤ |Ii(x(ti) – Ii(0) + Ii(0)| ≤ L2r + G∗.

Thus,

r <
∣
∣(Mxr)(tr) + (Nyr)(tr)

∣
∣

≤
κ‖ϕ‖

L
1
ρ (J)

Γ (α)|1 + κEα(–λ)|( α–ρ

1–ρ
)1–ρ

ω̄(r)

+
‖ϕ‖

L
1
ρ (J)

Γ (α)( α–ρ

1–σ
)1–ρ

ω̄(r) +
1

|1 + κEα(–λ)|
k∑

i=1

L2r + G∗

|Eα(–tα
i λ)| +

k∑

i=1

L2r + G∗

|Eα(–tα
i λ)|

≤ (2 + κ)
|1 + κEα(–λ)|

( (1 + 2κ)‖ϕ‖
L

1
ρ (J)

(2 + κ)Γ (α)( α–ρ

1–ρ
)1–ρ

ω̄(r) +
k∑

i=1

L2r + G∗

|Eα(–tα
i λ)|

)

.

Dividing both sides by r and taking the lower limit as r → +∞, yields

1 ≤ (2 + κ)
|1 + κEα(–λ)|

( (1 + 2κ)‖ϕ‖
L

1
ρ (J)

(2 + κ)Γ (α)( α–ρ

1–ρ
)1–ρ

lim inf
r→+∞

ω̄

r
+

k∑

i=1

L2

|Eα(–tα
i λ)|

)

,

which contradicts condition (C5). Hence, there exist r0 such that Mx + Ny ∈ Hr0 , for all
x, y ∈ Hr0 .

Thus, for all t ∈ J and x, y ∈ Hr , one gets

∣
∣(Nx)(t) – (Ny)(t)

∣
∣ ≤ |Eα(–tαλ)|

|1 + κEα(–λ)|
k∑

i=1

Ii(x(ti)) – Ii(y(ti))
|Eα(–tα

i λ)|
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+
∣
∣Eα

(
–tα

i λ
)∣
∣

k∑

i=1

Ii(x(ti)) – Ii(y(ti))
|Eα(–tα

i λ)|

≤
k∑

i=1

Ii(x(ti)) – Ii(y(ti))
|Eα(–tα

i λ)|
(

1 +
1

|1 + κEα(–λ)|
)

≤
(

(2 + κ)
|1 + κEα(–λ)|

k∑

i=1

L2

|Eα(–tα
i λ)|

)

‖x – y‖PC .

Denoting η∗ = (2+κ)
|1+κEα (–λ)|

∑k
i=1

L2
|Eα (–tαI λ)| , it follows from (C5) that 0 < η∗ < 1 and ‖Nx +

Ny‖PC ≤ η∗‖x – y‖PC . Thus N is a contraction mapping.
Since f is continuous, this implies that operator M is also continuous. Now to show

M is compact, we apply the same procedure as in Theorem 3.1. One can easily see that
M(Hr) is uniformly bounded on PC(J ,R). We now show that M(Hr) is equicontinuous on
Jm(m = 1, . . . , k). Let Φ = J ×Hr ×Hr and f ∗ = sup(t,x(t),x(γ s))∈Φ |f (t, x(t), x(γ s))|, then, for any
tm < ξ2 < ξ1 < tm+1, we have

∣
∣(Mx)(ξ2) – (Mx)(ξ1)

∣
∣

≤
∣
∣
∣
∣

∫ ξ2

0
(ξ2 – s)α–1Eα,α

(
–(ξ2 – s)αλ

)
(f

(
s, x(s), x(γ s)

)
ds

–
∫ ξ1

0
(ξ1 – s)α–1Eα,α

(
–(t – s)αλ

)
(f

(
s, x(s), x(γ s)

)
ds

∣
∣
∣
∣

+
∣
∣
∣
∣
κ(Eα(–τα

2 λ) – Eα(–τα
1 λ))

1 + κEα(–λ)

∫ 1

0
(1 – s)α–1Eα,α

(
–(1 – s)αλ

)
f
(
s, x(s), x(γ s)

)
ds

∣
∣
∣
∣

≤
∣
∣
∣
∣

∫ ξ2

0
(ξ2 – s)α–1Eα,α

(
–(ξ2 – s)αλ

)
(f

(
s, x(s), x(γ s)

)
ds

–
∫ ξ2

0
(ξ1 – s)α–1Eα,α

(
–(ξ2 – s)αλ

)
(f

(
s, x(s), x(γ s)

)
ds

+
∫ ξ2

0
(ξ1 – s)α–1Eα,α

(
–(ξ2 – s)αλ

)
(f

(
s, x(s), x(γ s)

)
ds

–
∫ ξ2

0
(ξ1 – s)α–1Eα,α

(
–(τ1 – s)αλ

)
(f

(
s, x(s), x(γ s)

)
ds

–
∫ ξ1

ξ2

(ξ1 – s)α–1Eα,α
(
–(ξ1 – s)αλ

)
(f

(
s, x(s), x(γ s)

)
ds

∣
∣
∣
∣

+
|κ(Eα(–ξα

2 λ) – Eα(–ξα
1 λ))|

Γ (α)|1 + κEα(–λ)|
∫ 1

0
(1 – s)α–1∣∣f

(
s, x(s), x(γ s)

)∣
∣ds

≤
∫ ξ2

0

∣
∣(ξ2 – s)α–1 – (ξ1 – s)α–1∣∣

∣
∣Eα,α

(
–(ξ2 – s)αλ

)∣
∣f ∗ ds

+
∫ ξ2

0

∣
∣(ξ1 – s)α–1∣∣

∣
∣Eα,α

(
–(ξ2 – s)αλ

)
– Eα,α

(
–(ξ1 – s)αλ

)∣
∣f ∗ ds

+
f ∗

Γ (α)

∣
∣
∣
∣

∫ ξ1

ξ2

(ξ1 – s)α–1
∣
∣
∣
∣ +

|κ(Eα(–ξα
2 λ) – Eα(–ξα

1 λ))|
Γ (α + 1)|1 + κEα(–λ)| f ∗

≤ f ∗

Γ (α)

∣
∣
∣
∣

∫ ξ2

0

∣
∣(ξ2 – s)α–1 – (ξ1 – s)α–1∣∣ds

∣
∣
∣
∣ +

(ξ1 – ξ2)αf ∗

Γ (α + 1)
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+
|κ(Eα(–ξα

2 λ) – Eα(–ξα
1 λ))|

Γ (α + 1)|1 + κEα(–λ)| f ∗

+ f ∗
∫ ξ2

0

∣
∣(ξ1 – s)α–1∣∣

∣
∣Eα,α

(
–(ξ2 – s)αλ

)
– Eα,α

(
–(ξ1 – s)αλ

)∣
∣ds

≤ (ξ1 – ξ2)α + ξα
1 – ξα

2
Γ (α + 1)

f ∗ +
(ξ1 – ξ2)αf ∗

Γ (α + 1)
+

|κ(Eα(–ξα
2 λ) – Eα(–ξα

1 λ))|
Γ (α + 1)|1 + κEα(–λ)| f ∗

+ f ∗
∫ ξ2

0
(ξ1 – s)α–1∣∣Eα,α

(
–(ξ2 – s)αλ

)
– Eα,α

(
–(ξ1 – s)αλ

)∣
∣ds.

By (2) of Lemma 2.6, it follows that Eα,α(–tαλ) is continuous on t ∈ J , and thus Eα,α(–tαλ)
is uniformly continuous on t ∈ J , hence, there is a sufficiently small δ > 0 such that, for
t1, t2 ∈ J with |t1 – t2| ≤ δ, we have

∣
∣Eα,α

(
–tα

1 λ
)

– Eα,α
(
–tα

2 λ
)∣
∣ <

ε

ξ
α

2–α
2

.

Let ρ1 = 2–α
2(1–α) and ρ2 = 2–α

α
. Then ρ1 > 1,ρ2 > 1, and 1

ρ1
+ 1

ρ2
= 1. Applying Hölder in-

equality yields

∫ ξ2

0
(ξ1 – s)α–1∣∣Eα,α

(
–(ξ2 – s)αλ

)
– Eα,α

(
–(ξ1 – s)αλ

)∣
∣ds

≤
[∫ ξ2

0
(ξ1 – s)(α–1) 2–α

2(1–α) ds
] 2(1–α)

(2–α)

×
[∫ ξ2

0

(
Eα,α

(
–(ξ2 – s)αλ

)
– Eα,α

(
–(ξ1 – s)αλ

)) 2–α
α ds

] α
2–α

≤
[

2ξ
α
2

1 – 2(ξ1 – ξ2) α
2

α

] 2(1–α)
2–α

ε.

Hence,

∣
∣(Mx)(ξ2) – (Mx)(ξ1)

∣
∣

≤ (ξ1 – ξ2)α + ξα
1 – ξα

2
Γ (α + 1)

f ∗ +
(ξ1 – ξ2)αf ∗

Γ (α + 1)
+

|κ(Eα(–ξα
2 λ) – Eα(–ξα

1 λ))|
Γ (α + 1)|1 + κEα(–λ)| f ∗

+
[

2ξ
α
2

1 – 2(ξ1 – ξ2) α
2

α

] 2(1–α)
2–α

ε

→ 0,

as ξ2 → ξ1, which implies that M is equicontinuous on the interval Jm. Hence, we have
shown that M(Hr) is relatively compact on J . It now follows by Arzela–Ascoli’s theorem
that M is compact. Therefore, we conclude from Lemma 2.7 that problem (1.3) has at least
one solution. �

We now present some examples to illustrate our result.
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Example 1 Consider the following fractional pantograph-differential equation with im-
pulsive and anti-periodic boundary condition described by:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

cD
1
2
0+x(t) + x(t) = sin(t)

(t+5)2
x2(t)

(1+x2(t)) + cos(t)
(et+4)2 x( 1

3 t), t ∈ J ∈ [0, 1]\{ 1
2 },

�x|t= 1
2

= |x( 1
2 )|

17+|x( 1
2 )| ,

x(0) = –x(1).

(3.5)

By comparing with problem (1.3), we get:
f (t, x(t), x(γ t)) = sin(t)

(t+5)2
x2(t)

(1+x2(t)) + cos(t)
(et+4)2 x( 1

3 t), t ∈ J ∈ [0, 1]\{ 1
2 }, a = b = κ = 1, α = 1

2 , Ik(x) =
|x( 1

2 )|
17+|x( 1

2 )| .
Then for any x, y, u, v ∈ R and t ∈ J , we obtain

∣
∣f (t, x, y) – f (t, u, v)

∣
∣ ≤ 2

25
‖x – y‖PC ,

∣
∣Ik(x) – Ik(y)

∣
∣ ≤ 1

17
‖x – y‖PC .

Then by a simple calculation we can easily see that L1 = 2
25 , L2 = 1

17 , E 1
2

(–1) ≈ 0.42,

E 1
2

(–( 1
2 ) 1

2 ) ≈ 0.52,Γ ( 3
2 ) ≈ 0.89, and

η =
3

|1 + E 1
2

(–1)|
(

L2

|E 1
2

(–( 1
2 ) 1

2 )|
+

6 × L1

3 × Γ ( 3
2 )

)

≈ 3
1.42

( 1
17

0.52
+

(6) 2
25

3 × (0.89)

)

< 1.

Therefore, all the hypotheses of Theorem 3.1 are satisfied. Hence problem (1.3) has a
unique solution on [0, 1].

Example 2 Consider the following impulsive fractional pantograph differential equation:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

cD
1
2
0+x(t) + 2x(t) =

3√t+1 sin(2t)
14 ( |x(t)|

|1+|x(t)| ) +
3√t+1

(7et )2 x( 3
2 t), t ∈ J ∈ [0, 1]\{ 1

2 },
�x|t= 1

2
= |x( 1

2 )|
15+|x( 1

2 )| ,

2x(0) + 4x(1) = 0.

(3.6)

Denote

f
(
t, x(t), x(γ t)

)
=

3√t + 1 sin(2t)
14

( |x(t)|
|1 + |x(t)|

)

+
3√t + 1
(7et)2 x

(
3
2

t
)

. (3.7)

This implies that

∣
∣f

(
t, x(t), x(γ t)

)∣
∣ ≤

( 3√t + 1
14

)
(∥
∥x(t)

∥
∥ + 1

)
. (3.8)

Thus, applying the same procedure as above yields α = 1
2 ,λ = 2,ρ = 1

3 ,κ = 2, ω̄ = r +
1, E 1

2
(–2) ≈ 0.25, E 1

2
(–2( 1

2 ) 1
2 ) ≈ 0.40,Γ ( 1

2 ) ≈ 3.14 and ϕ(t) =
3√t+1
14 . This implies that
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lim infr→+∞ ω̄
r = 1, L2 = 1

15 and ‖ϕ(t)‖
L

1
ρ

= (
∫ 1

0 (
3√t+1
14 )3 dt) 1

3 ≈ 0.08. Therefore

4
|1 + E 1

2
(–2)

(5(
∫ 1

0 (
3√t+1
14 )3 dt) 1

3

4Γ ( 1
2 )(

1
2 – 1

3
1– 1

3
)1– 1

3

+
1

15

|E 1
2

(–2( 1
2 ) 1

2 )|

)

≈ 0.58 < 1.

Thus, according to Theorem 3.2, problem (1.3) has at least one solution.

4 Conclusions
Using the Banach and Krasnoselskii’s fixed point theorems, we have established the exis-
tence and uniqueness of the solution for fractional pantograph differential equation with
impulsive and generalized anti-periodic boundary conditions. We note that it would be
interesting to study this kind of problem for a certain kind of generalized fractional deriva-
tives and integrals [7, 25]. In addition, this is the first paper, to the best of our knowledge,
dealing with a fractional pantograph differential equation with an impulsive and general-
ized anti-periodic boundary conditions. Therefore, our result improves and generalizes
the results in [13] and can be considered as a contribution to the development of the
qualitative analysis of fractional differential equations. Lastly, we offered two examples
to illustrate the obtained results.
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12. Atanacković, T.M., Pilipović, S., Stanković, B., Zorica, D.: Fractional Calculus with Applications in Mechanics. Wiley
Online Library, New York (2014)

13. Balachandran, K., Kiruthika, S., Trujillo, J.: Existence of solutions of nonlinear fractional pantograph equations. Acta
Math. Sci. 33(3), 712–720 (2013)

14. Bazgir, H., Ghazanfari, B.: Existence of solutions for fractional integro-differential equations with non-local boundary
conditions. Math. Comput. Appl. 23(3), 36 (2018)

15. Belmekki, M., Nieto, J., Rodriguez-Lopez, R.: Existence of solution to a periodic boundary value problem for a
nonlinear impulsive fractional differential equation. Electron. J. Qual. Theory Differ. Equ. 2014, 16 (2014)

16. Borisut, P., Kumam, P., Ahmed, I., Sitthithakerngkiet, K.: Nonlinear Caputo fractional derivative with nonlocal
Riemann–Liouville fractional integral condition via fixed point theorems. Symmetry 11(6), 829 (2019)

17. Choi, J., Agarwal, P.: A note on fractional integral operator associated with multiindex Mittag-Leffler functions. Filomat
30(7), 1931–1939 (2016)

18. Derfel, G., Iserles, A.: The pantograph equation in the complex plane. J. Math. Anal. Appl. 213(1), 117–132 (1997)
19. Ergören, H., Kılıçman, A.: Non-local boundary value problems for impulsive fractional integro-differential equations in

Banach spaces. Bound. Value Probl. 2012(1), 145 (2012)
20. Fec, M., Zhou, Y., Wang, J., et al.: On the concept and existence of solution for impulsive fractional differential

equations. Commun. Nonlinear Sci. Numer. Simul. 17(7), 3050–3060 (2012)
21. Gaul, L., Klein, P., Kemple, S.: Damping description involving fractional operators. Mech. Syst. Signal Process. 5(2),

81–88 (1991)
22. Iserles, A.: On the generalized pantograph functional-differential equation. Eur. J. Appl. Math. 4(1), 1–38 (1993)
23. Iserles, A., Liu, Y.: On pantograph integro-differential equations. J. Integral Equ. Appl. 6(2), 213–237 (1994)
24. Jain, S., Agarwal, P., Kilicman, A.: Pathway fractional integral operator associated with 3m-parametric Mittag-Leffler

functions. Int. J. Appl. Comput. Math. 5, 115 (2018)
25. Jarad, F., Abdeljawad, T.: A modified Laplace transform for certain generalized fractional operators. Results Nonlinear

Anal. 1(2), 88–98 (2018)
26. Kilbas, A.: Theory and applications of fractional differential equations
27. Krasnoselskii, M.: Two remarks about the method of successive approximations. Usp. Mat. Nauk 10, 123–127 (1955)
28. Li, B., Gou, H.: Existence of solutions for impulsive fractional evolution equations with periodic boundary condition.

Adv. Differ. Equ. 2017, 236 (2017)
29. Li, D., Liu, M.: Runge–Kutta methods for the multi-pantograph delay equation. Appl. Math. Comput. 163(1), 383–395

(2005)
30. Li, X., Chen, F., Li, X.: Generalized anti-periodic boundary value problems of impulsive fractional differential equations.

Commun. Nonlinear Sci. Numer. Simul. 18(1), 28–41 (2013)
31. Liu, M., Li, D.: Properties of analytic solution and numerical solution of multi-pantograph equation. Appl. Math.

Comput. 155(3), 853–871 (2004)
32. Liu, Y.: Survey and new results on boundary-value problems of singular fractional differential equations with impulse

effects. Electron. J. Differ. Equ. 2016, 296 (2016)
33. Magin, R.L.: Fractional Calculus in Bioengineering, vol. 2. Begell House, Redding (2006)
34. Podlubny, I.: Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential

Equations, to Methods of Their Solution and Some of Their Applications. Elsevier, Amsterdam (1998)
35. Rudolf, H.: Applications of Fractional Calculus in Physics. World Scientific, Singapore (2000)
36. Samko, S.G., Kilbas, A.A., Marichev, O.I., et al.: Fractional Integrals and Derivatives, vol. 1. Gordon & Breach, Switzerland

(1993)
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