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1 Introduction

Recently, fractional calculus gained considerable interests and significant theoretical de-
velopments in many fields and many studies have been achieved in this field [1-14]. Due
to the fact that the stochastic models are more realistic than the deterministic models,
we concentrate our study in this paper on the Wick-type stochastic time-fractional Reg-
ularized Long Wave-Burgers equation (RLWBE) with conformable derivative (cd). A lot
of research on stochastic fractional differential equations has been done recently [15—
18]. Ghany and Hyder [15] obtained analytical solutions to stochastic time-fractional KdV
equations of the Wick-type, Ghany and Zakarya [16] obtained exact traveling wave solu-
tions to a stochastic Schamel KdV equation of Wick-type, in [17] is analyzed a stochastic
fractional KdV equation with cd, in [18] is used a white noise functional approach for the
fractional coupled KdV equations and are obtained new soliton solutions. In this paper,
we will analyze the time-fractional RLWBE.

The RLWBE with the aid of cd is given by [19, 20]

Dlp(se,T) + 8D)p(se, T) + e(T)p(36,T)Dlp(se, T) + )L(I)Din(%, 7)

+ wDith(%’ 7:) =0,
(1.1)
t>0, 0<n<l,

(x1)eRxR,, 0<n<l,
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where £(7), A(7) and are limited measurable or integrable functions on R,. Dp(s, 1) is
the cd operator and § and v are real valued constants. In [19] are obtained some solutions
of this equation by using the modified Kudryashov method. Zhao and Xuan [20] investi-
gated the convergence and existence conditions of solutions for the RLWBE. Bona et al.
[21] analyzed the integer ordered type of this equation for an evaluation modeled for wa-
ter waves. Zhou and Liu [22] obtained kink type waves for the RLWBE. Inan et al. [23]
acquired the hyperbolic and trigonometric solutions for this equation. Bas and Kilic [24]
obtained the complex solutions by using an algebraic method.

The cd operator was exposed in [25]. This derivative operator can reform the failures
of the other definitions. This important operator is the easiest, most natural and effectual
definition of the fractional derivative for order n € (0, 1). We should note that the definition
can be generalized to involve any 7. All the same, the order 7 € (0, 1) is the most influential
order.

We say that the conformable fractional differentiability of a function f : [0,00) > R is
nothing else than the classical differentiability. Clearly, the conformable n-derivative of f
at some point x > 0, where 0 < 7 < 1 is the pointwise product x'7f’(x) [26].

The cd of order 1 € (0, 1) is described by the following statement [25]:

Df(e) = lim L EF NSO

lim 5 f:(0,00) = R.

The definition represents a natural formation of normal derivatives. Furthermore, the
expression of the definition represents that it is the most natural, and the most effectual
definition. The definition for 0 < 7 < 1 gives the classical expressions on polynomials.

Several characteristics of the cd are given by [25-27]

(@) DMt =at*,Vn R,

(b) D"(fg) =fiD"g + &D"f,

(©) «D"(fog) = £ "¢ (t)f"(g (1)),
Nf_ Ul
(@) D"(}) = “PLFL,
This derivative is more advantageous than others because it is easy to apply. Recently, there
have been several researches on the conformable form of fractional calculations [27-31].
The stochastic model of Eq. (1.1) in the Wick sense with conformable derivatives can be

given in the following process:
DIP + (8 + £(1)OP)ODIP + A(1)ODP + <DL P = 0, (1.2)

where “$” is the Wick product on the Kondratiev distribution space (S)_;, £(7) and A(7)
are (S)_1-valued functions [18].

In order to obtain the exact solutions of the random RLWBE with conformable deriva-
tive, we only consider it in a white noise environment, that is, we will discuss the Wick-type
stochastic RLWBE (1.2).

Our aim in this work is to obtain a new stochastic soliton and periodic wave solutions
of the Wick-type stochastic RLWBE with the aid of cd. We use the modified sub-equation
method [32, 33], white noise theory, and Hermite transform to produce a new set of exact
soliton and periodic wave solutions for the RLWBE with cd. Moreover, we apply the inverse
Hermite transform to obtain stochastic soliton and periodic wave solutions of the Wick-
type stochastic RLWBE with the aid of cd. Finally, by an application example, we show
how the stochastic solutions can be given as Brownian motion functional solutions.
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2 Exact solutions of Eq. (1.1)
In this part, we will investigate exact solutions of RLWBE. Using the Hermite transform
of Eq. (1.1), we use the deterministic equation

D"P(5,7,2) + (8(z,2) + E(z,2)0P(5, 7,2)) 0D P(5, 7, 2)
+2(1,2)OD? P3¢, T,2) + ¥ (1, 2)D, P32, T,2) = 0, (2.1)
where z = (z1,2y,...) € (CN), is a parameter. To obtain traveling wave solutions to Eq. (2.1),

we introduce the transformations #(t, z) = &(t,2), A(t,2) = A(7,2), P(36,7,2) =p(x,1,2) =
p(& (5, 1,2)) with

5(%,r,z)=/<(ﬁ> +w‘/t9(f,z) 5
n S

where k, @ are arbitrary constants and 6 is a nonzero function to be determined. Hence,
Eq. (2.1) can be converted to the following NODE:

2 3
[w@ + k((S + e(r,z)p)]j—g + A(r,z)kzj—éf: + 1/fk2w9% =0. (2.2)

« Considering the solution of Eq. (2.2), we can write it as a series expansion solution as

follows:
pE) =) i, G E)+ Y _Pilr,2)G (&), (2.3)
i=0 i=1
where o; (i =0,1,...,n), B; (i=1,2,...,n) are functions to be determined later and

G(&) satisfies the Riccati equation as follows:
G(¢)=0+G (&), (2.4)

where o is an arbitrary constants.

+ N is obtained with the aid of a balance between the highest order derivatives and the
nonlinear terms in Eq. (2.2).

A few special solutions of Eq. (2.4) are given by [34]:

(1) Wheno <0,

Gi(§) = —vT tanh, (V=0E),  Gal§) = —v/=o coth, (=58,

(2) Wheno >0,

G3(§) = Vo tan, (Vo§), Ga(§) = Vo cot,(Vo§).

(3) When o =0, p = const.,

rd+n)

Gs(£) = - Fep

(2.5)
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Remark. The generalized trigonometric and hyperbolic functions are defined as [2]

E,(i§") — Ey(—iE") I(Ey (i) + Ey(=i8"))

wn® =i Gen B ey "7 R @ £ e 06
_E ") ~E,(-£") _EE") + Ey(-£") '
tanh, (&) = E, @)+ By (&)’ coth,(§) = E (6 —Ey (&N

where E, (&) = Zl 0 F(1€+m) is the Mittag-Leffler function.

By balancing p% with 2 F in Eq. (2.2), it is found that N = 2. Then we can choose the
solution of Eq. (2.2) to be given by

PE) = ap + 1 G(E) + 02 G2(E) + B1G 1 (E) + PG 2(8), (2.7)

where G(&) satisfies Eq. (2.4).

Now, replacing (2.7) and (2.4) into (2.2), by equating all coefficients of G(&§), we can solve
the equations. Then we obtain the following groups of solutions.

One of the obtained these groups is given by

b 12k2A(7,2)? 1< 1 )
g =— - + + 80 |y,

e(t,z)  25e(t,2)%ay k2
2 2
12/()\,(1’,2) 4’()\(‘[, Z)(_258(T»Z)2U - %)
o =—"7, = )
! 5¢(t,2) ! 125¢(t,2)? 28)
864k (1,2)* 300/(2)»(1 2)2oa :
,3 - e(t,2)* e(1,2)? - 6256 O[2
’ 687503 ’
et 2)a
12ky

The exact solutions of Eq. (2.1) are given by:
(1) Wheno <0,

Ge.2) b 12k2A(7, 2)? N 1/ 1 .3
”,7,2) = — - —\ o
P 12\ k2y =

e(t,z)  25e(t,2)%ay

12/(}» L
(, Z)«/ o tanh <«/ (k(x—)
5¢(t,2) n
¢ elea 4k (7, 2)(=25¢(t, 2)%0 — KM’
_ d _ ]
w/a Tl=n T)) 125¢(t,2)3 /-0

" ¢ e(t,2)an
x coth,, («/—a <k<x—) - w/ 121/«// dr))
n a T

86akta(r. )t 300k%(7,2)%0 a2
(t.2)* e(t,2)2

6875050

- 62502

e(1,2)an

_cothf](ﬁ (k(%) —w / t T )) (2.9)

Get.2) b 12k2A(7, 2)? L 1/ 1 .3
#,T,2) = — — o
b2 e(t,z)  25e(t,2)%ay kzlp
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12kA(z, ] ¢ ety

L1202 o (Vo k(2 _w/ e
se(.2) n L, TiTn
4k (T, 2)(=25¢ (1, 2)%0 — 3K’

ay xn
125¢(7,2)3/—0 tanh,, (ﬁ (k(;>

e(z2)ay 864k r(t. )t 300k2A(7,2)%0 a3 62502 062

" ok 4
)
a T 6875030

e(t,2)an

xtanh% (ﬁ(k(%rl) —w/at izlklfv dr )) (2.10)

(2) Wheno >0,

» b = - — el 8
p3(3,7,2) c0)  2:0. 0% + i + 80

e(t,2)ap
12kA( " ; e(m2ay
12k fzftan,, Vol k x —zzr/ kv
5¢(t,z) 1 e

4k)‘-(T,Z)(—258(‘L’,Z)20‘ — 361‘2\#) v
+ 2 cot, <ﬁ<k<_)

) 12k%0(1,2)> 1 ( 1 )
(2%)

125¢(t,2)3/0 n
(z2) 864k%A(z,2)F  300k2A(7,2) 2003
—w /t Feri‘Zz dr et £(1,2)2 2 —6250° a2
a T 6875030
e ¢ (T2
x cot, (ﬁ(k<—) - w/ e dr )) (2.11)
n . T
( ) b) 12k20(1,2)2 1 (1 o
»,T,2) = — - + —| — 4+ 80
P e(r,z)  25e(t,2)%ay K2y ®2

12kk(1: ) x

2 o 2) o 0]
5¢(t,2) 7 i

410‘(‘5, Z)(—258(‘L',Z)2o' — W) o
t ol 2
’ 1256(t,2)3 /o an,, (ﬁ ( < . )

(T 2)ay 86akta(r,2)t  300K*A(r.2)*003 695070t
2

¢ Elnz)ay 2 )
—w f 12kyr dr &(t,2) (t, 2)3
a T 6875030

U ¢ et2ay
xtang(ﬁ(k<%>_wf Zkﬁ it )) o1

(3) When o =0, p = const.,

8 12/(2)»(1',,2)2 1 1
ps(s,1,2) = Ce(t,z) 256(1, 22y 12 (m + 80)a2
12k (t,2) I'1+n)
5¢e(t,2) T

) - 2 T dep v

4ka(t,z)(-25¢(t,2)%0 — w) o
‘ —((+(5)

1256(7,23 I (1 + 1) )
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¢ e2)ay n
_zz)'/ 1211(1// dl’) +/0)
a ‘[ -
864k*A(r9)* _ 300K%A(z2) %003 — 6250 %ax
2

e(1,2)% e(t,2)?

6875a5 (1 + n)?

o ¢ e(r2)an n 2
x ((k(;)—w/ o dr) +,0> : (2.13)

3 White noise functional solutions of Eq. (1.2)

In this section, we apply the inverse Hermite transform and Theorem 4.1.1 in [35] to in-
vestigate white noise functional solutions of Eq. (1.2). The characteristics of generalized
exponential, trigonometric and hyperbolic functions show that there exists a bounded
open set GCRx Ry, a < 00, b >0, such that the solution p(s, 7,2z) of Eq. (2.1) and all
its conformable derivatives which are involved in Eq. (2.1) are uniformly bounded for
(56,7,2) € G x K,(b), continuous with respect to (5, 7) € G forall z € G x K,(b) and ana-
lytic with respect to z € K, (b), for all (s¢,7) € G. From Theorem 4.1.1 in [35], there exist
P(5,7) € (S)_1 such that p(s¢, 7,2) = I~’(%, 1)(z) for all (3¢, 7,2) € G x K, (b) and P(5¢, 7) solves

Eq. (1.2) in (S)-1. Specially we can choose oy = r'f’f’;((?) Then, by using the inverse Hermite

transform for Eqs. (2.7)—(2.11), we will analyze the white noise functional solutions of
Eq. (1.2) for () > 0, A(7) > 0 as given below.
(I) Exact stochastic hyperbolic solutions:

Ya(r)

PiGat)=-25 - we(r)

e(t)  25e(t )<>2<>(er\ r))

) 12k20(1) %2 <

W(r)
| 12k0h( 12k§>’;”
L vV (i) - [ R

4k (7)O(=25¢8(1)2 Q0 — 36k20A(x)%2 <>2 ( ( )

( '//Mr) )02
coth

125¢( t)<>3«/—<7

12k<>
TN
g6akton(r)0t  300K2A(r)O200 (LT )02

we(r) 2 &4
8(‘[)04 - 8(‘[)02 - 6250 <>( ))
6875(L20) %30

n t ”77
X coth% («/—0 (k(x—) - w/ 12];—01/' dr)), (3.1)
n a T
<

) 1225 (T) <2 1/ 1
Pz(%,r)z————+— —— + 80
e(t)  256(1)O(LAT)  12\KY

e(7)! ;Q((?)

[=5e)
()

12k<$A(T)

n
V=o coth, [ v/~0o [ k '\ »

5¢(t) ”

2 o2

4k (T)(=258(T) 200 — %)
- we(t tanh
125¢(1)93/=0c anhy
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e()o( LMD

t we(T)
—w / 12’;70"’ dr))
a T
soakbor(r)®t 300K 200 (2HT)O? 625020 L1D) o4
£(r)% - £(7)°2 - 6250 <>(wa(r))
YAT) \o3
6875(F(1_))<> o

e(r)o( LA

we(T)

x tanh? (ﬁ(/{(%) - /at 1172];73// dr)). (3.2)

(II) Exact stochastic trigonometric solutions:

8 12620 (1)%? 1/ 1 YA(t)
P3(s2,7) = Ten) 258(T)<>2<>—(£§_<(?)) + ﬁ(@ + SG)Q(W(T))

—IZI(QA(T)\/Etan,,(\/E(kCC—n)
5¢(7) n

, e(7)( Z/,);((z;) 4k)¥(f)<>(—258(1’)2<>o' _ 36k20A(r)<>2)

(Z/,);(-r[) )2
- w/ 71215?1/ dr)) + = =
p Tl-n 125¢(1)3, /o

e(r)o( LA

xn t we(T)
x cotn<\/5(k(—) —w/ w;—owdr>)
n a T
86akton(r)®t  300KZA() 200 (XAD)02 2 g PAT) \ o
(r)%4 B e(r)92 - 6250 <>( ws(r))

6875(%)030

e(r)o( LMD

we(T)

X cotf] <\/E<k(%) -w /t ljliiil;// dr)), (3.3)

8 12Kk2OA(1)°? 1/ 1 YA(T)
A0 =y m 25e(r)020( L) T T2 (W ' 86><><we(r))

+

s(e)o(LAD))

12k " A Gl
—L(T)\/Ecot,, Jo [k * —w/ _ kv
5¢() n a T

250 (7)02
4 (1) (—25¢(t)> 0 — %)

we(t)
125¢(1)3 /o

+

s(@)0(2H)

we(T)

n t — @98t
X tan, <ﬁ</((x—) - f ljliiil;// dr))
n a

YA(T) \&2
864k (1) 300k2k(r)<>2<>a(ws(r)) )
£(7)0% - £(7)02 - 6250 Q( ws(r))
6875(%)030

e(r)o( L2

we(T)

xtani(ﬁ(k(%) —w/tljliiﬁjdr)) (3.4)
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(IIT) Exact stochastic wave solutions:

k2 2
Py(ot) = - — Lﬁ) . aﬁ +8(,)<>(w<r>)

&(t) 258(‘[)020(% we(T)
12kOA(T) I'(1+n)
5¢(t) o2
((k( % wf lf’fo,;” dzT)" + p)

(7)< (=256 (1)200 — %) .
wel(t /
125e(t)93ST (1 + 1) <<(( n )

s(r)o (L)

¢ we(T) n
12k
- zzr/ % dr) + ,o>
TN
a

86akbon ()0t 300K%A(r )0205(,‘/;12 )02

s T 7 ‘625"20(%3
6875(L4B)O3 G (1 + 1)

)<>4

s(D0(L2D)

n t = n 2
X <(k(%>—w/a ﬁ%dt) +p) . (3.5)

In this section, we investigate a special application example to represent the availability of

4 Example

our results and to confirm the real assistance of these results. We explain that the solutions
of Eq. (1.2) are strongly dependent on the form of the given functions &(z) and A(t). So,
for dissimilar forms of &(7) and A(t), we can find dissimilar solutions of Eq. (1.2) which
come from Egs. (3.1)—(3.5). We illustrate this by giving the following example.

When n =1,

tan, (x) = tan(x), cot, (x) = cot(x), tanh, (x) = tanh(x),

coth, (x) = coth(x), E, (x) = exp(x).

Suppose A(t) = 3 ¢(r) and &(t) = f(r) + pW:, where 3 and p are arbitrary constants,
f(7) is a limited mensurable function on R, and W is the Gaussian white noise which is
the time derivative (in the strong sense in (S)_;) of the Brownian motion B;. The Hermite
transform of W is given by W, (z) = Yoz fot sW,(t) dt [36]. Using the definition of W, (z),
Egs. (3.1)—(3.5) yield the white noise functional solution of Eq. (1.1) as follows:

(et = ) 12k%92 1/1 g v
O Erv A (Ww)w

v (Vo (e g [rae o (-5 ) | +))

4kd(~250 — ?’6@#)
125./—-0

ccon(vae (ks 2 [+ Z)) 1))

Page 8 of 12
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864k*er3 — 300k200 2w — 625029 L

6875930
2
xcothz(\/_<kx—ﬁ{ fr)dt+,o<B —7>} c)), (4.1)
Py(oe,7) = 8 126292 1/ 1 g Yo
2\, T _—f(‘C)+,OW1; - 25(%3) +E(W + o)—
2
12/(8\/_coth(\/_(kx——{ f(z dt+p<B ——)} c))
4kd(-250 — 3"’@#)
125J=
2
X tanh<\/_<kx— —{ f(r)dr + p(B - ?)} c))
864k*dw3 — 300k200 Y 2w — 625028"’;
B 6875y 30
2
xtanh2<\/—<kx—ﬁ{ f(r)dr+p<B ——>}+c)>, (4.2)
R 12627 1/ 1 Yo
PB(%,T) = _f(l') A IOWT — 25(%) + E(W + 80’)—
2
—%J—tan<f(kx——{ f(r)dt+p<B —7>} c))
4kd(-250 - %)
* 1250
2
X cot(\/_<kx— ﬂ{ f(r)dr +,O(B - —)} c))
864k4 9w ® — 300k2d0 2w — 625020 L
* 687530
t 2
xcot2<«/$<kx—laﬁ{ f(r)dr+p(Br—%>} +c)), (4.3)
Pu(oe,7) = 8 12k%9> 1 ( 1 8o | V2
ant __f(r) + pW; B 25(‘/’_3) " E(W * U)g

-2 reor( Vo (- ] [rwrae e o(5- 5 ) o))

4kd(-250 — 36’<2‘f’2)

125,/0

(o o ()] )

864k*dw 3 — 300k2d0 Y 2w — 625020 ‘%
6875Y30

><tanZ(J_<kx—laTk{/tf(t)dr+,o(Br—%2>}+c>), (4.4)

+

+

Page 9 of 12
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Py(o2,7) 5 126232 1 (1 g Yo
,T) =— - +—| =+ —
s f(r)+ pW, 25(%) 12\ K2y i -
12ko 1
+

5 (ke - 1A [ f(@)dT + p(B: = D)} +0) + p)

4kd(-250 — 361;/2” ) 2
- 125 <(x—ﬁ{ f(‘E)d‘L'+p<B ——>}+c>+p>

864k*d7r® — 300k 00w — 625020 L
B 6875y3

(o] [ o5 Z)] o) ). -

where we have already used the following relations [33]:

2

tan®(B;) = tan(B - 3),
2

cot®(B;) = cot(Br - ),
2

tanh®(B;) = tanh <BZ - )

o T
coth¥(B;) = coth| B, — .

5 Final remarks

We analyzed the RLWBE with cd for deterministic and stochastic forms. In addition, we
studied a Wick-model stochastic RLWBE with cd. We investigate some exact solutions
with the aid of the modified sub-equation method, Hermite transform and white noise
theory. We obtained stochastic hyperbolic and trigonometric wave solutions via the in-
verse Hermite transform. Furthermore, we investigate an example, to show the stochastic
solutions can be obtained as Brownian motion functional solutions. Besides, if n = 1, then
the stochastic solutions (4.1)—(4.5) give a new set of stochastic solutions for the Wick-
model stochastic RLWBE with integer derivatives.

This study emphasizes that the modified sub-equation method is sufficient to solve the
stochastic nonlinear equations in mathematical physics. The applied method in this paper
is a standard, direct, and computerized method, which lets us do confusing and boring
algebraic calculations. It is shown that the process can be also applied to other nonlinear

stochastic differential equations in mathematical physics.
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