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Abstract
In this paper, an improved fractional-order model of boundary formation in the
Drosophila large intestine dependent on Delta-Notch pathway is proposed for the
first time. The uniqueness, nonnegativity, and boundedness of solutions are studied.
In a two cells model, there are two equilibriums (no-expression of Delta and normal
expression of Delta). Local asymptotic stability is proved for both cases. Stability
analysis shows that the orders of the fractional-order differential equation model can
significantly affect the equilibriums in the two cells model. Numerical simulations are
presented to illustrate the conclusions. Next, the sensitivity of model parameters is
calculated, and the calculation results show that different parameters have different
sensitivities. The most and least sensitive parameters in the two cells model and the
60 cells model are verified by numerical simulations. What is more, we compare the
fractional-order model with the integer-order model by simulations, and the results
show that the orders can significantly affect the dynamic and the phenotypes.

Keywords: Delta-Notch signaling pathway; Fractional-order differential equations;
Local stability analysis; Sensitive analysis

1 Introduction
The Drosophila large intestine occupies a major middle portion of the hindgut and is sub-
divided into dorsal and ventral domains with distinct cell types, and a one-cell-wide strand
of boundary cells is induced between them for wild-type embryos. Takashima et al. [1] re-
ported that the identity and localization of boundary cells are mainly determined by Delta,
Notch, and activated Notch genes.

For such developmental patterning problems, computational approaches are breaking
new ground in understanding how embryos form. Different kinds of computational strate-
gies [2, 3] have been proposed. For example, in 2002, Matsuno et al. [4] analyzed the mech-
anism of Notch-dependent boundary formation in the Drosophila large intestine by ge-
nomic object net (GON). Besides, ordinary differential equation (ODE), partial differential
equation (PDE), and colored Petri nets are also employed to describe the developmental
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patterning [5]. The research of the boundary formation in the Drosophila large intestine
in vivo has been widely explored, but the research in computing is scarce.

Fractional-order systems have been applied in biological systems to better understand
the complex behavioral patterns [6–15]. The fractional-order differential equation pro-
vided a powerful tool for characterizing memory and hereditary properties of the systems
when compared to the integer-order models, and these effects cannot be neglected. For
instance, Carla et al. [15] proposed a fractional-order differential equation model to an-
alyze the clinical implications of diabetes mellitus in the dynamics of tuberculosis trans-
mission and proved the stability of disease-free and endemic equilibriums based on the
reproduction number. Almeida et al. [11] described the dynamic of SEIR-type epidemics
with treatment policies by the fractional-order differential equations. The local asymptotic
stability of two equilibriums was proved and the numerical simulations were presented to
illustrate the conclusions. In addition, the memory property of the fractional-order differ-
ential equation allows the integration of more information from the past, which translates
in more accurate predictions for the model. For example, in 2012, Diethelm et al. [8] pro-
posed a fractional-order differential equation model for the simulation of the dynamics of
a dengue fever outbreak. By simulations, the author proved that the nonlinear fractional
order differential equation model can more accurately simulate the dynamics of infectious
diseases than the classical ordinary differential equations. In 2013, Gilberto et al. [9] pro-
posed a nonlinear fractional order model to explore the outbreaks of influenza A(H1N1),
and the results showed that the epidemic peak of SEIR fractional epidemic model is more
consistent with the peak of the real epidemic data and the mean square error is lower than
in the classical model. What is more, in 2020, Lu et al. [16] proposed a fractional-order SEI-
HDR system to analyze the dynamic behavior of COVID-19. Similarly, the results showed
that the fractional-order model also has a better fitting of the data on Beijing, Shanghai,
Wuhan, Huanggang, and other cities when compared with the integer-order system. Be-
cause of the above-mentioned research, we found that the fractional-order equations may
have more potential in application on a real-life system.

With the aforementioned ideas in mind, the Notch signaling pathway is highly conserved
in evolution and has significant hereditary properties. Fractional-order differential equa-
tion seems much suited for modelling the Notch signal pathway. Therefore, fractional-
order differential equations were used to model the mechanism of Notch-dependent
boundary formation in the Drosophila large intestine.

The purpose of this paper is to analyze the local asymptotic stability of two equilibriums,
interpret the experimental results of the boundary cell patterning in the large intestine
published in [1, 17, 18] (see Fig. 1), and get the following scenarios (Fig. 1(a)–1(c)) by
adjusting sensitive parameters in our model.

2 The improved mathematical model
In 2017, our previous work [18] proposed the following model:

⎧
⎪⎪⎨

⎪⎪⎩

dDi
dt = λ

1+�·Ai
– d1Di –

∑
NG(i) f1 · Di, 1 ≤ i ≤ NC,

dNi
dt = λN – d2Ni +

∑
j∈NG(i) f2 · Dj – aNi

bDi+Ni
,

dAi
dt = –d3Ai + aNi

bDi+Ni
,

(1)
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Figure 1 The experimental result of the boundary
formation in the Drosophila large intestine published
in [1, 17, 18]. (a) The phenotype of wild type; (b) to
(c) The phenotype of over-expression of Notch. Each
filled circle represents a boundary cell. D and V
denote the dorsal and ventral domains, respectively

Figure 2 The mechanism of Delta-Notch signaling pathway in two cells

where Di, Ni, and Ai represent the concentration of Delta proteins, inactive, and active
Notch proteins in ith cell, respectively. λ is the production of Delta, and � is the inhi-
bition coefficient caused by activated Notch. This is because activated Notch can inhibit
the production of Delta in the same cell. di, i = 1, 2, 3, means the degradation rate of Delta,
inactive and activated Notch. f1 denotes the binding rate between the Delta and the neigh-
boring Notch in ith cell. Similarly, f2 denotes the binding rate between the Notch and the
neighboring Delta in ith cell. λN denotes the production rate of inactive Notch. a repre-
sents the transformation rate of Notch proteins from the inactive state to the active state,
while b describes the inhibition effect of Delta on Notch.

However, Notch signaling pathway is highly conserved in evolution, and the fractional-
order differential equation can powerfully characterize memory and hereditary properties
of systems when compared to integer-order models. Therefore, the fractional differential
equations are employed to model the Notch signal pathway in this paper.

According to the mechanism of Delta-Notch signaling pathway in two cells (Fig. 2), when
a Delta ligand binds to the neighboring Notch in ith cell, the binding rate is related to
the concentration of the Notch receptor; therefore, we use

∑
j∈NG(i) f1DiNj instead of the

former
∑

j∈NG(i) f1Di. Similarly, we change
∑

j∈NG(i) f1Ni into
∑

j∈NG(i) f1DjNi. What is more,
if the production rate of active Notch is aNi

bDi+Ni
, and when the expression of Delta is 0, the
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concentration of active Notch is a
d3

in two cells. This is a contradiction. Because if there
is no Delta ligand, the concentration of active Notch will be 0 in biological knowledge.
Therefore, compared to aNi

bDi+Ni
,

a(
∑

j∈NG(i) DjNi)
b+(

∑
j∈NG(i) DjNi)

is more appropriate.
Thus, an improved model based on fractional-order differential equations was proposed

as follows:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

dαDi
dt = λα

1+�αAi
–

∑
j∈NG(i) f α

1 DiNj – dαDi, 1 ≤ i ≤ NC,
dαNi

dt = λα
N +

∑
j∈NG(i) f α

1 DjNi – dαNi,
dαAi

dt =
aα (

∑
j∈NG(i) DjNi)

bα+(
∑

j∈NG(i) DjNi)
– dαAi,

(2)

where α (0 < α ≤ 1) is the order of the fractional derivative. dαDi
dt , dαNi

dt , and dαAi
dt denote

the Caputo fractional derivative. For example, the Caputo fractional derivative of dαDi
dt is

defined as follows:

dαDi

dt
= In–α dnDi

dtn =
1

Γ (n – α)

∫ t

0
(t – s)(n–α–1)D(n)

i (s) ds, (3)

where n – 1 < α < n, n ∈N and Γ (•) is the gamma function. When 0 < α < 1,

dαDi

dt
=

1
Γ (1 – α)

∫ t

0

D′
i(s)

(t – s)α
ds. (4)

Biologically speaking, dαDi
dt , dαNi

dt , and dαAi
dt represent the change rate of the concentration

of Delta proteins, inactive and active Notch proteins with hereditary properties.

3 Well-posedness
In the following, the well-posedness (uniqueness, nonnegativity, and boundedness of so-
lutions) of two cells is studied.

The model of system (2) has NC cells with 3 × NC differential equations. As a result, it
is impossible to analyze such a big system in theory. However, we can analyze two cells in
theory and map into high dimensional equations. Therefore, the dynamic characteristic
of two cells is explored.

Firstly, based on system (2), the model of two cells is proposed according to Fig. 2:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dαD1
dt = λα

1+θαA1
– f αD1N2 – dαD1,

dαN1
dt = λα

N + f αD2N1 – dαN1,
dαA1

dt = aαD2N1
bα+D2N1

– dαA1,
dαD2

dt = λα

1+θαA2
– f αD2N1 – dαD2,

dαN2
dt = λα

N + f αD1N2 – dαN2,
dαA2

dt = aαD1N2
bα+D1N2

– dαA2.

(5)

3.1 Nonnegativity and boundedness
Firstly, we prove that D1(t) ≥ 0, ∀t ≥ 0, assuming D1(0) > 0 for t = 0. Let us suppose that
D1(t) ≥ 0, ∀t ≥ 0 is not true. Thus, there exists t1 > 0 such that D1(t) > 0 for 0 ≤ t < t1,
D1(t1) = 0, and D1(t) < 0 for t > t1.
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From the first equation of (5), we have dαD1(t)
dt |t=t1 > 0. Based on Corollary 1 of [19], we

get D1(t+
1 ) > 0, which contradicts the fact D1(t+

1 ) < 0. Therefore, we have D1(t) ≥ 0, ∀t ≥ 0.
Using the same arguments, N1(t) ≥ 0, A1(t) ≥ 0, D2(t) ≥ 0, N2(t) ≥ 0, A2(t) ≥ 0, ∀t ≥ 0.
Next, we will prove the boundedness.

We define a function w(t) = D1(t) + N1(t) + A1(t) + D2(t) + N2(t) + A2(t). From equation
(5), we obtain

dαw(t)
dt

+ δw(t)

=
λα

1 + θαA1
– f αD1N2 – dαD1 + λα

N + f αD2N1 – dαN1 +
aαD2N1

bα + D2N1

– dαA1 +
λα

1 + θαA2
– f αD2N1 – dαD2 + λα

N + f αD1N2 – dαN2 +
aαD1N2

bα + D1N2

– dαA2 + δD1(t) + δN1(t) + δA1(t) + δD2(t) + δN2(t) + δA2(t)

≤ 2λα + 2λα
N + 2aα +

(
δ – dα

)(
D1(t) + N1(t) + A1(t) + D2(t) + N2(t) + A2(t)

)
.

Taking δ = dα , dαw(t)
dt +δw(t) ≤ 2λα +2λα

N +2aα . Based on [20], the boundedness is proved.

3.2 Existence and uniqueness
Consider a mapping F(X) = (F1(X), F2(X), F3(X), F4(X), F5(X), F6(X)), where

X =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

D1

N1

A1

D2

N2

A2

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, X̄ =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

D̄1

N̄1

Ā1

D̄2

N̄2

Ā2

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, and

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

F1(X) = λα

1+θαA1
– f αD1N2 – dαD1,

F2(X) = λα
N + f αD2N1 – dαN1,

F3(X) = aαD2N1
bα+D2N1

– dαA1,

F4(X) = λα

1+θαA2
– f αD2N1 – dαD2,

F5(X) = λα
N + f αD1N2 – dαN2,

F6(X) = aαD1N2
bα+D1N2

– dαA2,

then we have

∥
∥F(X) – F(X̄)

∥
∥

=
∣
∣
∣
∣

λα

1 + θαA1
–

λα

1 + θαĀ1
– f α(D1N2 – D̄1N̄2) – dα(D1 – D̄1)

∣
∣
∣
∣

+
∣
∣f α(D2N1 – D̄2N̄1) – dα(N1 – N̄1)

∣
∣

+
∣
∣
∣
∣

aαD2N1

bα + D2N1
–

aαD̄2N̄1

bα + D̄2N̄1
– dα(A1 – Ā1)

∣
∣
∣
∣

+
∣
∣
∣
∣

λα

1 + θαA2
–

λα

1 + θαĀ2
– f α(D2N1 – D̄2N̄1) – dα(D2 – D̄2)

∣
∣
∣
∣

+
∣
∣f α(D1N2 – D̄1N̄2) – dα(N2 – N̄2)

∣
∣

+
∣
∣
∣
∣

aαD1N2

bα + D1N2
–

aαD̄1N̄2

bα + D̄1N̄2
– dα(A2 – Ā2)

∣
∣
∣
∣

≤
∣
∣
∣
∣

λα

1 + θαA1
–

λα

1 + θαĀ1

∣
∣
∣
∣ + f α|D1N2 – D̄1N̄2| + dα|D1 – D̄1|
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+ f α|D2N1 – D̄2N̄1| + dα|N1 – N̄1| +
∣
∣
∣
∣

aαD2N1

bα + D2N1
–

aαD̄2N̄1

bα + D̄2N̄1

∣
∣
∣
∣

+ dα|A1 – Ā1| +
∣
∣
∣
∣

λα

1 + θαA2
–

λα

1 + θαĀ2

∣
∣
∣
∣ + f α|D2N1 – D̄2N̄1| + dα|D2 – D̄2|

+ f α|D1N2 – D̄1N̄2| + dα|N2 – N̄2| +
∣
∣
∣
∣

aαD1N2

bα + D1N2
–

aαD̄1N̄2

bα + D̄1N̄2

∣
∣
∣
∣ + dα|A2 – Ā2|

≤ λαθα

(1 + θαA1)(1 + θαĀ1)
|A1 – Ā1| + Mf α|D1 – D̄1| + Mf α|N1 – N̄1| + dα|D1 – D̄1|

+ Mf α|N1 – N̄1| + Mf α|D2 – D̄2| + dα|N1 – N̄1| + aαbα

∣
∣
∣
∣

D2N1 – D̄2N̄1

(bα + D2N1)(bα + D̄2N̄1)

∣
∣
∣
∣

+ dα|A1 – Ā1| +
λαθα

(1 + θαA2)(1 + θαĀ2)
|A2 – Ā2| + Mf α|D2 – D̄2| + Mf α|N2 – N̄2|

+ dα|D2 – D̄2| + Mf α|N2 – N̄2| + Mf α|D1 – D̄1| + dα|N2 – N̄2|

+ aαbα

∣
∣
∣
∣

D1N2 – D̄1N̄2

(bα + D1N2)(bα + D̄1N̄2)

∣
∣
∣
∣ + dα|A2 – Ā2|

≤ Mf α|D1 – D̄1| + Mf α|D1 – D̄1| + aαbαM|D1 – D̄1| + dα|D1 – D̄1|
+ Mf α|N1 – N̄1| + Mf α|N1 – N̄1| + dα|N1 – N̄1| + aαbαM|N1 – N̄1|
+ λαθα|A1 – Ā1| + dα|A1 – Ā1|
+ Mf α|D2 – D̄2| + Mf α|D2 – D̄2| + aαbαM|D2 – D̄2| + dα|D2 – D̄2|
+ Mf α|N2 – N̄2| + Mf α|N2 – N̄2| + dα|N2 – N̄2| + aαbαM|N2 – N̄2|
+ λαθα|A2 – Ā2| + dα|A2 – Ā2|

=
(
2Mf α + aαbαM + dα

)|D1 – D̄1| +
(
2Mf α + aαbαM + dα

)|N1 – N̄1|
+

(
λαθα + dα

)|A1 – Ā1|
+

(
2Mf α + aαbαM + dα

)|D2 – D̄2| +
(
2Mf α + aαbαM + dα

)|N2 – N̄2|
+

(
λαθα + dα

)|A2 – Ā2|
≤ L‖X – X̄‖,

where L = max{2Mf α + aαbαM + dα ,λαθα + dα}.
Therefore, the existence and uniqueness are proved.

4 Equilibriums and stability analysis
In what follows, the equilibriums, stability analysis, and simulations for the two cell model
are studied.

4.1 Equilibriums
In this part, the dynamic characteristic of two cells is explored and two scenarios (one is
the expression level of Delta is 0, another is not) are considered.

When the expression level of Delta is 0, namely λ = 0, the equilibrium is

D0
1 = D0

2 = 0, N0
1 = N0

2 =
λα

N
dα

, A0
1 = A0

2 = 0, E0 =
(

0,
λα

N
dα

, 0, 0,
λα

N
dα

, 0
)

.
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When the expression of Delta is normal or over-expression, the equilibrium is

E1 =
(
D1

1, N1
1 , A1

1, D1
2, N1

2 , A1
2
)
, and D1

1 = D1
2 =

dαN1
1 – λα

N
dαN1

1
,

A1
1 = A1

2 =
aα(dαN1

1 – λα
N )

dα[bαdα + (dαN1
1 – λα

N )]
,

where N1
1 = N1

2 is the solution of equation (6):

dαf αN2 +
(
d2α + λα

N f α
)
N – dαλα

N

=
λαd2αf αN2 + λαdαf α(bαf α – λα

N )N
(d2α + aαθαdα)N + (dαbαf α – dαλα

N – aαθαλα
N )

. (6)

Simplify equation (6) and get the following form:

dαf α
(
d2α + aαθαdα

)
N3 +

[(
d2α + aαθαdα

)(
d2α + λα

N f α
)

+ dαf α
(
dαbαf α – dαλα

N – aαθαλα
N
)

– λαd2αf α
]
N2

+
[(

d2α + λα
N f α

)(
dαbαf α – dαλα

N – aαθαλα
N
)

– dαλα
N
(
d2α + aαθαdα

)

– λαdαf α
(
bαf α – λα

N
)]

N – dαλα
N
(
dαbαf α – dαλα

N – aαθαλα
N
)

= 0. (7)

Define

B1 = dαf α
(
d2α + aαθαdα

)
,

B2 =
(
d2α + aαθαdα

)(
d2α + λα

N f α
)

+ dαf α
(
dαbαf α – dαλα

N – aαθαλα
N
)

– λαd2αf α ,

B3 =
(
d2α + λα

N f α
)(

dαbαf α – dαλα
N – aαθαλα

N
)

– dαλα
N
(
d2α + aαθαdα

)

– λαdαf α
(
bαf α – λα

N
)
,

B4 = –dαλα
N
(
dαbαf α – dαλα

N – aαθαλα
N
)
.

(8)

Then the equation becomes

B1N3
1 + B2N2

1 + B3N1 + B4 = 0. (9)

Calculate equation (9) and get the following solution:

N1 =
3

√
√
√
√–

q
2

+

√
(

q
2

)2

+
(

p
3

)3

+
3

√
√
√
√–

q
2

–

√
(

q
2

)2

+
(

p
3

)3

–
B2

3B1
, (10)

where p = 3B1B3–B2
2

3B2
1

, q = 27B2
1B4–9B1B2B3+2B3

2
27B3

1
.
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4.2 Stability analysis
In this subsection, the stability of E0 and E1 is explored [21–24]. Firstly, we compute the
Jacobi matrix as follows:

Jac =

⎡

⎢
⎣

–f αN – dα –f αD – θαλα

(1+θαA)2

f αN f αD – dα 0
aαbαN

(bα+DN)2
aαbαD

(bα+DN)2 –dα

⎤

⎥
⎦ . (11)

Then, we get the characteristic determinant

∣
∣SαI – Jac

∣
∣ =

∣
∣
∣
∣
∣
∣
∣

Sα + f αN + dα f αD θαλα

(1+θA)2

–f αN Sα – f αD + dα 0
– aαbαN

(bα+DN)2 – aαbαD
(bα+DN)2 Sα + dα

∣
∣
∣
∣
∣
∣
∣

. (12)

Let ξ = Sα and when there is no expression of Delta (λ = 0), the characteristic determi-
nant becomes

(
ξ + dα

)(
ξ + dα

)
[

ξ +
λα

N f α

dα
+ dα

]

= 0 (13)

and the corresponding eigenvalues are ξ1,2 = –dα , ξ3 = – λα
N f α

dα –dα . Obviously, | arg(S1,2,3)| >
απ
2 . Therefore, when λ = 0, the equilibrium E0 = (0, λα

N
dα , 0, 0, λα

N
dα , 0) is locally asymptotically

stable [21].
In order to verify the validity of the theoretical analysis results, the numerical simula-

tions have been done. According to our previous work [18], the parameters are shown
in Table 1, and the time span is [0, 4000]. The initial values are 0.5, 0.5, 0.5, 0.5, 0.5, 0.5,
respectively.

Based on the parameters in Table 1, we have calculated the equilibrium E0 = (0, 6.0165,
0, 0, 6.0165, 0) and the dynamical trends of Delta, Notch, and active Notch are shown when
λ = 0 (Fig. 3). The blue line represents the concentration of Delta, the red line repre-
sents the concentration of Notch, and the green line represents the concentration of active
Notch. Besides, by changing the order (α) of fractional differential equations from 0.9 to
0.99, the trends are the same, but the equilibrium is bigger with the increase of the order.

The numerical solution of system (5) has the following form:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

D1(tk) = [ λα

1+θαA1(tk–1) – f αD1(tk–1)N2(tk–1) – dαD1(tk–1)]hq1 –
∑k

j=v c(q1)
j D1(tk–j),

N1(tk) = [λα
N + f αD2(tk–1)N1(tk–1) – dαN1(tk–1)]hq1 –

∑k
j=v c(q1)

j N1(tk–j),

A1(tk) = [ aαD2(tk–1)N1(tk–1)
bα+D2(tk–1)N1(tk–1) – dαA1(tk–1)]hq1 –

∑k
j=v c(q1)

j A1(tk–j),

D2(tk) = [ λα

1+θαA2(tk–1) – f αD2(tk–1)N1(tk–1) – dαD2(tk–1)]hq1 –
∑k

j=v c(q1)
j D2(tk–j),

N2(tk) = [λα
N + f αD1(tk–1)N2(tk–1) – dαN2(tk–1)]hq1 –

∑k
j=v c(q1)

j N2(tk–j),

A2(tk) = [ aαD1(tk–1)N2(tk–1)
bα+D1(tk–1)N2(tk–1) – dαA2(tk–1)]hq1 –

∑k
j=v c(q1)

j A2(tk–j),

Table 1 The parameters for simulation

Parameter λ f d λN a b θ α

Value 0/1000 0.01 0.01 0.07 0.01 200 1e6 0.9
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Figure 3 The dynamical trend of Delta, Notch, and active Notch when there is no expression of Delta (λ = 0).
(A) The dynamical trend of Delta and active Notch in cell 1. (B) The dynamical trend of Notch in cell 1. (C) The
dynamical trend of Delta and active Notch in cell 2. (D) The dynamical trend of Notch in cell 2

where Tsim is the simulation time, k = 1, 2, 3, . . . , N , for N = [Tsim/h], and (D1(0), N1(0),
A1(0), D2(0), N2(0), A2(0)) is the initial condition. The binomial coefficients c(qi)

j for ∀i are
calculated according to the relation c(q)

0 = 1, c(q)
j = (1 – 1+q

j )c(q)
j–1.

Next, the local asymptotic stability at E1 = (D1
1, N1

1 , A1
1, D1

2, N1
2 , A1

2) will be explored.
When λ �= 0, the characteristic equation is

ξ 3 +
(
f αN – f αD + 3dα

)
ξ 2 +

[

2dαf αN – 2dαf αD + 3d2α

+
aαbαθαλαN

(1 + θαA)2(bα + DN)2

]

ξ +
[

–d2αf αD + d2αf αN + d3α

+
aαbαθαλαdαN

(1 + θαA)2(bα + DN)2

]

= 0. (14)

Define

a3 = 1,

a2 = f αN – f αD + 3dα ,

a1 = 2dαf αN – 2dαf αD + 3d2α +
aαbαθαλαN

(1 + θαA)2(bα + DN)2 ,

a0 = –d2αf αD + d2αf αN + d3α +
aαbαθαλαdαN

(1 + θαA)2(bα + DN)2 .
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According to the Routh–Hurwitz criterion [21], the stable conditions are a3 > 0, a2 > 0,
a1 > 0, a0 > 0, and a2a1 – a3a0 > 0.

Proof a3 = 1 > 0 is obviously true.

a2 = f αN – f αD + 3dα

= f αN –
f αdαN – f αλN

dαN
+ 3dα =

f αdαN2 + (3d2α – f αdα)N + f αλN

dαN
.

If (3d2α – f αdα)2 – 4f 2αdαλα
N < 0, namely 9d3α+f 2αdα

4f 2αλα
N +6f αd2α < 1, we have a2 > 0. When

d3α+f 2αdα

4f 2αλα
N +2f αd2α < 1, a3 > 0, a2 > 0, a1 > 0, a0 > 0.

a2a1 – a3a0

=
(
f αN – f αD + 3dα

) ×
[

2dαf α(N – D) + 3d2α +
aαbαθαλαN

(1 + θαA)2(bα + DN)2

]

+ d2αf αD – d2αf αN – d3α –
aαbαθαλαdαN

(1 + θαA)2(bα + DN)2 > 0

= 2dαf 2αN2 – 2dαf 2αDN + 3d2αfN +
aαbαθαλαf αN2

(1 + θαA)2(bα + DN)2 – 2dαf 2αDN

+ 2dαf 2αD2 – 3d2αf αD –
aαbαθαλαf αDN

(1 + θαA)2(bα + DN)2 + 6d2αf αN – 6d2αf αD + 9d3α

+
3aαbαθαλαdαN

(1 + θαA)2(bα + DN)2 + d2αf αD – d2αf αN – d3α –
aαbαθαλαdαN

(1 + θαA)2(bα + DN)2 > 0

= 2dαf 2αN2 + 8d2αf αN – 4dαf 2αDN + 2dαf 2αD2 – 8dαf 2αD + 8d3α

+
aαbαθαλα(f αN2 – f αDN + 2dαN)

(1 + θαA)2(bα + DN)2 > 0

= 2dα
[
f 2α(N – D)2 + 4dαf α(N – D) + 4d2α

]
+

aαbαθαλα(f αN2 + dαN + λα
N )

(1 + θαA)2(bα + DN)2

= 2dα
[
f α(N – D) + 2dα

]2 +
aαbαθαλα(f αN2 + dαN + λα

N )
(1 + θαA)2(bα + DN)2 > 0.

Therefore, a2a1 –a3a0 > 0. Using the Routh–Hurwitz criterion [21], when d3α+f 2αdα

4f 2αλα
N +2f αd2α <

1, | arg(S1,2,3)| > απ
2 , equilibrium E1 = (D1, N1, A1, D2, N2, A2) is locally asymptotically sta-

ble.
All the parameters and initial values are the same except λ = 1000. The equilibrium is

E1 = (0.2349, 6.1065, 0.0405, 0.2349, 6.1065, 0.0405) and the simulation results are shown
in Fig. 4. Similarly, when the order (α) of fractional differential equations varies from 0.9 to
0.99, the trends are the same, and the equilibrium is bigger with the increase of order. This
suggests that the order of fractional differential equation can affect the equilibrium. �

5 Sensitivity analysis
Sensitivity analysis is a method to identify critical inputs (parameters) of a model and
quantify how input uncertainty impacts model outcome [25]. We conduct sensitivity anal-
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Figure 4 The dynamical trend of Delta, Notch, and active Notch when λ �= 0. (A) The dynamical trend of Delta
and active Notch in cell 1. (B) The dynamical trend of Notch in cell 1. (C) The dynamical trend of Delta and
active Notch in cell 2. (D) The dynamical trend of Notch in cell 2

Table 2 The sensitivity values of eight parameters

Parameters λ f d λN a b α θ

Si 5.27e–05 2.233 18.933 1.941 1.424 2.263 2.864 2.32e–07

ysis to investigate the significance of parameters by the Morris method. The basic idea is
to assess the change in the response output caused by a small variation of parameter.

5.1 Sensitivity values of eight parameters in the two cell model
Assume that the base effect of a model can be represented as the following equation:

di(j) =
f (x1, x2, . . . , xi–1, xi + �, xi+1, . . . , xn) – f (x1, . . . , xn)

�
, (15)

where di(j) is the base effect of the ith parameter in j group (j = 1, 2, 3, . . . , R). R is the
number of repeated sampling. n is the number of parameters. xi is the ith parameter, and
� is the small variation of parameter. f (•) is the response output. The sensitivity can be
calculated by the following equation:

Si =
1
R

R∑

j=1

∣
∣di(j)

∣
∣. (16)

The sensitivity values of eight parameters are shown in Table 2.
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Figure 5 The sensitivity test of d from 0.008 to 0.012. (A) The dynamical trend of Delta and active Notch in
cell 1. (B) The dynamical trend of Notch in cell 1. (C) The dynamical trend of Delta and active Notch in cell 2.
(D) The dynamical trend of Notch in cell 2

5.2 Sensitivity test in the two cell model
In this subsection, we test the sensitivity of parameters by numerical simulation. Firstly,
we verify parameters d and λ in the two cell model. Based on Table 1, the parameter d is
0.01, and we change d from 0.008 to 0.012 with a step 0.001. The results as shown in Fig. 5
illustrate that parameter d with small perturbations can have a large effect on the output
of Delta ligand (blue line) and Notch receptor (red line) in the two cell model.

Similarly, the parameter λ is 1000 at the beginning, and we change it from 600 to 1400
with a step 200. The results as shown in Fig. 6 suggest that there is no obvious change in
Notch receptor (red line) and only a little change in Delta ligand (blue line).

According to the numerical simulations above, the sensitive parameter can significantly
affect the expression of Delta ligands and Notch receptors, while the insensitive parameter
cannot.

5.3 Sensitivity test in 60 cells
Based on the sensitivity analysis in two cells, a 60 cell model with 180 dimensional
fractional-order differential equations has been verified using numerical simulation.

5.3.1 Phenotype changes due to parameter d changes
Firstly, 60 cells were arranged into 5 rows × 12 columns, and the parameter λ was defined
λ = 1000 in the first three rows, λ = 0 in the fourth and fifth rows. Other parameters were
chosen as in Table 1 except d = 0.018. Blue intensity denotes the expression of Notch lev-
els. Then, we get the wild-type phenotype dyed in deep color in the middle row and in
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Figure 6 The sensitivity test of λ from 600 to 1400. (A) The dynamical trend of Delta and active Notch in
cell 1. (B) The dynamical trend of Notch in cell 1. (C) The dynamical trend of Delta and active Notch in cell 2.
(D) The dynamical trend of Notch in cell 2

Figure 7 The wild-type phenotype dyed in deep
color in the middle row and in light color in others
when d = 0.018

light color in others. The wild-type phenotype obtained from the numerical simulation as
shown in Fig. 7 is consistent with the experimental findings (Fig. 1(a)).

Then, we decrease d from 0.018 to 0.001 with a step 0.001 and run simulation to obtain
the simulation results. When d = 0.012 and other parameters remain unchanged, we get
the mutant phenotype the first three rows of which are dyed in deep color and the fourth
and fifth rows in light color with over-expressed Notch in the first three rows. The mutant
phenotype is shown in Fig. 8 and is consistent with experimental findings (Fig. 1(b)). When
d = 0.001, the Notch in five rows is all over-expressed, and then five rows are all dyed in
deep color. The complete mutant phenotype is shown in Fig. 9 and is consistent with the
experimental findings (Fig. 1(c)).

So far, we have obtained the phenotypes of all the current experimental results through
numerical simulation by changing sensitive parameter d. This also indirectly shows that
the model established in this paper is effective.
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Figure 8 The mutant phenotype dyed in deep
color in the first three rows and in light color in the
fourth and fifth rows when d = 0.012

Figure 9 The complete mutant phenotype dyed in
deep color in all five rows when d = 0.001

Figure 10 The wild-type phenotype dyed in deep
color in the middle row and in light color in others
when λ = 1000

Figure 11 The wild-type phenotype dyed in deep
color in the middle row and in light color in others
when λ = 1500

Figure 12 The wild-type phenotype dyed in deep
color in the middle row and in light color in others
when λ = 2000

5.3.2 Phenotype changes due to parameter λ changes
In this subsection, we research how phenotype changes due to parameter λ changes.
Firstly, fix d = 0.018 and gradually increase λ from 1000 to 2000 with a step 200 and then
run simulation to obtain the simulation results.

It seems intuitively clear that all phenotypes (Figs. 10–12) are similar because they are
all dyed in deep color in the middle row and in light color in others when we increase λ

from 1000 to 2000. This also indirectly indicates that the effect of the parameter λ on the
phenotype is not significant.

In conclusion, the verification of sensitivity analysis above shows that sensitive parame-
ter d can obviously influence the phenotype, while relatively insensitive parameter λ can-
not. This suggests the sensitivity analysis in our model is reliable, and we can minorly
adjust the sensitive parameters to obtain ideal phenotypes.
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Figure 13 The dynamic between the fractional-order model and the integer-order model in two cells.
(A) The dynamical trend of Delta and active Notch in cell 1. (B) The dynamical trend of Notch in cell 1. (C) The
dynamical trend of Delta and active Notch in cell 2. (D) The dynamical trend of Notch in cell 2

6 Comparison between the fractional-order model and the integer-order
model

In this section, the comparison is done between the fractional-order model and the
integer-order model in two cells and 60 cells models.

6.1 The comparison in two cells
Firstly, the dynamic between the fractional-order model and the integer-order model in
two cells is compared, where the order is α = 0.9, 0.8, 0.7 in the fractional-order model and
α = 1 in the integer-order model (Fig. 13). The simulation results show that under the same
parameter value, although both the fractional-order model and the integer-order model
reach the equilibrium, the equilibrium point is different. For instance, when α = 0.9 the
equilibrium of the fractional-order model is (0.2349, 6.1065, 0.0405, 0.2349, 6.1065, 0.0405)
and the equilibrium of the integer-order model is (0.2073, 7.5000, 0.0302, 0.2073, 7.5000,
0.0302) when α = 1.

6.2 The comparison in 60 cells
In this part, the dynamic between the fractional-order model and the integer-order model
in 60 cells is studied to explore how orders affect the phenotype. Similar to the situation of
two cells, the dynamic trends of 60 cells are studied firstly. The results show that compared
to the integer-order model (the solid line), the equilibrium of the integer-order model (the
dotted lines) is obviously smaller (Fig. 14).
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Figure 15 The mutant phenotype dyed in deep
color in the first three rows and in light color in the
fourth and fifth rows when α = 0.7 and d = 0.004

Figure 16 The mutant phenotype dyed in deep
color in the first three rows and in medium color in
the fourth and fifth rows when α = 1 and d = 0.004

Next, the phenotypes have been analyzed between the fractional-order model and the
integer-order model in 60 cells. In this part, we only studied the effect of parameter d
changes on the phenotype, and the method of other parameters is similar. When α = 0.7
and d = 0.004, the first three rows were dyed in deep color and the fourth and fifth rows
were dyed in light color (Fig. 15). If α = 1 and d = 0.004, the first three rows were dyed in
deep color and the fourth and fifth rows were dyed in medium color (Fig. 16). Therefore, it
is necessary to study the orders because fractional order can result in different phenotypes.

7 Conclusion
In this paper, an improved mathematical model based on fractional-order differential
equations for the Delta-Notch dependent boundary formation in the Drosophila large in-
testine was proposed for the first time. Because Notch signaling pathway is highly con-
served in evolution and has significant hereditary properties, fractional differential equa-
tion which can better describe the memory characteristics and historical dependence of
biological systems was used. We then calculated two equilibriums and studied the local
asymptotic stability and also numerically illustrated the stability. Based on numerical sim-
ulation in the two cells model, we found that the order of the fractional-order differential
equation can significantly affect the equilibrium point.

Moreover, parameter sensitivity analysis showed that different parameters have differ-
ent sensitivities. The most and least sensitive parameters in the two cells model and the 60
cells model were verified by numerical simulations. The results demonstrated that a small
change of sensitive parameter can significantly affect phenotype, while insensitive param-
eters cannot. Based on our established model, sensitivity analysis can help us to explore
key parameters which can obviously affect phenotype, and we can get the ideal phenotype
by adjusting these sensitive parameters.

Finally, the comparison was done between the fractional-order model and the integer-
order model in two cells and 60 cells models. The results showed that the equilibriums and
phenotypes of the fractional-order model are actually different from those of the integer-
order model. For example, the expression of Notch is higher than that in the fractional-
order model.

In the following, we will do some experiments and estimate an appropriate fractional
order by the actual experimental data. What is more, we will compare and evaluate the
fitting effects between the fractional-order model and the integer-order model.
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