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Abstract
We study two hybrid and non-hybrid fractional boundary value problems via the
Caputo–Hadamard type derivatives. We seek the existence criteria for these two
problems separately. By utilizing the generalized Dhage’s theorem, we derive desired
results for an integral structure of solutions for the hybrid problems. Also by
considering the special case as a non-hybrid boundary value problem (BVP), we
establish other results based on the existing tools in the topological degree theory. In
the end of the article, we examine our theoretical results by presenting some
numerical examples to show the applicability of the analytical findings.
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1 Introduction
The fractional calculus has always been one of the most widely used branches of math-
ematics in other applied and computational sciences. This degree of importance is due
to the high flexibility of the tools and operators defined in this theory. On this basis,
researchers have been using various powerful fractional operators in recent decades to
model different types of existing natural processes in the world. In the meantime, because
modeling based on fractional operators yields more accurate numerical results than mod-
eling based on integer order operators, different generalizations of these fractional oper-
ators have been introduced by numerous mathematicians.

The fractional operators have developed over the years, and their importance has be-
come apparent more and more to researchers today. Instances of the application of such
fractional operators can be found in various sciences such as biomathematics, electrical
circuits, medicine, etc. [1–15]. All of these reasons have led researchers to find many as-
pects of the structure of the fractional boundary value problems and the hereditary prop-
erties of their solutions. In this regard, many researchers have been investigating advanced
fractional models [16–18] and related theoretical results and qualitative behaviors of such
boundary value problems [19–28].
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The fractional operators utilized in models of the current paper are the Hadamard and
Caputo–Hadamard integration and differentiation operators, respectively. In this regard,
one can point to some papers based on these operators; see, for example, [29–32]. In
more recent decades, the attention of researchers has been focused on designing newer
fractional hybrid BVPs subject to hybrid or non-hybrid conditions. For more details, see
[33–39]. More precisely, this novel aspect of fractional modeling initiated with a research
manuscript proposed by Dhage and Lakshmikantham in 2010 (see [40]). They turned to
a new family of differential equation entitled hybrid differential equation and then estab-
lished some useful existence criteria of extremal solutions by utilizing some basic inequal-
ities [40]. Two years later, Zhao et al. extended their work to fractional type models and
formulated a BVP relying on fractional hybrid differential equations [41]. Later, Ullah et
al. continued this process and employed a new structure of hybrid fractional modeling in
which both boundary conditions are presented in the hybrid framework by follows:

⎧
⎨

⎩

RDκ∗
0+ [ y(t)–p(t,y(t))

q(t,y(t)) ] = ψ(t, y(t)), t ∈ [0, 1],

[ y(t)–p(t,y(t))
q(t,y(t)) ]|t=0 = 0, [ y(t)–p(t,y(t))

q(t,y(t)) ]|t=1 = 0,

where q ∈ CR�=0 ([0, 1] ×R) is nonzero, both p and ψ are continuous real-valued functions
on [0, 1] × R and RDκ∗

0+ represents the Riemann–Liouville derivative of order κ∗ ∈ (0, 1]
[42]. In 2020, Baleanu et al. presented a novel construction of a fractional hybrid model of a
thermostat in which the thermostat controls the amount of heat based on the temperature
detected by its sensors [16]. This hybrid model is described by

CDκ∗
0+

[
y(t)

q(t, y(t))

]

+ Φ
(
t, y(t)

)
= 0, κ∗ ∈ (1, 2], t ∈ [0, 1],

with the fractional hybrid boundary conditions
⎧
⎨

⎩

D[ y(t)
q(t,y(t)) ]|t=0 = 0,

λCDκ∗–1
0+ [ y(t)

q(t,y(t)) ]|t=1 + [ y(t)
q(t,y(t)) ]|t=η = 0,

where λ > 0 denotes an arbitrary parameter, η ∈ [0, 1], and κ∗ – 1 ∈ (0, 1]. Moreover, D =
d
dt , CDγ

0+ is the Caputo derivative of order γ ∈ {κ∗,κ∗ – 1}, Φ ∈ CR([0, 1] × R), and q ∈
CR�=0 ([0, 1] × R) is nonzero [16]. By using the main ideas of these works, we are going to
investigate the Caputo–Hadamard fractional hybrid differential equation

CHDκ∗
1+

[y(t) – Λ(t, y(t),λ∗
1
∫ e

1 y(	 ) d	 ,HIγ ∗
1+ y(t))

Ψ (t, y(t),λ∗
2
∫ e

1 y(	 ) d	 ,HIμ∗
1+ y(t))

]

= Υ̂
(
t, y(t)

)
, t ∈ [1, e], (1)

with the mixed Hadamard integral hybrid boundary value conditions

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

CHD1+ [ y(t)–Λ(t,y(t),λ∗
1
∫ e

1 y(	 ) d	 ,HIγ ∗
1+ y(t))

Ψ (t,y(t),λ∗
2
∫ e

1 y(	 ) d	 ,HIμ∗
1+ y(t))

]|t=1

= ã1[ y(t)–Λ(t,y(t),λ∗
1
∫ e

1 y(	 ) d	 ,HIγ ∗
1+ y(t))

Ψ (t,y(t),λ∗
2
∫ e

1 y(	 ) d	 ,HIμ∗
1+ y(t))

]|t=1,

HIθ∗
1+

CHD1+ [ y(t)–Λ(t,y(t),λ∗
1
∫ e

1 y(	 ) d	 ,HIγ ∗
1+ y(t))

Ψ (t,y(t),λ∗
2
∫ e

1 y(	 ) d	 ,HIμ∗
1+ y(t))

]|t=e

= ã2[ y(t)–Λ(t,y(t),λ∗
1
∫ e

1 y(	 ) d	 ,HIγ ∗
1+ y(t))

Ψ (t,y(t),λ∗
2
∫ e

1 y(	 ) d	 ,HIμ∗
1+ y(t))

]|t=e,

(2)
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where κ∗ ∈ (1, 2], γ ∗,μ∗, θ∗ > 0, and λ∗
1,λ∗

2, ã1, ã2 ∈ R. Here, CHDκ∗
1+ represents the Caputo–

Hadamard fractional derivative of order κ∗, HIη

1+ is the Hadamard fractional integral
of order η ∈ {γ ∗,μ∗, θ∗}, Ψ : [1, e] × R

3 → R \ {0} is a nonzero continuous map, Λ ∈
CR([1, e] ×R

3), and Υ̂ ∈ CR([1, e] ×R).
By reviewing other papers published in recent years, we find that some researchers

have combined the existence theory with the topological degree theory and studied
different models using the existing analytical notions in this theory. For instance, one
can point to some published papers in this regard, such as [43–48]. In the light of
this, we address a special case of the Caputo–Hadamard hybrid BVP (1)–(2) in the se-
quel of the present paper. In other words, we set Λ(t, y(t),λ∗

1
∫ e

1 y(	 ) d	 ,HIγ ∗
1+ y(t)) = 0

and Ψ (t, y(t),λ∗
2
∫ e

1 y(	 ) d	 ,HIμ∗
1+ y(t)) = 1. Then the Caputo–Hadamard fractional hybrid

BVP (1)–(2) reduces to the following Caputo–Hadamard fractional non-hybrid BVP:

⎧
⎨

⎩

CHDκ∗
1+ y(t) = Υ̂ (t, y(t)),

CHD1+ y(1) = ã1y(1), 1
Γ (θ∗)

∫ e
1 (ln e

	
)θ∗–1[CHD1+ y(	 )] d	

	
= ã2y(e).

(3)

For this non-hybrid BVP, we will apply a new approach based on the topological degree
theory. Note that both hybrid and non-hybrid BVPs (1)–(2) and (3) are novel in the sense
that boundary conditions are written as mixed Hadamard integral and Caputo–Hadamard
derivative simultaneously.

2 Preliminaries
First, some important and necessary preliminaries on the fractional calculus are recalled
in this section. Assume that κ∗ ≥ 0. The Hadamard fractional integral of y ∈ CR([a, b]) of
order κ∗ is given by HI0

a+ (y(t)) = y(t) and HIκ∗
a+ (y(t)) = 1

Γ (κ∗)
∫ t

a (ln t
	

)(κ∗–1)y(	 ) d	
	

when-
ever the RHS-integral has finite value [49, 50]. Note that for each κ∗

1 ,κ∗
2 ∈ R

+, we have
HIκ∗

1
a+ (HIκ∗

2
a+ y(t)) = HIκ∗

1 +κ∗
2

a+ y(t) and HIκ∗
1

a+ (ln t
a )κ∗

2 = Γ (κ∗
2 +1)

Γ (κ∗
1 +κ∗

2 +1) (ln t
a )κ∗

1 +κ∗
2 for t > a [50]. It

is obvious that HIκ∗
1

a+ 1 = 1
Γ (κ∗

1 +1) (ln t
a )κ∗

1 for any t > a by setting κ∗
2 = 0 [50]. Now, let

n = [κ∗] + 1. The Hadamard fractional derivative of order κ∗ for a function y : (a, b) →R is
introduced by HDκ∗

a+ (y(t)) = 1
Γ (n–κ∗) (t dt

t )n ∫ t
a (ln t

	
)(n–κ∗–1)y(	 ) d	

	
provided that the RHS-

integral has finite value [49, 50]. The Caputo–Hadamard fractional derivative of order κ∗

for y ∈ACn
R

([a, b]) is represented by

CHDκ∗
a+

(
y(t)

)
=

1
Γ (n – κ∗)

∫ t

a

(

ln
t
	

)(n–κ∗–1)(

t
dt
t

)n

y(	 )
d	

	

whenever the RHS-integral has finite value [49, 50]. Now assume that y ∈ ACn
R

([a, b])
and n – 1 < κ∗ ≤ n. In the monograph [50], it is verified that the general solution of the
Caputo–Hadamard differential equation CHDκ∗

a+ (y(t)) = 0 is obtained of the form y(t) =
∑n–1

j=0 m∗
j (ln t

a )j, and so we have

HIκ∗
a+

(CHDκ∗
a+ y(t)

)
= y(t) + m∗

0 + m∗
1

(

ln
t
a

)

+ m∗
2

(

ln
t
a

)2

+ · · · + m∗
n–1

(

ln
t
a

)n–1

for any t > a. In the following, we review some notions and results on the topological
degree theory which are useful throughout the paper. Let B represent the collection of all
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bounded sets in a Banach space X . The Kuratowski’s measure of noncompactness μ : B →
R

+ is defined by μ(B) := inf{ε > 0 : B =
⋃n

j=1 Bj and diam(Bi) ≤ ε for j = 1, . . . , n}, where
diam(Bj) = sup{|y – y′| : y, y′ ∈ Bj} and B is a bounded element of B. It is evident that 0 ≤
μ(B) ≤ diam(B) < +∞ [51, 52].

Lemma 1 ([51, 52]) Let X be an arbitrary real Banach space and B,E ∈ B be bounded
subsets of X . Then the following statements are valid:

(a1) B is relatively compact if and only if μ(B) = 0;
(a2) μ(B) = μ(B) = μ(cnvx(B)), where B and cnvx(B) represent the closure and convex

hull of B, respectively;
(a3) If B ⊆ E , then μ(B) ≤ μ(E);
(a4) μ(λ + E) ≤ μ(E) for each λ ∈R;
(a5) μ(λB) = |λ|μ(B) for each λ ∈R;
(a6) μ(B + E) ≤ μ(B) + μ(E) so that B + E = {y + y′; y ∈ B, y′ ∈ E};
(a7) μ(B ∪ E) ≤ max{μ(B),μ(E)}.

Note that conditions (a5) and (a6) mean that μ is a seminorm. Let B ∈ B be a bounded
subset of a Banach space X . We say that a continuous bounded map Φ : B → X is μ-
Lipschitz if there is a constant K̃∗ ≥ 0 such that μ(Φ(B)) ≤ K̃∗μ(B). Also, Φ is called a
strict μ-contraction if K̃∗ is less than one [51]. A μ-condensing function Φ is supposed
to satisfy μ(Φ(B)) ≤ μ(B) for each B ∈ B with μ(B) > 0. Indeed, the inequality μ(Φ(B)) ≥
μ(B) implies that μ(B) = 0 [51].

Proposition 2 ([53]) Let Φ : B →X be Lipschitz with constant K̃∗ where B ⊂X . Then Φ

is μ-Lipschitz with the same constant K̃∗.

Proposition 3 ([53]) For every B ⊂ X , if Φ : B → X is compact, then Φ is μ-Lipschitz
with constant K̃∗ = 0.

Proposition 4 ([53]) For each B ⊂ X , assume that Φ1,Φ2 : B → X are two μ-Lipschitz
operators with constant K̃∗

1 and K̃∗
2 , respectively. Then Φ1 +Φ2 : B →X is μ-Lipschitz with

constant K̃∗
1 + K̃∗

2 .

The following theorem due to Dhage is utilized for our result related to the mixed
Caputo–Hadamard hybrid BVP (1)–(2).

Theorem 5 ([54]) Let X be a Banach algebra and B be a convex bounded closed nonempty
subset of X . Moreover, suppose that three operators Φ1,Φ2 : X → X and Φ3 : B → X sat-
isfy the following three assumptions:

(i) Φ1 and Φ2 are Lipschitz with constants K̃∗
1 and K̃∗

2 , respectively,
(ii) Φ3 is compact and continuous,

(iii) K̃∗
1 �̂ + K̃∗

2 < 1 so that �̂ = ‖Φ3(B)‖X = sup{‖Φ3y‖X : y ∈ B}.
Then either (a) the equation (Φ1y)(Φ3y) + (Φ2y) = y has a solution belonging to B or (b) for
each r > 0, there is v∗ ∈X with ‖v∗‖X = r provided that α0(Φ1v∗)(Φ3v∗) + α0(Φ2v∗) = v∗ for
some α0 ∈ (0, 1).

The following theorem due to Isaia is utilized for our result related to the mixed Caputo–
Hadamard non-hybrid BVP (3).
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Theorem 6 ([53]) Let Φ : X →X be a μ-condensing operator on the Banach space X and
assume that

B =
{

y ∈X : there is λ ∈ [0, 1] such that y = λ(Φy)
}

.

If B is a bounded set in X , so that there is a number ρ > 0 such that B ⊂ Vρ(0), then we
have deg(I – λΦ ,Vρ(0), 0) = 1. Moreover, Φ has at least one fixed point, and the family of
all fixed points of Φ belongs to Vρ(0).

3 Main results
Now, we are ready to derive the desired analytical findings. For this reason, we build
a new space as X = {y(t) : y(t) ∈ CR([1, e])} supplemented with the sup-norm ‖y‖X =
supt∈[1,e] |y(t)| and the multiplication action on X by (y · y′)(t) = y(t)y′(t) for each y, y′ ∈X .
Then it is easily verified that an ordered triple (X ,‖ · ‖X , ·) is a Banach algebra. In the
following lemma, we derive an integral structure for the solution of the hybrid BVP (1)–
(2).

Lemma 7 Let g ∈ X . Then a function ỹ0 is a solution for the Caputo–Hadamard hybrid
equation

CHDκ∗
1+

[y(t) – Λ(t, y(t),λ∗
1
∫ e

1 y(	 ) d	 ,HIγ ∗
1+ y(t))

Ψ (t, y(t),λ∗
2
∫ e

1 y(	 ) d	 ,HIμ∗
1+ y(t))

]

= g(t) (4)

furnished with mixed Hadamard integral hybrid boundary value conditions

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

CHD1+ [ y(t)–Λ(t,y(t),λ∗
1
∫ e

1 y(	 ) d	 ,HIγ ∗
1+ y(t))

Ψ (t,y(t),λ∗
2
∫ e

1 y(	 ) d	 ,HIμ∗
1+ y(t))

]|t=1

= ã1[ y(t)–Λ(t,y(t),λ∗
1
∫ e

1 y(	 ) d	 ,HIγ ∗
1+ y(t))

Ψ (t,y(t),λ∗
2
∫ e

1 y(	 ) d	 ,HIμ∗
1+ y(t))

]|t=1,

HIθ∗
1+

CHD1+ [ y(t)–Λ(t,y(t),λ∗
1
∫ e

1 y(	 ) d	 ,HIγ ∗
1+ y(t))

Ψ (t,y(t),λ∗
2
∫ e

1 y(	 ) d	 ,HIμ∗
1+ y(t))

]|t=e

= ã2[ y(t)–Λ(t,y(t),λ∗
1
∫ e

1 y(	 ) d	 ,HIγ ∗
1+ y(t))

Ψ (t,y(t),λ∗
2
∫ e

1 y(	 ) d	 ,HIμ∗
1+ y(t))

]|t=e

(5)

if and only if ỹ0 is a solution for the Hadamard integral equation

y(t) = Ψ

(

t, y(t),λ∗
2

∫ e

1
y(	 ) d	 ,HIμ∗

1+ y(t)
)

×
(

1
Γ (κ∗)

∫ t

1

(

ln
t
	

)κ∗–1

g(	 )
d	

	

+
ã2(1 + ã1 ln(t))

Q∗Γ (κ∗)

∫ e

1

(

ln
e
	

)κ∗–1

g(	 )
d	

	

–
(1 + ã1 ln(t))

Q∗Γ (κ∗ + θ∗ – 1)

∫ e

1

(

ln
e
	

)κ∗+θ∗–2

g(	 )
d	

	

)

+ Λ

(

t, y(t),λ∗
1

∫ e

1
y(	 ) d	 ,HIγ ∗

1+ y(t)
)

, (6)
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where

Q∗ =
∣
∣
∣
∣
ã1 – (1 + ã1)ã2Γ (θ∗ + 1)

Γ (θ∗ + 1)

∣
∣
∣
∣ �= 0. (7)

Proof As a first step, we assume that ỹ0 is a solution for the hybrid differential equation (4).
Then, by properties of the κ∗th order Hadamard integral, we seek constants m∗

0, m∗
1 ∈ R

such that

ỹ0(t) – Λ(t, ỹ0(t),λ∗
1
∫ e

1 ỹ0(	 ) d	 ,HIγ ∗
1+ ỹ0(t))

Ψ (t, ỹ0(t),λ∗
2
∫ e

1 ỹ0(	 ) d	 ,HIμ∗
1+ ỹ0(t))

=
1

Γ (κ∗)

∫ t

1

(

ln
t
	

)κ∗–1

g(	 )
d	

	
+ m∗

0 + m∗
1(ln t)

and so

ỹ0(t) = Λ

(

t, ỹ0(t),λ∗
1

∫ e

1
ỹ0(	 ) d	 ,HIγ ∗

1+ ỹ0(t)
)

+ Ψ

(

t, ỹ0(t),λ∗
2

∫ e

1
ỹ0(	 ) d	 ,HIμ∗

1+ ỹ0(t)
)

×
(

1
Γ (κ∗)

∫ t

1

(

ln
t
	

)κ∗–1

g(	 )
d	

	
+ m∗

0 + m∗
1(ln t)

)

. (8)

Thus,

CHD1+

[ ỹ0(t) – Λ(t, ỹ0(t),λ∗
1
∫ e

1 ỹ0(	 ) d	 ,HIγ ∗
1+ ỹ0(t))

Ψ (t, ỹ0(t),λ∗
2
∫ e

1 ỹ0(	 ) d	 ,HIμ∗
1+ ỹ0(t))

]

=
1

Γ (κ∗ – 1)

∫ t

1

(

ln
t
	

)κ∗–2

g(	 )
d	

	
+ m∗

1,

HIθ∗
1+

CHD1+

[ ỹ0(t) – Λ(t, ỹ0(t),λ∗
1
∫ e

1 ỹ0(	 ) d	 ,HIγ ∗
1+ ỹ0(t))

Ψ (t, ỹ0(t),λ∗
2
∫ e

1 ỹ0(	 ) d	 ,HIμ∗
1+ ỹ0(t))

]

= m∗
1

(ln t)θ∗

Γ (θ∗ + 1)
+

1
Γ (κ∗ + θ∗ – 1)

∫ t

1

(

ln
t
	

)κ∗+θ∗–2

g(	 )
d	

	
.

In the light of both mixed hybrid boundary conditions given in (5), we obtain

m∗
0 =

ã2

Q∗Γ (κ∗)

∫ e

1

(

ln
e
	

)κ∗–1

g(	 )
d	

	

–
1

Q∗Γ (κ∗ + θ∗ – 1)

∫ e

1

(

ln
e
	

)κ∗+θ∗–2

g(	 )
d	

	

and

m∗
1 =

ã1ã2

Q∗Γ (κ∗)

∫ e

1

(

ln
e
	

)κ∗–1

g(	 )
d	

	

–
ã1

Q∗Γ (κ∗ + θ∗ – 1)

∫ e

1

(

ln
e
	

)κ∗+θ∗–2

g(	 )
d	

	
.
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By inserting the obtained values m∗
0 and m∗

1 into (8), we reach

ỹ0(t) = Ψ

(

t, ỹ0(t),λ∗
2

∫ e

1
ỹ0(	 ) d	 ,HIμ∗

1+ ỹ0(t)
)

×
(

1
Γ (κ∗)

∫ t

1

(

ln
t
	

)κ∗–1

g(	 )
d	

	

+
ã2(1 + ã1 ln(t))

Q∗Γ (κ∗)

∫ e

1

(

ln
e
	

)κ∗–1

g(	 )
d	

	

–
(1 + ã1 ln(t))

Q∗Γ (κ∗ + θ∗ – 1)

∫ e

1

(

ln
e
	

)κ∗+θ∗–2

g(	 )
d	

	

)

+ Λ

(

t, ỹ0(t),λ∗
1

∫ e

1
ỹ0(	 ) d	 ,HIγ ∗

1+ ỹ0(t)
)

.

The last equation implies that ỹ0 satisfies the Hadamard integral equation (6), and so ỹ0 is
the solution of the mentioned integral equation. In the opposite direction, we can easily
confirm that ỹ0 is a solution for the two-point Caputo–Hadamard hybrid BVP (4)–(5) if
ỹ0 is supposed to be a solution for the Hadamard integral equation (6). This completes the
proof. �

Now, based on the obtained Hadamard integral equation in the above lemma, we pro-
vide an existence criterion for solutions of the mixed Caputo–Hadamard hybrid BVP (1)–
(2).

Theorem 8 Let Ψ : [1, e]×X 3 →X \ {0} and Λ : [1, e]×X 3 →X and Υ̂ : [1, e]×X →X
be continuous. Moreover, consider the following hypotheses:

(HP1) There is a positive bounded mapping � : [1, e] →R
+ so that for each yi, y′

i ∈X ,

∣
∣Ψ

(
t, y1(t), y2(t), y3(t)

)
– Ψ

(
t, y′

1(t), y′
2(t), y′

3(t)
)∣
∣ ≤ �(t)

3∑

1

∣
∣yi(t) – y′

i(t)
∣
∣,

(HP2) There is a positive bounded mapping σ : [1, e] →R
+ such that for each yi, y′

i ∈X ,

∣
∣Λ

(
t, y1(t), y2(t), y3(t)

)
– Λ

(
t, y′

1(t), y′
2(t), y′

3(t)
)∣
∣ ≤ σ (t)

3∑

1

∣
∣yi(t) – y′

i(t)
∣
∣,

(HP3) There is a positive continuous function ψ : [1, e] → R
+ and a continuous non-

decreasing map ξ : [0,∞) → [0,∞) such that |Υ̂ (t, y(t))| ≤ ψ(t)ξ (‖y‖X ) for any
t ∈ [1, e] and y ∈X ,

(HP4) There exists a number ρ > 0 such that

ρ >
(
Ψ ∗M̃ψ∗ξ

(‖y‖X
)

+ Λ∗)

/(

1 – �∗
[

1 +
∣
∣λ∗

2(e – 1)
∣
∣ +

1
Γ (μ∗ + 1)

]

M̃ψ∗ξ
(|y|X

)

– σ ∗
[

1 +
∣
∣λ∗

1(e – 1)
∣
∣ +

1
Γ (γ ∗ + 1)

])

, (9)
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where we considered Ψ ∗ = supt∈[1,e] |ψ(t, 0, 0, 0)|, Λ∗ = supt∈[1,e] |Λ(t, 0, 0, 0)|, ψ∗ =
supt∈[1,e] |ψ(t)|, �∗ = supt∈[1,e] |�(t)|, σ ∗ = supt∈[1,e] |σ (t)| and

M̃ =
1

Γ (κ∗ + 1)
+

∣
∣
∣
∣

ã2(1 + ã1)
Q∗Γ (κ∗ + 1)

∣
∣
∣
∣ +

∣
∣
∣
∣

(1 + ã1)
Q∗Γ (κ∗ + θ∗)

∣
∣
∣
∣.

Then the mixed Caputo–Hadamard hybrid BVP (1)–(2) has at least one solution if

�∗
[

1 +
∣
∣λ∗

2(e – 1)
∣
∣ +

1
Γ (μ∗ + 1)

]

ψ∗ξ
(‖y‖X

)
M̃ + σ ∗

[

1 +
∣
∣λ∗

1(e – 1)
∣
∣ +

1
Γ (γ ∗ + 1)

]

< 1.

Proof For every positive number ρ ∈ R, we construct the ball Vρ(0) := {y(t) ∈ X : ‖y‖X ≤
ρ} in the Banach algebra X , where ρ satisfies (9). It is well known that Vρ(0) is a convex
closed bounded subset of the Banach algebra X . Based on Lemma 7, we introduce three
operators Φ1,Φ2 : X →X and Φ3 : Vρ(0) →X by

(Φ1y)(t) = Ψ

(

t, y(t),λ∗
2

∫ e

1
y(	 ) d	 ,HIμ∗

1+ y(t)
)

,

(Φ2y)(t) = Λ

(

t, y(t),λ∗
1

∫ e

1
y(	 ) d	 ,HIγ ∗

1+ y(t)
)

and

(Φ3y)(t) =
1

Γ (κ∗)

∫ t

1

(

ln
t
	

)κ∗–1

Υ̂
(
	 , y(	 )

)d	

	

+
ã2(1 + ã1 ln(t))

Q∗Γ (κ∗)

∫ e

1

(

ln
e
	

)κ∗–1

Υ̂
(
	 , y(	 )

)d	

	

–
(1 + ã1 ln(t))

Q∗Γ (κ∗ + θ∗ – 1)

∫ e

1

(

ln
e
	

)κ∗+θ∗–2

Υ̂
(
	 , y(	 )

)d	

	

for any t ∈ [1, e]. It is evident that a function y0 ∈ X is a solution for the mixed
Caputo–Hadamard hybrid BVP (1)–(2) whenever y0 satisfies the equation (Φ1y0)(Φ3y0) +
(Φ2y0) = y0. We intend to show that the three operators Φ1, Φ2 and Φ3 satisfy all condi-
tions of Theorem 5 and thus, by taking into account hypotheses of Theorem 5, we will
find that there exists such a solution function. First of all, we verify that Φ1 is Lipschitz.
Let y1, y2 ∈X . By (HP1), we may write

∣
∣(Φ1y1)(t) – (Φ1y2)(t)

∣
∣

=
∣
∣
∣
∣Ψ

(

t, y1(t),λ∗
2

∫ e

1
y1(	 ) d	 ,HIμ∗

1+ y1(t)
)

– Ψ

(

t, y2(t),λ∗
2

∫ e

1
y2(	 ) d	 ,HIμ∗

1+ y2(t)
)∣

∣
∣
∣

≤ �(t)
[

1 +
∣
∣λ∗

2(e – 1)
∣
∣ +

1
Γ (μ∗ + 1)

]

sup
t∈[1,e]

∣
∣y1(t) – y2(t)

∣
∣

for any t ∈ [1, e]. Hence, we get

‖Φ1y1 – Φ1y2‖X ≤ �∗
[

1 +
∣
∣λ∗

2(e – 1)
∣
∣ +

1
Γ (μ∗ + 1)

]

‖y1 – y2‖X ,
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showing that Φ1 is Lipschitz with constant �∗[1 + |λ∗
2(e – 1)| + 1

Γ (μ∗+1) ] > 0 for each
y1, y2 ∈ X . Similarly, by using hypothesis (HP2), one can realize that Φ1 is also Lipschitz
on X . The proof is straightforward as above. Indeed, we have

∣
∣(Φ2y1)(t) – (Φ2y2)(t)

∣
∣

=
∣
∣
∣
∣Λ

(

t, y1(t),λ∗
1

∫ e

1
y1(	 ) d	 ,HIγ ∗

1+ y1(t)
)

– Λ

(

t, y2(t),λ∗
1

∫ e

1
y2(	 ) d	 ,HIγ ∗

1+ y2(t)
)∣

∣
∣
∣

≤ σ (t)
[

1 +
∣
∣λ∗

1(e – 1)
∣
∣ +

1
Γ (γ ∗ + 1)

]

sup
t∈[1,e]

∣
∣y1(t) – y2(t)

∣
∣

for any t ∈ [1, e]. Thus, we get

‖Φ2y1 – Φ2y2‖X ≤ σ ∗
[

1 +
∣
∣λ∗

1(e – 1)
∣
∣ +

1
Γ (γ ∗ + 1)

]

‖y1 – y2‖X ,

demonstrating that Φ2 is Lipschitz with constant σ ∗[1 + |λ∗
1(e – 1)| + 1

Γ (γ ∗+1) ] > 0 for each
y1, y2 ∈ X . Therefore, the first condition of Theorem 5 is fulfilled for two operators Φ1

and Φ2. In the sequel, we establish the complete continuity of the operator Φ3 on the
given closed ball Vρ(0). We have to check that Φ3 is continuous on Vρ(0). Thus, consider a
convergent sequence {yn} in Vρ(0) so that yn → y, where y ∈ Vρ(0) is an arbitrary element.
By assumption, we know that Υ̂ is continuous on [1, e] ×X , so limn→∞ Υ̂ (t, yn) = Υ̂ (t, y).
By Lebesgue’s dominated convergence theorem, we obtain

lim
n→∞(Φ3yn)(t) =

1
Γ (κ∗)

∫ t

1

(

ln
t
	

)κ∗–1

lim
n→∞ Υ̂

(
	 , yn(	 )

)d	

	

+
ã2(1 + ã1 ln(t))

Q∗Γ (κ∗)

∫ e

1

(

ln
e
	

)κ∗–1

lim
n→∞ Υ̂

(
	 , yn(	 )

)d	

	

–
(1 + ã1 ln(t))

Q∗Γ (κ∗ + θ∗ – 1)

∫ e

1

(

ln
e
	

)κ∗+θ∗–2

lim
n→∞ Υ̂

(
	 , yn(	 )

)d	

	

=
1

Γ (κ∗)

∫ t

1

(

ln
t
	

)κ∗–1

Υ̂
(
	 , y(	 )

)d	

	

+
ã2(1 + ã1 ln(t))

Q∗Γ (κ∗)

∫ e

1

(

ln
e
	

)κ∗–1

Υ̂
(
	 , y(	 )

)d	

	

–
(1 + ã1 ln(t))

Q∗Γ (κ∗ + θ∗ – 1)

∫ e

1

(

ln
e
	

)κ∗+θ∗–2

Υ̂
(
	 , y(	 )

)d	

	
= (Φ3y)(t)

for any t ∈ [1, e]. Hence, we get Φ3yn → Φ3y as n → ∞, and this means that Φ3 is contin-
uous on Vρ(0). The next goal is to check the uniform boundedness of Φ3 on the ball Vρ(0).
Let us take y ∈ Vρ(0). Under hypothesis (HP3), the following estimate is obtained:

∣
∣(Φ3y)(t)

∣
∣ ≤ 1

Γ (κ∗)

∫ t

1

(

ln
t
	

)κ∗–1∣
∣Υ̂

(
	 , y(	 )

)∣
∣d	

	

+
∣
∣
∣
∣
ã2(1 + ã1)
Q∗Γ (κ∗)

∣
∣
∣
∣

∫ e

1

(

ln
e
	

)κ∗–1∣
∣Υ̂

(
	 , y(	 )

)∣
∣d	
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+
∣
∣
∣
∣

(1 + ã1)
Q∗Γ (κ∗ + θ∗ – 1)

∣
∣
∣
∣

∫ e

1

(

ln
e
	

)κ∗+θ∗–2∣
∣Υ̂

(
	 , y(	 )

)∣
∣d	

	

≤ supt∈[1,e] ψ(t) × ξ (‖y‖X )
Γ (κ∗ + 1)

+
∣
∣
∣
∣

ã2(1 + ã1)
Q∗Γ (κ∗ + 1)

∣
∣
∣
∣ sup

t∈[1,e]
ψ(t) × ξ

(‖y‖X
)

+
∣
∣
∣
∣

(1 + ã1)
Q∗Γ (κ∗ + θ∗)

∣
∣
∣
∣ sup

t∈[1,e]
ψ(t) × ξ

(‖y‖X
)

for each t ∈ [1, e]. It follows that ‖(Φ3y)(t)‖X ≤ ψ∗ξ (‖y‖X ). Hence Φ3(Vρ(0)) is a uniformly
bounded subset of X . To establish the complete continuity property of Φ3 in the last step,
it is enough to verify the equicontinuity of Φ3. For this purpose, we take two arbitrary
elements t1, t2 ∈ [1, e] so that t1 < t2 and y ∈ Vρ(0). Then, under appropriate conditions,
we can write

∣
∣(Φ3y)(t2) – (Φ3y)(t1)

∣
∣

≤ 1
Γ (κ∗)

∫ t1

1

[(

ln
t2

	

)κ∗–1

–
(

ln
t1

	

)κ∗–1]∣
∣Υ̂

(
	 , y(	 )

)∣
∣d	

	

+
1

Γ (κ∗)

∫ t2

t1

(

ln
t2

	

)κ∗–1∣
∣Υ̂

(
	 , y(	 )

)∣
∣d	

	

+
|ã2ã1|(| ln(t2) – ln(t1)|)

|Q∗|Γ (κ∗)

∫ e

1

(

ln
e
	

)κ∗–1∣
∣Υ̂

(
	 , y(	 )

)∣
∣d	

	

+
|ã1|(| ln(t2) – ln(t1)|)
|Q∗|Γ (κ∗ + θ∗ – 1)

∫ e

1

(

ln
e
	

)κ∗+θ∗–2∣
∣Υ̂

(
	 , y(	 )

)∣
∣d	

	

≤ ((ln(t2))k∗ – (ln(t1))k∗ ) – (ln(t2) – ln(t1))k∗

Γ (κ∗ + 1)
sup

t∈[1,e]
ψ(t) × ξ

(‖y‖X
)

+
(ln(t2) – ln(t1))k∗

Γ (κ∗ + 1)
sup

t∈[1,e]
ψ(t) × ξ

(‖y‖X
)

+
|ã2ã1|(| ln(t2) – ln(t1)|)

|Q∗|Γ (κ∗)

∫ e

1

(

ln
e
	

)κ∗–1∣
∣Υ̂

(
	 , y(	 )

)∣
∣d	

	

+
|ã1|(| ln(t2) – ln(t1)|)
|Q∗|Γ (κ∗ + θ∗ – 1)

∫ e

1

(

ln
e
	

)κ∗+θ∗–2∣
∣Υ̂

(
	 , y(	 )

)∣
∣d	

	
.

When we take the limit on both sides of the inequality as t1 → t2, then clearly the RHS of
the inequality approaches 0 (regardless of y ∈ Vρ(0)). Thus, |(Φ3y)(t2) – (Φ3y)(t1)| → 0 as
t1 → t2, confirming the equicontinuity of the operator Φ3. Here, by invoking the Arzela–
Ascoli theorem, it is deduced that Φ3 is completely continuous on Vρ(0). To fulfill the third
condition of Theorem 5, we utilize hypothesis (HP3) and obtain

�̂ =
∥
∥Φ3

(
Vρ(0)

)∥
∥
X

= sup
t∈[1,e]

{∣
∣(Φ3y)(t)

∣
∣ : y ∈ Vρ(0)

}

≤ ψ∗ξ
(‖y‖X

)
(

1
Γ (κ∗ + 1)

+
∣
∣
∣
∣

ã2(1 + ã1)
Q∗Γ (κ∗ + 1)

∣
∣
∣
∣ +

∣
∣
∣
∣

(1 + ã1)
Q∗Γ (κ∗ + θ∗)

∣
∣
∣
∣

)

= ψ∗ξ
(‖y‖X

)
M̃.



Amara et al. Advances in Difference Equations        (2020) 2020:369 Page 11 of 22

Hence �̂ ≤ ψ∗ξ (‖y‖X )M̃. Therefore we have

�∗
[

1 +
∣
∣λ∗

2(e – 1)
∣
∣ +

1
Γ (μ∗ + 1)

]

�̂ + σ ∗
[

1 +
∣
∣λ∗

1(e – 1)
∣
∣ +

1
Γ (γ ∗ + 1)

]

≤ �∗
[

1 +
∣
∣λ∗

2(e – 1)
∣
∣ +

1
Γ (μ∗ + 1)

]

ψ∗ξ
(‖y‖X

)
M̃

+ σ ∗
[

1 +
∣
∣λ∗

1(e – 1)
∣
∣ +

1
Γ (γ ∗ + 1)

]

< 1.

At this point, setting K̃∗
1 = �∗[1 + |λ∗

2(e – 1)|+ 1
Γ (μ∗+1) ] and K̃∗

2 = σ ∗[1 + |λ∗
1(e – 1)|+ 1

Γ (γ ∗+1) ],
we reach K̃∗

1 �̂ + K̃∗
2 < 1. So far, all three hypotheses of Theorem 5 are fulfilled. Thus

in the following, we claim that one of the conditions (a) or (b) in Theorem 5 is pos-
sible. To begin, we check condition (b). Let α0 ∈ (0, 1) and suppose that there exists
y ∈ X with ‖y‖X = ρ so that the equation y = α0(Φ1y)(Φ3y) + α0(Φ2y) holds. Then, we
have

∣
∣y(t)

∣
∣ ≤ α0

∣
∣(Φ1y)(t)

∣
∣
∣
∣(Φ3y)(t)

∣
∣ + α0

∣
∣(Φ2y)(t)

∣
∣

≤ α0

∣
∣
∣
∣Ψ

(

t, y(t),λ∗
2

∫ e

1
y(	 ) d	 ,HIμ∗

1+ y(t)
)∣

∣
∣
∣

×
(∣

∣
∣
∣

1
Γ (κ∗)

∫ t

1

(

ln
t
	

)κ∗–1

Υ̂
(
	 , y(	 )

)d	

	

+
ã2(1 + ã1 ln(t))

Q∗Γ (κ∗)

∫ e

1

(

ln
e
	

)κ∗–1

Υ̂
(
	 , y(	 )

)d	

	

–
(1 + ã1 ln(t))

Q∗Γ (κ∗ + θ∗ – 1)

×
∫ e

1

(

ln
e
	

)κ∗+θ∗–2

Υ̂
(
	 , y(	 )

)d	

	

∣
∣
∣
∣

)

+ α0

∣
∣
∣
∣Λ

(

t, y(t),λ∗
1

∫ e

1
y(	 ) d	 ,HIγ ∗

1+ y(t)
)∣

∣
∣
∣

≤
∣
∣
∣
∣Ψ

(

t, y(t),λ∗
2

∫ e

1
y(	 ) d	 ,HIμ∗

1+ y(t)
)

– Ψ (t, 0, 0, 0) + Ψ (t, 0, 0, 0)
∣
∣
∣
∣

×
(

supt∈[1,e] ψ(t) × ξ (‖y‖X )
Γ (κ∗ + 1)

+ sup
t∈[1,e]

ψ(t) × ξ
(‖y‖X

)
∣
∣
∣
∣

ã2(1 + ã1)
Q∗Γ (κ∗ + 1)

∣
∣
∣
∣

+ sup
t∈[1,e]

ψ(t) × ξ
(‖y‖X

)
∣
∣
∣
∣

(1 + ã1)
Q∗Γ (κ∗ + θ∗)

∣
∣
∣
∣

)

+
∣
∣
∣
∣Λ

(

t, y(t),λ∗
1

∫ e

1
y(	 ) d	 ,HIγ ∗

1+ y(t) – Λ(t, 0, 0, 0)| + |Λ(t, 0, 0, 0)
)∣

∣
∣
∣

≤
[

�∗
(

1 +
∣
∣λ∗

2(e – 1)
∣
∣ +

1
Γ (μ∗ + 1)

)

‖y‖X + Ψ ∗
]

M̃ψ∗ξ
(‖y‖X

)

+ σ ∗
(

1 +
∣
∣λ∗

1(e – 1)
∣
∣ +

1
Γ (γ ∗ + 1)

)

‖y‖X + Λ∗.
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So, we arrive at the following inequality:

ρ =
∥
∥y(t)

∥
∥
X

≤
[

�∗
(

1 +
∣
∣λ∗

2(e – 1)
∣
∣ +

1
Γ (μ∗ + 1)

)

ρ + M̃Ψ ∗
]

ψ∗ξ (ρ)

+ σ ∗
(

1 +
∣
∣λ∗

1(e – 1)
∣
∣ +

1
Γ (γ ∗ + 1)

)

ρ + Λ∗.

This implies that

ρ ≤ M̃ψ∗ξ (ρ)Ψ ∗ + Λ∗

1 – �∗(1 + |λ∗
2(e – 1)| + 1

Γ (μ∗+1) )M̃ψ∗ξ (ρ) – σ ∗(1 + |λ∗
1(e – 1)| + 1

Γ (γ ∗+1) )

which is impossible due to (9). Therefore, condition (b) stated in Theorem 5 is not ful-
filled and so condition (a) in Theorem 5 holds. Consequently, the operator equation
(Φ1y)(Φ3y) + (Φ2y) = y has a solution. This means that the mixed Caputo–Hadamard hy-
brid BVP (1)–(2) has at least one solution. �

3.1 Special cases
This subsection is devoted to deriving some analytical existence criteria for a special case
formulated by mixed Caputo–Hadamard nonhybrid BVP (3). We state some hypotheses
as follows:

(HP5) (Lipschitz property) There exists a constant LΥ̂ > 0 such that for each y, y′ ∈ X ,
we have |Υ̂ (t, y) – Υ̂ (t, y′)| ≤ LΥ̂ |y – y′|.

(HP6) (Boundedness property) There are constants CΥ̂ and MΥ̂ such that for each y ∈R

we have |Υ̂ (t, y)| ≤ CΥ̂ |y| + MΥ̂ .
(HP7) One has L

Υ̂

Γ (κ∗+1) < 1.
In the following lemma, an integral structure of the solution for the mixed Caputo–

Hadamard BVP (3) is demonstrated.

Lemma 9 Let g ∈ X . Then a function ỹ0 is a solution for two-point Caputo–Hadamard
fractional differential equation with mixed Hadamard integral boundary conditions

⎧
⎨

⎩

CHDκ∗
1+ y(t) = g(t),

CHDκ∗
1+ y(1) = ã1y(1), 1

Γ (θ∗)
∫ e

1 (ln e
	

)θ∗–1[CHDκ∗
1+ y(	 )] d	

	
= ã2y(e)

if and only if ỹ0 is a solution of the Hadamard fractional integral equation

y(t) =
1

Γ (κ∗)

∫ t

1

(

ln
t
	

)κ∗–1

g(	 )
d	

	
+

ã2(1 + ã1 ln(t))
Q∗Γ (κ∗)

∫ e

1

(

ln
e
	

)κ∗–1

g(	 )
d	

	

–
(1 + ã1 ln(t))

Q∗Γ (κ∗ + θ∗ – 1)

∫ e

1

(

ln
e
	

)κ∗+θ∗–2

g(	 )
d	

	
,

where Q∗ is given by (7).

Proof The proof is similar to that of Lemma 7 and so is omitted. �
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We define an operator Φ : X → X by Φy(t) = Φ1y(t) + Φ2y(t) which splits into two op-
erators Φ1 : X →X and Φ2 : X →X as follows:

Φ1y(t) =
1

Γ (κ∗)

∫ t

1

(

ln
t
	

)κ∗–1

Υ̂
(
	 , y(	 )

)d	

	
, (10)

Φ2y(t) =
ã2(1 + ã1 ln(t))

Q∗Γ (κ∗)

∫ e

1

(

ln
e
	

)κ∗–1

Υ̂
(
	 , y(	 )

)d	

	

–
(1 + ã1 ln(t))

Q∗Γ (κ∗ + θ∗ – 1)

∫ e

1

(

ln
e
	

)κ∗+θ∗–2

Υ̂
(
	 , y(	 )

)d	

	
, (11)

for each y ∈X and t ∈ [1, e]. In this case, the equivalence of the existence of a solution for
Caputo–Hadamard BVP (3) and the existence of a fixed point for operator Φ is obvious.
Note that in all the following lemmas, we assume that X is a Banach space with sup-norm
‖ · ‖X and two operators Φ1 and Φ2 are defined as in (10) and (11).

Lemma 10 Under hypothesis (HP5), the operator Φ1 is Lipschitz with constant K̃∗
1 =

L
Υ̂

Γ (κ∗+1) and the following growth condition holds:

∥
∥Φ1(y)

∥
∥
X ≤ CΥ̂

Γ (κ∗ + 1)
‖y‖X +

MΥ̂

Γ (κ∗ + 1)
,

for all y ∈X .

Proof By utilizing assumption (HP5), we obtain

∣
∣Φ1y(t) – Φ1y′(t)

∣
∣

=
1

Γ (κ∗)

∣
∣
∣
∣

∫ t

1

(

ln
t
	

)κ∗–1

Υ̂
(
	 , y(	 )

)d	

	
–

∫ t

1

(

ln
t
	

)κ∗–1

Υ̂
(
	 , y′(	 )

)d	

	

∣
∣
∣
∣

≤ LΥ̂

Γ (κ∗ + 1)
∥
∥y – y′∥∥.

This implies that Φ1 is Lipschitz with constant K̃∗
1 = L

Υ̂

Γ (κ∗+1) . Hence by Proposition 2, it is

deduced that Φ1 is also μ-Lipschitz with the same constant K̃∗
1 = L

Υ̂

Γ (κ∗+1) , where μ is the
Kuratowski’s measure of noncompactness. Again, by considering (HP5) for the growth
condition, we get

∥
∥Φ1(y)

∥
∥
X ≤ CΥ̂

Γ (κ∗ + 1)
‖y‖X +

MΥ̂

Γ (κ∗ + 1)
,

and the proof is concluded. �

Lemma 11 Operator Φ2 is continuous and also, in view of hypothesis (HP6), we have the
growth condition ‖Φ2(y)‖X ≤ �1‖y‖X + �2 for every y ∈ X , where �1 = CΥ̂ (| ã2(1+ã1)

Q∗Γ (κ∗+1) | +
| (1+ã1)
Q∗Γ (κ∗+θ∗) |) and

�2 = MΥ̂

(∣
∣
∣
∣

ã2(1 + ã1)
Q∗Γ (κ∗ + 1)

∣
∣
∣
∣ +

∣
∣
∣
∣

(1 + ã1)
Q∗Γ (κ∗ + θ∗)

∣
∣
∣
∣

)

.
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Proof By assumption, we know that Υ̂ is continuous on [1, e]×X , and so we conclude that
limn→∞ Υ̂ (t, yn) = Υ̂ (t, y). By invoking the Lebesgue’s dominated convergence theorem, we
obtain

lim
n→∞(Φ2yn)(t) =

ã2(1 + ã1 ln(t))
Q∗Γ (κ∗)

∫ e

1

(

ln
e
	

)κ∗–1

lim
n→∞ Υ̂

(
	 , yn(	 )

)d	

	

–
(1 + ã1 ln(t))

Q∗Γ (κ∗ + θ∗ – 1)

∫ e

1

(

ln
e
	

)κ∗+θ∗–2

lim
n→∞ Υ̂

(
	 , yn(	 )

)d	

	

=
ã2(1 + ã1 ln(t))

Q∗Γ (κ∗)

∫ e

1

(

ln
e
	

)κ∗–1

Υ̂
(
	 , y(	 )

)d	

	

–
(1 + ã1 ln(t))

Q∗Γ (κ∗ + θ∗ – 1)

∫ e

1

(

ln
e
	

)κ∗+θ∗–2

Υ̂
(
	 , y(	 )

)d	

	
= (Φ2y)(t)

for any t ∈ [1, e]. Hence, we see that Φ2yn → Φ2y as n → ∞, and so Φ2 is continuous on
Vρ(0). Now, for the sake of the investigation of the growth condition on Φ2, we utilize
hypothesis (HP6) and obtain

∣
∣Φ2y(t)

∣
∣ =

∣
∣
∣
∣
ã2(1 + ã1 ln(t))

Q∗Γ (κ∗)

∫ e

1

(

ln
e
	

)κ∗–1

Υ̂
(
	 , y(	 )

)d	

	

–
(1 + ã1 ln(t))

Q∗Γ (κ∗ + θ∗ – 1)

∫ e

1

(

ln
e
	

)κ∗+θ∗–2

Υ̂
(
	 , y(	 )

)d	

	

∣
∣
∣
∣

≤
∣
∣
∣
∣
ã2(1 + ã1)
Q∗Γ (κ∗)

∫ e

1

(

ln
e
	

)κ∗–1(
CΥ̂

∣
∣y(s)

∣
∣ + MΥ̂

)d	

	

∣
∣
∣
∣

+
∣
∣
∣
∣

(1 + ã1)
Q∗Γ (κ∗ + θ∗ – 1)

∫ e

1

(

ln
e
	

)κ∗+θ∗–2(
CΥ̂

∣
∣y(s)

∣
∣ + MΥ̂

)d	

	

∣
∣
∣
∣

≤ CΥ̂

(∣
∣
∣
∣

ã2(1 + ã1)
Q∗Γ (κ∗ + 1)

∣
∣
∣
∣ +

∣
∣
∣
∣

(1 + ã1)
Q∗Γ (κ∗ + θ∗)

∣
∣
∣
∣

)

‖y‖X

+ MΥ̂

(∣
∣
∣
∣

ã2(1 + ã1)
Q∗Γ (κ∗ + 1)

∣
∣
∣
∣ +

∣
∣
∣
∣

(1 + ã1)
Q∗Γ (κ∗ + θ∗)

∣
∣
∣
∣

)

which is the desired conclusion. �

Lemma 12 Operator Φ2 : X → X is compact. Moreover, Φ2 is μ-Lipschitz with constant
K̃∗

2 = 0 where μ is the Kuratowski’s measure of noncompactness.

Proof Consider a bounded subset B ⊂ Vρ(0) in X and take a sequence {yn} belonging to B.
Then, by Lemma 11, we have

∥
∥Φ2(yn)

∥
∥
X ≤ �1‖yn‖X + �2 < ∞

for each yn ∈ B which yields that Φ2(B) is a bounded set. Besides, we verify that {Φ2(yn)}
is equicontinuous for each yn ∈ B. Take t1, t2 ∈ [1, e] so that t1 < t2. Then, we obtain

∣
∣Φ2(yn)(t2) – Φ2(yn)(t1)

∣
∣

≤ |ã2ã1|(| ln(t2) – ln(t1)|)
|Q∗|Γ (κ∗)

∫ e

1

(

ln
e
	

)κ∗–1∣
∣Υ̂

(
	 , y(	 )

)∣
∣d	
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+
|ã1|(| ln(t2) – ln(t1)|)
|Q∗|Γ (κ∗ + θ∗ – 1)

∫ e

1

(

ln
e
	

)κ∗+θ∗–2∣
∣Υ̂

(
	 , y(	 )

)∣
∣d	

	

≤ |ã2ã1|(| ln(t2) – ln(t1)|)
|Q∗|Γ (κ∗ + 1)

(
CΥ̂ ‖y‖X + MΥ̂

)

+
|ã1|(| ln(t2) – ln(t1)|)

|Q∗|Γ (κ∗ + θ∗)
(
CΥ̂ ‖y‖X + MΥ̂

)
.

Evidently, it is seen that the RHS of the inequality approaches 0 (regardless of the choice
of yn ∈ B) whenever t1 → t2. Thus, letting t1 → t2, we get |Φ2(yn)(t2) – Φ2(yn)(t1)| → 0
and so {Φ2(yn)} is equicontinuous. Taking into account the Arzela–Ascoli theorem, we
obtain that Φ2(B) is compact. In addition, in view of Proposition 3, Φ2 is μ-Lipschitz with
constant zero. �

In this position, we establish the main results for the mixed Caputo–Hadamard nonhy-
brid BVP (3) based on the above lemmas.

Theorem 13 Under assumptions (HP5) and (HP6), the mixed Caputo–Hadamard non-
hybrid BVP (3) has at least one solution y ∈X provided C

Υ̂

Γ (κ∗+1) +�1 < 1. Further, the family
of solutions of (3) is bounded in the space X .

Proof In view of the hypothesis (HP7) and Lemma 10, we deduce that Φ1 : X → X de-
fined in (10) is μ-Lipschitz with constant K̃∗

1 = L
Υ̂

Γ (κ∗+1) ∈ (0, 1). Furthermore, we find that
operator Φ2 : X → X defined in (11) is μ-Lipschitz with K̃∗

2 = 0 according to Lemma 12.
Here, Proposition 4 implies that the operator Φ : X →X defined by Φ = Φ1 +Φ2 is a strict
μ-contraction with constant K̃∗ = K̃∗

1 + K̃∗
2 = K̃∗

1 and, since K̃∗ < 1, Φ is μ-condensing.
Now, take

B :=
{

y ∈X : there is λ ∈ [0, 1] so that y = λΦ(y)
}

.

In this step, it is enough to show that B is a bounded subset of X . For this, select y ∈ B.
Then in the light of the growth conditions obtained in Lemmas 10 and 9, we may write

‖y‖X =
∥
∥λΦ(y)

∥
∥
X = λ

∥
∥Φ(y)

∥
∥
X ≤ λ

(∥
∥Φ1(y)

∥
∥
X +

∥
∥Φ2(y)

∥
∥
X

)

≤ λ

(
CΥ̂

Γ (κ∗ + 1)
‖y‖X +

MΥ̂

Γ (κ∗ + 1)
+ �1‖y‖X + �2

)

≤ λ

(
CΥ̂

Γ (κ∗ + 1)
+ �1

)

‖y‖X + λ

(
MΥ̂

Γ (κ∗ + 1)
+ �2

)

,

implying that the set B is bounded in X . Thus there is a number ρ > 0 such that B ⊂
Vρ(0), and so we have deg(I – λΦ ,Vρ(0), 0) = 1, by applying Theorem 6. Finally, under the
hypotheses of Theorem 6 due to Isaia, the operator Φ = Φ1 + Φ2 has at least one fixed
point and the family of fixed points of Φ is bounded in X . This means that the mixed
Caputo–Hadamard nonhybrid BVP (3) has at least one solution on [1, e] and the family of
solutions is bounded. The proof is finished. �

Eventually, we derive a uniqueness criterion for the mixed Caputo–Hadamard nonhy-
brid BVP (3) in the following theorem.
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Theorem 14 In addition to three hypotheses (HP5), (HP6), and (HP7), let us assume
that

LΥ̂

(
1

Γ (κ∗ + 1)
+

∣
∣
∣
∣

ã2(1 + ã1)
Q∗Γ (κ∗ + 1)

∣
∣
∣
∣ +

∣
∣
∣
∣

(1 + ã1)
Q∗Γ (κ∗ + θ∗)

∣
∣
∣
∣

)

< 1.

Then the mixed Caputo–Hadamard nonhybrid BVP (3) has a unique solution on [1, e].

Proof Let y ∈X be arbitrary. By Lemma 10 and assumption (HP5), we obtain

∣
∣Φ1y(t) – Φ1y′(t)

∣
∣ ≤ LΥ̂

Γ (κ∗ + 1)
∥
∥y – y′∥∥

X , (12)

where Φ1 : X →X is defined in (10). Furthermore, we have the following estimate:

∣
∣Φ2y(t) – Φ2y′(t)

∣
∣

≤
∣
∣
∣
∣
ã2(1 + ã1)
Q∗Γ (κ∗)

∣
∣
∣
∣

∣
∣
∣
∣(
∫ e

1

(

ln
e
	

)κ∗–1[

Υ̂
(
	 , y(	 )

)
– Υ̂

(
	 , y′(	 )

)d	

	

]∣
∣
∣
∣

+
∣
∣
∣
∣

(1 + ã1)
Q∗Γ (κ∗ + θ∗ – 1)

∣
∣
∣
∣

∣
∣
∣
∣(
∫ e

1

(

ln
e
	

)κ∗+θ∗–2[

Υ̂
(
	 , y(	 )

)d	

	
– Υ̂

(
	 , y′(	 )

)
]∣
∣
∣
∣

≤ LΥ̂

(∣
∣
∣
∣

ã2(1 + ã1)
Q∗Γ (κ∗ + 1)

∣
∣
∣
∣ +

∣
∣
∣
∣

(1 + ã1)
Q∗Γ (κ∗ + θ∗)

∣
∣
∣
∣

)
∥
∥y – y′∥∥

X , (13)

where Φ2 : X →X is defined in (11). From (12) and (13), we have

∣
∣Φ(y)

∣
∣ ≤ LΥ̂

(
1

Γ (κ∗ + 1)
+

∣
∣
∣
∣

ã2(1 + ã1)
Q∗Γ (κ∗ + 1)

∣
∣
∣
∣ +

∣
∣
∣
∣

(1 + ã1)
Q∗Γ (κ∗ + θ∗)

∣
∣
∣
∣

)
∥
∥y – y′∥∥

X ,

which yields that Φ = Φ1 + Φ2 : X →X is a contraction. By utilizing the Banach contrac-
tion principle, it is deduced that the mixed Caputo–Hadamard nonhybrid BVP (3) has a
unique solution. �

4 Examples
In this part of the paper, we examine our theoretical results by presenting some numerical
examples to show the applicability of the analytical findings.

Example 1 To illustrater the mixed Caputo-Hadamard hybrid BVP (1)–(2), we formulate
the following hybrid equation:

CHD1.78
1+

[y(t) – 1
2+t (y(t) + cos(– 1

9
∫ e

1 y(	 ) d	 ) + sin(HI0.33
1+ y(t))) + 0.2021

t
2020 (y(t) +

1
27

∫ e
1 y(	 ) d	+HI2.11

1+ y(t)
1+ 1

27
∫ e

1 y(	 ) d	+HI2.11
1+ y(t)

) + 0.11

]

= (1 + t)2 sin
(
y(t)

)
(14)
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furnished with mixed Hadamard integral hybrid boundary conditions

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

CHD1+ [ y(t)– 1
2+t (y(t)+cos(– 1

9
∫ e

1 y(	 ) d	 )+sin(HI0.33
1+ y(t)))+0.2021

t
2020 (y(t)+

1
27

∫ e
1 y(	 ) d	+HI2.11

1+ y(t)

1+ 1
27

∫ e
1 y(	 ) d	+HI2.11

1+ y(t)
)+0.11

]|t=1

= –0.66[ y(t)– 1
2+t (y(t)+cos(– 1

9
∫ e

1 y(	 ) d	 )+sin(HI0.33
1+ y(t)))+0.2021

t
2020 (y(t)+

1
27

∫ e
1 y(	 ) d	+HI2.11

1+ y(t)

1+ 1
27

∫ e
1 y(	 ) d	+HI2.11

1+ y(t)
)+0.11

]|t=1,

HI1.44
1+

CHD1+ [ y(t)– 1
2+t (y(t)+cos(– 1

9
∫ e

1 y(	 ) d	 )+sin(HI0.33
1+ y(t)))+0.2021

t
2020 (y(t)+

1
27

∫ e
1 y(	 ) d	+HI2.11

1+ y(t)

1+ 1
27

∫ e
1 y(	 ) d	+HI2.11

1+ y(t)
)+0.11

]|t=e

= 0.89[ y(t)– 1
2+t (y(t)+cos(– 1

9
∫ e

1 y(	 ) d	 )+sin(HI0.33
1+ y(t)))+0.2021

t
2020 (y(t)+

1
27

∫ e
1 y(	 ) d	+HI2.11

1+ y(t)

1+ 1
27

∫ e
1 y(	 ) d	+HI2.11

1+ y(t)
)+0.11

]|t=e

(15)

so that t ∈ [1, e], κ∗ = 1.78, γ ∗ = 0.33, μ∗ = 2.11, θ∗ = 1.44, λ∗
1 = –1

9 , λ∗
2 = 1

27 , ã1 = –0.66, and
ã2 = 0.89. Define the function Υ̂ : [1, e]×R →R by Υ̂ (t, y(t)) = (1 + t)2 sin(y(t)). Obviously,
Υ̂ ∈ CR([1, e] × R). Now, put ψ(t) = (1 + t)2 and ξ (‖y‖) = 1. Thus ψ∗ ≈ 13.8256. Further,
define two continuous maps Λ : [1, e] ×R

3 →R and Ψ : [1, e] ×R
3 →R \ {0} by

Λ

(

t, y(t), –
1
9

∫ e

1
y(	 ) d	 ,HI0.33

1+ y(t)
)

=
1

2 + t

(

y(t) + cos

(

–
1
9

∫ e

1
y(	 ) d	

)

+ sin
(HI0.33

1+ y(t)
)
)

+ 0.2021

and

Ψ

(

t, y(t),λ∗
2

∫ e

1
y(	 ) d	 ,HIμ∗

1+ y(t)
)

=
t

2020

(

y(t) +
1

27
∫ e

1 y(	 ) d	 + HI2.11
1+ y(t)

1 + 1
27

∫ e
1 y(	 ) d	 + HI2.11

1+ y(t)

)

+ 0.11.

Note that Λ∗ ≈ 0.2021 and Ψ ∗ = 0.11. We claim that function Λ is Lipschitz. To see this,
for every y, y′ ∈R, we have

∣
∣
∣
∣Λ

(

t, y1(t), –
1
9

∫ e

1
y1(	 ) d	 ,HI0.33

1+ y1(t)
)

– Λ

(

t, y2(t), –
1
9

∫ e

1
y2(	 ) d	 ,HI0.33

1+ y2(t)
)∣

∣
∣
∣

≤ 1
2 + t

[

1 +
∣
∣
∣
∣
–1
9

(e – 1)
∣
∣
∣
∣ +

1
Γ (0.33 + 1)

]

sup
t∈[1,e]

∣
∣y1(t) – y2(t)

∣
∣.

Letting σ (t) = 1
2+t , we have σ ∗[1 + |–1

9 (e – 1)| + 1
Γ (0.33+1) ] ≈ 0.8500. In a similar manner,

function Ψ is also Lipschitz. Indeed, for every y, y′ ∈ R, we have

∣
∣
∣
∣Ψ

(

t, y1(t),
1

27

∫ e

1
y1(	 ) d	 ,HI2.11

1+ y1(t)
)

– Ψ

(

t, y2(t),
1

27

∫ e

1
y2(	 ) d	 ,HI2.11

1+ y2(t)
)∣

∣
∣
∣
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≤ t
2020

[

1 +
∣
∣
∣
∣

1
27

(e – 1)
∣
∣
∣
∣ +

1
Γ (2.11 + 1)

]

sup
t∈[1,e]

∣
∣y1(t) – y2(t)

∣
∣

≤ �(t)
[

1 +
∣
∣λ∗

2(e – 1)
∣
∣ +

1
Γ (μ∗ + 1)

]

sup
t∈[1,e]

∣
∣y1(t) – y2(t)

∣
∣

so that �∗[1 + |λ∗
2(e – 1)| + 1

Γ (μ∗+1) ] = e
2020 [1 + | 1

27 (e – 1)| + 1
Γ (2.11+1) ] = 0.0020. Eventually, we

obtain M̃ ≈ 0.9980 and select ρ > 0.8975 > 0. In addition,

�∗
[

1 +
∣
∣λ∗

2(e – 1)
∣
∣ +

1
Γ (μ∗ + 1)

]

ψ∗ξ
(‖y‖X

)
M̃ + σ ∗

[

1 +
∣
∣λ∗

1(e – 1)
∣
∣ +

1
Γ (γ ∗ + 1)

]

≈ 0.6057 < 1.

Hence, by invoking Theorem 8, it is realized that the mixed Caputo–Hadamard hybrid
BVP (14)–(15) has a solution on [1, e].

Example 2 To illustrate the mixed Caputo–Hadamard nonhybrid BVP (3), we formulate
the following nonhybrid BVP:

⎧
⎨

⎩

CHD1.14
1+ y(t) = 1

49+exp (t2–1)
|y(t)|

(1+|y(t)|) ,
CHD1+ y(1) = –1.66y(1), 1

Γ (0.74)
∫ e

1 (ln e
	

)–0.26[CHD1+ y(	 )] d	
	

= 0.56y(e),
(16)

so that t ∈ [1, e], κ∗ = 1.14, θ∗ = 0.74, ã1 = –1.66, and ã2 = 0.56. Then, an integral structure
of the solution for the mixed Caputo–Hadamard nonhybrid BVP (16) is represented by

y(t) =
1

Γ (1.14)

∫ t

1

(

ln
t
	

)0.14

Υ̂
(
t, y(t)

)d	

	

+
0.56(1 – 1.66 ln(t))

Q∗Γ (1.14)

∫ e

1

(

ln
e
	

)0.14

Υ̂
(
t, y(t)

)d	

	

–
(1 – 1.66 ln(t))
Q∗Γ (0.88)

∫ e

1

(

ln
e
	

)–0.12

Υ̂
(
t, y(t)

)d	

	
(17)

for any t ∈ [1, e], where the continuous function Υ̂ : [1, e] ×R →R is defined by

Υ̂
(
t, y(t)

)
=

1
49 + exp (t2 – 1)

( |y(t)|
1 + |y(t)|

)

.

Then, one can write

∣
∣Υ̂

(
t, y(t)

)
– Υ̂

(
t, y′(t)

)∣
∣ ≤ 1

50
∥
∥y(t) – y′(t)

∥
∥
R

and

∣
∣Υ̂

(
t, y(t)

)∣
∣ ≤ 1

50
∣
∣y(t)

∣
∣

with LΥ̂ = 1
50 , CΥ̂ = 1

50 , and MΥ̂ = 0. Now, define three operators Φ1,Φ2,Φ : R → R as
follows:

(Φ1y)(t) =
1

Γ (1.14)

∫ t

1

(

ln
t
	

)0.14

Υ̂
(
t, y(t)

)d	

	
,
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(Φ2y)(t) =
0.56(1 – 1.66 ln(t))

Q∗Γ (1.14)

∫ e

1

(

ln
e
	

)0.14

Υ̂
(
t, y(t)

)d	

	

–
(1 – 1.66 ln(t))
Q∗Γ (0.88)

∫ e

1

(

ln
e
	

)–0.12

Υ̂
(
t, y(t)

)d	

	

and (Φy)(t) = (Φ1y)(t) + (Φ2y)(t). Since Φ1 and Φ2 are continuous and bounded, Φ = Φ1 +
Φ2 is continuous and bounded, too. Further, we have

∣
∣Φ1y(t) – Φ1y′(t)

∣
∣ ≤ 1

50 × Γ (2.14)
∥
∥y – y′∥∥

R

which implies that Φ1 is μ-Lipschitz with constant K̃∗
1 = 1

50×Γ (2.14) by Proposition 2. Also,
by using hypothesis (HP6) for the growth condition, we get ‖Φ1(y)‖R ≤ 1

50×Γ (2.14)‖y‖R.
Therefore, since Φ1 is μ-Lipschitz with constant K̃∗

1 = 1
50×Γ (2.14) and Φ2 is compact with

constant K̃∗
2 = 0, by Proposition 4, Φ = Φ1 + Φ2 is a strict μ-contraction with constant

K̃∗ = K̃∗
1 + K̃∗

2 = 1
50×Γ (2.14) � 0.0187 < 1. Thus Φ is a μ-condensing operator. Also, take

B =
{

y ∈ CR

(
[1, e]

)
: there is λ ∈ [0, 1] such that y =

1
2

(Φy)
}

.

Then ‖y‖R ≤ 1
2‖Φy‖R ≤ 1 implies that B is a bounded set and so, by Theorem 13, it is

deduced that the mixed Caputo–Hadamard nonhybrid BVP (16) has at least one solution
y in CR([1, e]). In addition,

LΥ̂

(
1

Γ (κ∗ + 1)
+

∣
∣
∣
∣

ã2(1 + ã1)
Q∗Γ (κ∗ + 1)

∣
∣
∣
∣ +

∣
∣
∣
∣

(1 + ã1)
Q∗Γ (κ∗ + θ∗)

∣
∣
∣
∣

)

≈ 0.0331 < 1.

Therefore, Theorem 14 implies that the mixed Caputo–Hadamard nonhybrid BVP (16)
has a unique solution.

5 Conclusion
The fractional calculus has always been one of the most widely used branches of math-
ematics in other applied and computational sciences. This degree of importance is due
to the high flexibility of the tools and operators defined in this theory. On this basis,
researchers have been using various powerful fractional operators in recent decades to
model different types of existing natural processes in the world. In the current research ar-
ticle, two hybrid and nonhybrid fractional BVPs of Caputo–Hadamard type are addressed.
We seek the existence criteria for these two problems separately. We first utilize the gen-
eralized Dhage’s theorem to derive desired results for an integral structure of solutions for
the proposed hybrid BVP (1)–(2). Next, we establish other results for nonhybrid BVP (3)
based on some existing notions in the topological degree theory. At the end of the paper,
we examine our theoretical results by presenting some numerical examples to show the
applicability of the analytical findings.
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