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1 Introduction
The Chebyshev functional is given by (see [7, 10])

T(U, YV, 1) :/ 2u(r)dt/ 2M(t)%(r)“//(r)dt

X1 1

— / " () dr / SV (@) dr, W

1 X1

where % and 7 are integrable functions on [x1,%;], and u is a positive integrable function
on [x1,x;]. Applications of functional (1) are found in probability and statistical problems.
Further applications can be found in [6, 16, 36]. In [9, 35] the authors defined the following
extended Chebyshev functional:

T(U, VYV, u,V) = /xz v(t)dt /xz w(@)% (t)V(t)dz

1 1

+ /xz u(r)dr /xz (D)% (t)V (t)dt

1 1
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- /xz ()% (t)dr /xz v(T)¥ (t)dt

x1 x1

- /xz (o) (t)dt /xz w(t)¥ (r)dr, 2)

1 *1

where % and ¥ are integrable functions on [x1,x;], and p and v are positive integrable

functions on [x1,%;]. The functions % and ¥ are said to be synchronous on [x1,x;] if

(% (p) =% (©)(¥(p)=7(£) =0, p,& € [x1,%].

The functions % and ¥ are said to be asynchronous on [x1,x;] if the inequality reversed,
that is,

(% (p) =2 (©))(¥ ()= V() <0, p,& € [x1,22].

If the functions % and ¥ are synchronous on [r,s], then (%, , ) > 0and T (%, Y,
u,v) > 0. For further details, the reader may consult Kuang [27] and Mitrinovic [35].
If we consider () = v(¥#) = 1, ¢ € [x1,x3], then T(%,V,u) = %9(%,“//,;1,1)). In
[3, 12, 34, 44], various researchers gave valuable consideration to functionals (1) and (2).
Recently, Rahman et al. [57] defined fractional conformable inequalities for the Chebyshev
functionals (1) and (2).

Awan et al. [2] presented the following result: If @ is an absolutely continuous on [x1, %3]
such that (®')? € Li[x1,%;] and u is a positive integrable function on [x1,%,], then the
following inequality holds;

T(D,D,u) < @ : |:/x: u(r)dr /xlxz tu(r)dr - /: u(t)dr /x: r,u(r)dri|

x [@'(6)] do,

where Q(x,) = fxxlz w(r)dr.
Bezziou et al. [5] presented the following result.

Theorem 1.1 Let @ : [x),%x,] — R be an absolutely continuous function such that (9')? €
Ly[x1,x;], and let p : [x1,x,] — R* be an integrable function. Then we have the following
inequality for k > 0:

X2

TE ) ) - (5 nd(x) < / AO)[0'0)]

x1

> do

with
1 T i -1 T ‘ -1
A(0) = 5 [/xlxzu(xz)/ (2 =) u(r)dr - /xlu(xz)/ T(x — 1) M(t)dr],

where ¢ is the classical RL-fractional integral.

Dahmani and Bounoua [13] established the following result.
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Theorem 1.2 Let @ : [x1, %] — R be an absolutely continuous such that (9')? € Ly [x1, %],
and let | : [x1,%] — R* be an integrable function. Then for all k > 0 and 0 € [x1,x,], the
following inequality holds;

S A= | S S 9>T

< T (9) / QO[e' )] d

/xl

with

P
Q(0) = == [/xl(f)u(@)) / W) - 9) " do

X1

p
- i) [ on)0 -0 dv],
x1
where ¥ is the classical Riemann—Liouville fractional integral.

In the last few decades, the researchers investigated different kinds of integral inequali-
ties by considering various integral approaches. In [14] the authors gave weighted Griiss-
type inequalities by taking RL-fractional integrals into account. Dahmani [8] proposed
some new inequalities in the sense of fractional integrals. Several inequalities for the ex-
tended gamma function and confluent hypergeometric k-function are found by Nisar et
al. [38]. Nisar et al. [39] used Riemann-Liouville and Hadamard k-fractional derivatives
and investigated Gronwall-type inequalities with applications. Rahman et al. [55] studied
(k, p)-fractional integrals and investigated the corresponding inequalities. Sarikaya and
Budak [59] proposed Ostrowski-type inequalities by considering local fractional integrals.
Sarikaya et al. [60] proposed the idea of generalized (k, s)-fractional integrals with appli-
cations. Set et al. [61] investigated Griiss-type inequalities for the generalized k-fractional
integrals. Recently, Jarad et al. [22, 23] proposed the idea of fractional conformable and
proportional fractional integral operators. Huang et al. [20] recently presented general-
ized Hermite—Hadamard-type inequalities for k-fractional conformable integrals. Qi et al.
[45] proposed Chebyshev-type inequalities by using generalized k-fractional conformable
integrals. Rahman et al. [56] investigated Chebyshev-type inequalities by utilizing frac-
tional conformable integrals. Chebyshev-type inequalities and Minkowski-type inequal-
ities involving generalized conformable integrals can be found in the work of Nisar et al.
[42, 43]. Recently, Tassaddiq et al. [63] proposed certain inequalities for the weighted and
extended Chebyshev functionals by using fractional conformable integrals. Nisar et al. [40]
presented some new classes of inequalities for an n (n € N) family of positive continuous
and decreasing functions via generalized conformable fractional integrals. Nisar et al. [41]
established generalized fractional integral inequalities via the Marichev-Saigo—Maeda
(MSM) fractional integral operators. Rahman et al. [54] recently investigated Griiss-type
inequalities for generalized k-fractional conformable integrals. Minkowski’s inequalities,
fractional Hadamard proportional integral inequalities, and fractional proportional in-
equalities for convex functions by employing fractional proportional integrals can be
found in [46-53]. In addition, various applications of fractional calculus can be found in
[1, 17, 18, 28-32, 62, 64].
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The paper is organized as follows. Some auxiliary results are presented in Sect. 2. In
Sect. 3, we present double-weighted fractional integral inequalities for the Chebyshev
functionals. In Sect. 4, we retrieve several particular cases of the results. A concluding

remark is given in Sect. 5.

2 Auxiliary results
In this section, we present some well-known definitions and mathematical preliminaries

of fractional calculus.

Definition 2.1 ([26, 58]) Let % € L[x;,x;]. Then the classical left- and right-sided RL-
fractional integrals of order t > 0 and x; > 0 are respectively defined by

4
@/’%)(m:% f (# -0 '%(0)do, 31 <, )
and

1=
(S5 2)0) =5 | e-oriwede v<m, @)

D3

where I is the standard gamma function.

Definition 2.2 ([37]) Let % € L[x1,x3]. Then the generalized left- and right-sided RL « -
fractional integrals of order v > 0 and x; > O are respectively defined by

1 J .
(2 SN0 = s [ 0 -0 %o, n<o, ®
and
(Fo) == [ 0T wde, ©)
sz,l( - KFK(T) 5 Q - Q Q’ < X2,
where I, is the x-gamma function defined in [15].

Remark 2.1 Applying Definition 2.2 for « = 1, we get Definition 2.1.

Definition 2.3 ([26]) Let % : [x1,x3] — R be an integrable function, and let ¥ be an
increasing positive function on (x1,x;] with continuous derivative ¥’ on (x1,x;). Then
the left- and right-sided generalized RL fractional integrals of a function % concerning
another function ¥ are respectively defined by

b .
(oI %) p) = % f 1 (W (®)-¥(0) " W'()% ) do, x <9, @)
and
(" 75 %)) = sz) /9 (W@ -v0) TV 0o, P < (8)

where « > 0 and t € C with %i(r) > 0.
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Definition 2.4 ([33]) Let % : [x1,%,] — R be an integrable function, and let ¥ be an
increasing positive function on (x1,x;] with continuous derivative ¥’ on (x1,x;). Then
the left- and right-sided generalized RL « -fractional integrals of a function % concerning
another function ¥ are respectively defined by

1 7 Ty,
@A) = /xl (v()-v() W% @)do, x <0, ©)
and
1 *2 Ty,
S0 = s [ @@ -v0) WU @de, v<m,  (0)

where « > 0 and t € C with %i(r) > 0.

Remark 2.2 The following particular cases are easily derived:
i. Applying Definition 2.4 for ¥ (#) = ¢, we get Definition 2.2,
ii. Applying Definition 2.4 for ¥ = 1, we get Definition 2.3,
ili. Applying Definition 2.4 for ¥ (¢) = In¥, we get the generalized Hadamard
Kk -fractional integrals defined in [21],
iv. Applying Definition 2.4 for ¥ (¢) = In¥ and « = 1 leads to the Hadamard fractional
integrals defined in [26],
v. Applying Definition 2.4 for ¥ (&) = %, 7 >0, and « = 1 leads to the Katugampola
fractional integrals [24],
vi. Applying Definition 2.4 for ¥ (9) =
1+ 5 #0) leads to the generalized fractional conformable integrals defined by Khan
and Khan [25],
vii. Applying Definition 2.4 for ¥ (%) = W and ¥ () = W, a > 0, leads to the
(k, )-fractional conformable integrals defined by Habib et al. [19].
viii. Applying Definition 2.4 for ¥ (¢) = =% @ () = ’("20[—’0)(1, a>0,and k =1 leads

o

29(1+5

and k = 1 (where @ € (0,1], s € R, and

a+s

to the conformable fractional integrals defined by Jarad et al. [23],
ix. Applying Definition 2.4 for ¥ (9) = ¥ and « = 1, we get Definition 2.1.

3 Some double-weighted generalized fractional integral inequalities
In this section, we present some double-weighted generalized fractional integral inequal-
ities. We start by proving the following lemma.

Lemma 3.1 Let ¥ be a measurable increasing positive function on (x1,x,) with continuous
derivative W'(0) on [x1,%;]. Let ¥V : [x1,x2] — R be continuous on [x1,%,], and let u,v :
[x1,%2] = R* be positive integrable. Then for all T,k > 0, we have

(4 2 )[4 IS0 ) (x)] + [ I @) ][ 2 %2 (Y ) (x2) ]
= [¥ I D)o () ][4 IS ) (x2)] = [F I o (2) | [ I (10 ) (x2) |

1 2
<
k() Jy

9 T
[;"1 Szt [ (@) - 9(0) W (@vlo)de

l? T
AT / o(¥ () - ¥(0)* ¥ (0)v(0) dg](ww)) a9, (11)
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Proof Suppose that % : [x1,%2] — R is a continuous function on [x1,x;]. Then we get

(MEATTIEN] | AL CLZa 010 ] B MEAR A | MEA T/ B 1C5Y)

x1 < K x1< Kk x1 < K

Y I W) ) [ I - [4 I 02 @)][L I W ) )]
o [ e v @) W) - o)

x W' EE @v©)[(% 6) - % () (7 (6) - ¥ (0)] dé do.

-1

Al

Consequently, it follows that

% 7 wGe)][ I 0 VY o)] + [ I5Y )[4 IE w2 ) (x2)]

x1 Kk

I 0PN w)] - [F I 2] [ I (1))
. KZ%Z(T) / ’ f (W () - 0 () (W )~ W ()
&
< EEW (V)% ) - U () ( / "/’(ﬁ)dﬁ) de do. (12)
4

Utilizing the condition x; < o < ¥ <& < x,, we conclude that

[ I @) ][5 I8 0% V) w)] + [ I ) [ I8l V) ()]

~[4 I [ I ) )] = [L I 02 ) ee) | [ I (1 ) )]
1 [

19 T
[ / (¥ (02) - ()" " (v(0)

T2 )y,

x / 2 (W x2) — W (&) (%) - % ()W (E)ulE) ds d@] (7'@)dv.  (13)
Applying (13) to the particular case % (x) = x, we can write

HEATTC )| MEAECVAICN] B AR LCN] | MEAEA Y S1C3)

x1< Kk X1

8 I )[4 IT ) 2)] - [ T2 ) @) [E I (1) )]

1 2
S k202(2) Jy,

19 T
[ / (¥ () - () " (v(e)

z
K

x f 2(‘1/(962)—‘1’(5)) & - oW (E)nE) ds dg} (7' () do

! [ ! ) / (W) - () ) () d

= L (7) o k(T x1
D2 z_ 1
x / (#(x) - ¥(0))* ¥ (0)v(e) do - kI (7)

X9 P
X / (W (x2) - (&) 0 (E)(8) dE /

x (¥ (%) - W(Q));_IW/(Q)QV(Q)dQ] (V' (9))do.
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The latter by (9) gives

(4 2 ) |[5 T2 x)] + [ I @) [ A2 (Y ) (x2)]

Y I e)][Y T 0 w)] - [ I ) |[L I ) )]
k(1) Jyy

ﬁ T
[ﬁ’lf[xzu(xz)/ (¥ (@) - ¥ (0))* ¥ (0)v(0) do
0 )
—Z”lfiu(xz)/ o(¥(x2) - ¥(0)* W’(Q)v(@)dg}("///(ﬁ))dﬁ,

which completes the proof.

Based on Lemma 3.1, we prove the following theorem.

Theorem 3.1 Let ¥ be a measurable increasing positive function on (x1,x;) with continu-
ous derivative W'(0) on [x1,%3]. Let @ : [x1,%,] — R be an absolutely continuous function

with (@')* € Li[x1,%2), and let i, v : [x1,%,] — R* be positive integrable functions. Then for

all T,k >0, we have
[ 7 1) [ 28 (v@?) @) + [ A8 v ) [, 7 (n0?) (52)]
—2[] 2 (ud)(x)][5 I (vD)(x2)]

1
<
~ «kL(7)

X2 L T
[ [zt [ @ -we) wemode

9 T
— I ) / o(W(x2) - w(m)“we)v(wde} (@'(9))" dv.

X1
Proof By employing definition (9) and Lemma 3.1 we obtain

[ mGe][ 27 (v07) )] + [ A v ][4 5 (19) )]
=2[Y IE(u®) @) |[1 I (v D)(x2)]

1 X2 X2 %_1
- / | / () -w)

x (@ (1) - W ()W (E)(E)W (0)v(0) (D () - (o)) dE do

1 X a2 -
- f | f RESRL)

_ 2
x (W) - ¥(0)* W (E)(E) ¥ ()v(0)(E - Q%%Z(Q))

Consequently, it follows that

[ 7 ne)][5 2 (v )]+ [3 S e)][3 A (n @) ()]
=2 T ) @) [1 2 0@ (x2)]

dé do.

(14)

Page 7 of 19
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<orm ), [, ve-ve
g
X (W (x2) - (0)* W' (E)nE)W (0)v(0)(E - Q)2< F o ) dg do.

By the Cauchy—Schwarz inequality [11] we get

[ ][5 7 (v @) )] + [5 A ve)][ S (n@7) e2)]
[,q T )e)][Y S v)2)]

1
- [ | [ () - w)
fé
X (@ (x2) - ¥ ()W E)n(EW (v (e)(E - a)2< s—e )deg

1 X LE2 T T_
oo [ o-ve v

(5 do)E ([ (@'(9))dv)?
£-o

2
X W E)uE)W (@)v(e)(E - Q>2( >dgdg

m(f)/xlf W ()~ W(E)

c , ([ (@'(9))*av)
X (¥ (x2) - () T W O pE©W @v()E - o)? (—) ds do

§-0
m f/ W) - W (E)"

T £
y (W(xz)—w@))?lw’@)u(swﬂ(g)v(@)(s—Q)( / (¢'<ﬁ>)2dﬁ> de do. (15)
o

Hence using (13) and (15), we conclude the proof. O

Corollary 3.1 Let ¥ be a measurable increasing positive function on (x1,x,) with contin-
uous derivative W' (0) on [x1,x;]. Let @ : [x1,x,] = R be an absolutely continuous function
with (®')? € Ly [x1,%,], and let v : [x1,%;] — R* be positive integrable. Then for all T,k >0,

we have

[(W(xz)—w(xl))f}[

PO T 0]+ [ A v ][ 2 (0]

=2[ IE @) W)][}, A () (x2)]

T

- 1 x v g W v v ;4[11/ )
=@ ), [ szfxl( (02) - ¥ (@)W (0)v(0)do

(W () ~ W (@))x (7 e /
e / Q¥ e - ¥ (@) (a)v(g)dg] (@'())* v

Proof By considering (¢ = 1,9 € [x1,%2], in Theorem 3.1 we obtain the desired result. (]
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Corollary 3.2 Let ¥ be a measurable increasing positive function on (x1,%;) with contin-
uous derivative W'(0) on [x1,%5). Let @ : [x1,%3] — R be an absolutely continuous function

with (@)% € Li[x1,%,], and let [ : [x1,%,] — R* be positive integrable. Then for all T,k >0,
we have

: . (¥ (x2) = ¥ (1)) .
[ 27 ][ 5 (07) e)] + [%}[ 75 (7))
—2[Y I (D) )|[L ST (P)(x2)]

. ” ’ z_
= Kk [e(T) x1 [zﬂ;xzu(a%) /xl (lp(xZ) - ‘I/(Q))K 1‘1”(@) do

g T
— 4 T ) / o(¥ (@) - W(m)“uﬂ(g)dg] (¢'()" .

Proof By considering v(¢#) = 1, ¥ € [x1,%2], in Theorem 3.1 we get the desired result. [

Corollary 3.3 Let ¥ be a measurable increasing positive function on (x1,x,) with contin-

uous derivative W' (0) on [x1,x,]. Let @ : [x1,x3] = R be an absolutely continuous function
with (®')? € Ly[x1,%3]. Then for all T,k >0, we have

(W (x5) — W (x1))% . )
[%}[Wl I(@Y) )] - [4 IF (@) o)

PN e /0(111(96)—11/( ) e (0)d
_ZKFK(T) x1 n7e x1 : ¢ Qe
W)~ W) (7

IR o(¥(x2) - ¥(0))

=]

2

1q//(g)dg] (0'(9))” do.

Proof Taking u(9) =v(9#) =1, 9 € [x1,%3], in Theorem 3.1, we obtain the desired result. (]

Theorem 3.2 Let ¥ be a measurable increasing positive function on (x1,x;) with contin-
uous derivative W'(0) on [x1,x2]. Let f1,f> : [x1,%2] — R be absolutely continuous functions
with (f))* € Li[x1,x2] and (f;)* € Li[x1,%,], and let j1,v : [x1,%] — R* be positive inte-
grable. Then for all T,k > 0, we have
'4 T '4 T "4 T '4 T
YT )Y I (i) o) + ¥ I 0(0) I (ufifs) ()
IR I ufs)ea) I f) ) A (f) )|

1
<
- KFK(‘L')<

b2 . %
S AgTe™) / 0(¥(2) - ¥ ()" ¥ (0)v(0) dg} (f{(l?))zdz‘/‘)

X2 L T
/ [;gy;xm(xz) | @e-v) v enie)de

x1

X2 D2 T
X(/ [ﬁf’lfixzﬂ(xz)/ (¥ (x2) - ¥(0)*  ¥'(0)v(0)do

b . %
~¥ I u(x2) / Q(‘I’(xz)—‘I’(Q))K_I‘I’/(Q)V(Q)dg}(]3’(19))20117) : (16)
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Proof Considering the left-hand side of (16), we have

¥ I )l TT0ffs)2) + I v(x2)Y I (fif) (w2)
— 4 I w)Y I (k) x2) — & I )22 I (uf) ()]

= m( f 1 f () - v E) T (@) - @) T nee)

V() ~£(0)) dsdg) (/ / W () - W () F

5 (W (62) - ¥ (0))* W E)E) @) (H(E) - (o)) de de) i

1 X2 x2 T_ z_ f
sm( / / (W () = W) (W (x2) - () W (E)ule)

£ 2 % X2 X2 .
xwg)v(m( / ﬂ(ﬁ)dﬁ) ded@) y ( / / (W () - w ()
o X1 X1

. g 2 3
x (¥ (x2) - ¥ (0)" ll1”(5)#(%‘)‘I/'(Q)V(Q)(/ ]’2’(19)0119) d§ de) :
0
Applying the Cauchy—Schwarz inequality [11] to this inequality, we get

oI )y I f) ) + b IEv(xa) e I (ufify) ()
— Y T @)Y I (k) x2) - L I ()2 I (0 (xs)|

2r2(r)[/ / W) - (E) (W ) - W (@)W E)nlE)

3 3\ 2 3
o’ dv ’192d19)>dd]
x (g)v(g)((/@ ) (fg () £do
« [ f N / () =0 () (W) - W ()
1/ 1/ dd dl? dé d ’
EnE)w () Q((/Q ) (/(fz )) : g]

ZFZ(T)[/ / W) - W) (W) - (@) W ERE)

3 X a2 .
xw%g)v(g)(s—m(/ (f{(m)zdﬁ)dwg] x[ / / (W () - W (€)F!
o X1 X1

. £ 3
X (¥ (2) - () W O ({0 - Q)( f (ﬁj(z?))zdﬁ> de d@}
o

1 x2 X2 I_ ,
fm[/ (/ E(W (%) - W (E) "W (E)ule) dE

D . %
x / (w<x2>—w<g>)f1w/<g>v(g)dg)(f{w))z}
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_ [ / ( / (W) - W) n(E) dt

o T , , 2 2
x / 0 (¥ () - ¥ (0))* uf(mv(g)dg)(fzw))] .

*1

In view of (9), we get the desired proof of (16). O

Corollary 3.4 Let ¥ be a measurable increasing positive function on (x1,x,) with contin-
uous derivative W'(0) on [x1,%2]. Let f1,f> : [%1,%2] — R be absolutely continuous functions
with (f])? € L1[x1,%2] and (f;)* € L1[x1, %3], and let v : [x1,x,] — R* be positive integrable.
Then for all T,k > 0, we have

‘(wm) )ty

(t +«)

Wfifs)(x2) + 3 I V(@) I (fifo) (x2)

Y IR I (B ) - I () @)Y I (o) ()

1 » ’ z_
Sm(r)</x1 [WKT"Z/ () = ¥(0)* ™ ¥ (@)v(0) do

*1

(W) - W (x)x [° ey / :
_% / o(¥(x) - ¥ ()" 'w (@v(g)dg](ﬁ(ﬁ))zdl’)

x1

X2 P .
x (/ [;”Ifixz/ (¥ (x2) - ¥ (0))* ¥ (0)v(0) do

x1

(¥ () =¥ )5 (7 . / }
‘%/ o(¥(x2) - ¥ (0))" 1azf(a)v(g)azg](zg(za))zz;lﬂ) :

x1
Proof Applying Theorem 3.2 with u(9) = 1, ¥ € [x1,%2], we obtain the desired result. [

Corollary 3.5 Let ¥ be a measurable increasing positive function on (x1,x,) with contin-
uous derivative W'(0) on [x1,%2]. Let f1,f> : [x1,%2] — R be absolutely continuous functions

with (f1 € Li[x1, %3] and (}”2)2 € Li[x1,%2], and let | : [x1,x2] — R* be positive integrable.
Then for all T,k > 0, we have

, W) vty .

5T S ) ) + e Sl S fif) w2)

— w II ) )} 2 (o) (2) = 5 2 () 2)y I () (x2)

! ” ’ z_
= /crk(r)<fx1 [flfixw(xz)/xl (¥ (x2) - ¥ ()< W(0) do

? . %
S OAITC) / o(W (x2) - *1/(9))”_IW’(Q)dQ](ﬂ(z‘/‘)fdﬁ)
X2 2 -
x( / [;”lf;xzu(xz) [ e -v@) vd

b . %
~¥ I u(x2) / Q(‘I’(xz)—'J’(Q))K_I‘P/(Q)dQ](ﬂ(ﬁ))zdﬁ> :

Page 11 of 19
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Proof Applying Theorem 3.2 with v(¢#) = 1, & € [x1,x,], we obtain the desired result. [

Corollary 3.6 Let ¥ be a measurable increasing positive function on (x1,x;) with contin-
uous derivative ¥'(0) on [x1,%2]. Let f1,f> : [x1,%2] — R be absolutely continuous functions

with (f1 € Li[x1, %3] and (}”2)2 € Li[x1,%2], and let | : [x1,x2] — R* be positive integrable.
Then for all t,« > 0, we have

‘(‘I’(xz) w(xl))%q/
(t+x) ™M

I (o) x2) = 5 L () (x2)y, Z (1) (02)

~ L IR x2)E I () ()

1 *2 ? _—
) </x1 [Zﬂerz/ (¥(x:) - ¥ (0)* W' (0) do

X1

W)~ Wx)F 7 - , }
—% / o(¥(x2) - ¥ (0))* IW(Q)dQ](}i(ﬁ))Zdﬁ)

*1

X2 2 .
([T [ @o-ve) viod

1 x1

(W) - Y )
(T + k)

oW - w @)W dg](]g) )

*1

Proof Applying Theorem 3.2 with u(9) = v(¢) = 1, & € [x1, %3], we obtain the desired re-
sult. a

Theorem 3.3 Let W be measurable increasing positive function on (x1,x,) with continuous
derivative W'(0) on [x1,x5]. Let fi : [x1,%2] = R be an absolutely continuous function with
(f]) € L®[x1, %3], and let f, : [x1,%x3] — R be nondecreasing. Moreover, let (1, v : [x1,%2] —
R* be positive integrable, Then for all T,k >0, we have

o T IEWfiS)(x2) + 1 I v() T I (Wfifo)(2)
— a0 TR W)y I (h) () = 3 I (W) (o), (fa) (2)|

K”fi”(f) [‘” S xapi () / (¥ () - 9(0)* W ()v(0) do
—;”lfiu(xz)f Q(‘I’(xz)—W(Q))%_I‘I’/(Q)V(Q)dg}/ H@)dv. 17)
Proof Considering the left-hand side of (17), we have

T IEWAR)@) + 5 v )y I fifs)(x2)
- f(vfl)(xz)“’ I (wh)x) = ¥ I (fi)x)F, 27 (0f) (x2) |

2r2(f / / —w(E)F T (W () - W(0)F W E)E) Y (0)v(0)

x [(A®) -£1(0) (£&) - £(0))] d& do
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KZ%%) / ' / (@ () - ()T (W ) = ¥ (0) T ) (0)v(e)
| s) ﬁ

‘I(E 0)(/2(&) - /2(0)) | d& do

T4
2“[;2 5 / / (@ (@2) -9 () (¥ 02) - ¥ ()" )P (@)v(e)

x(s—@)( / ﬂ(ﬂ)dﬁ) de do

Wl [ .
22 [ / () - @) e ) d

9 . £ .
« / (¥ () - () W' (@)v(0) do - / (W () - (&) (E)(8) e

*1 x1

b2 P X2
x / o (¥ () - ¥ (@) w(g)v(g)dg] / £)do.

*1

Hence taking (9) into account, we complete the proof of (17). O

Corollary 3.7 Let ¥ be a measurable increasing positive function on (x1,%;) with contin-
uous derivative ¥'(0) on [x1,x;]. Let fi : [x1,%2] — R be an absolutely continuous function
with (f]) € L®[x1,x3], and let f5 : [x1,%3] — R be a nondecreasing function. Suppose that
v [x1,%2] — R* is positive integrable. Then for all v,k > 0, we have

‘w‘” IR @) + 5 I I (i) (62)

~ L TR )Y IR ) - IR @)Y I () ()

19 T
gﬁ”ﬁ)[w f / (¥ 2) - (@) ¥ (@v(0)do

*1

(W) @) »

I (t +«)

Al

o(¥ (%) - ¥(0))

x1

vﬂ(g)v(@)d@] / "),

Proof Applying Theorem 3.3 with p(9) = 1, ¥ € [x1,%,], we obtain the desired result. [

Corollary 3.8 Let ¥ be a measurable increasing positive function on (x1,x;) with con-
tinuous derivative W'(0) on [x1,%5]. Let fi : [x1,%] — R be an absolutely continuous
Sfunction with (f]) € L*®[x1,%3], and let f, : [x1,%2] — R be nondecreasing. Suppose that
W [x1,%2] — R* is positive integrable. Then for all T,k > 0, we have

W) = WEDT g ey

T m)y I (fify) ) + Te(t +x)

— 0 TR ) I (h) ) = 5 I (fi) (2, 27 () (x2)

< ”fl,”OO llljrx (x )/ﬁ(w(x )_lI/( ))E—llpr( )d
_KFK(T) e 22 X1 2 Q Q Q

g [ x2
4t [ (v - i) W'(mdg] | swas.
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Proof Applying Theorem 3.3 with v(?#) = 1, & € [x1,x,], we obtain the desired result. [

Corollary 3.9 Let ¥ be a measurable increasing positive function on (x1,x;) with contin-
uous derivative ¥'(0) on [x1,x;]. Let fi : [x1,%2] — R be an absolutely continuous function
with (f]) € L®[x1,x3], and let f5 : [x1,%3] — R be nondecreasing. Then for all T,k > 0, we

have
’ww W) =¥ S5 () a) I () )
T .
= 2,£fln(r) [w G / (¥ (x2) - ()" ¥ (0)v(0) do

(W (x3) — W (x1))e [P _— o
_%/ o(¥(x)-¥(0)" 1El’(g)u(g)dg] /xl £ do.

*1

Proof Applying Theorem 3.3 with u(9) = v(¢#) = 1, ¥ € [x1,%3], we obtain the desired re-
sult. a

Theorem 3.4 Let ¥ be a measurable increasing positive function on (x1,x;) with continu-
ous derivative W'(0) on [x1,%5]. Let fi,f> : [x1,%2] — R be absolutely continuous functions,
and let f : [x1,%] — R be nondecreasing. Suppose that u,v : [x1,x,] — R* are positive
integrable. If f|,f; € L [x1,%,], then for all t,k >0, we have

Y I )l TTffs) ) + I v(x2)Y I (fifo) (w2)
— 4 TR @)E IE ) 2) - & I ) 2) I (uf) ()]
BN

Tty et [ (06sn - w0 0vtorde
o f
2 o) / o (¥ () - ¥ ()W (o)v(o) do
+Zﬁu(xz)/ W (xy) - W(0))* W/(Q)V(Q)dé?} (18)
Proof Considering the left-hand side of (18), we have

VI )t I Off) ) + 4 IEv(xa) Y I (fify) (x2)
— ¥ IIOR) )Y I (k) (2) = ¥ I (h)(x2)Y T (fa)(2)|

aram || [ @ - v @) (e - ) T ©uEw e

% [(£(6) - £1(0)) (5:(6) - () ] de dQ’

ﬁ / 2 / 2(w<x2)— w<s>)f*l(wxz)—w<g>)5*w’(s>u<s>wa>v(@)

ool oo - ,
5% f | / () =0 ©) () - 00) O (00(0)
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x (§2 -2&0 +0%) dE do

- uf{||oouf2’||oo[

«2T2(7) / (¥ (x2) - () 820 (€)ule) dt

X1

> 1_1
x f (¥ (%) - ¥ (0) ¥ (0)v(0) do

*1

X2 T 4 T
-2 / (W (x2) - W(£)) EW/(E) () dt f 0(¥(x2) - ¥(0)* W' (0)v(0) do

X1

*2 T_q v T3
" j (W (2) - (&) 0 () (E) di f (¥ (%) - () w’(mv(g)dg}.

*1

Hence by (9) we complete the proof. O

Corollary 3.10 Let ¥ be a measurable increasing positive function on (x1,x;) with contin-
uous derivative W' (o) on [x1,x,]. Let fi,f> : [x1,%2] — R be absolutely continuous functions,
and let f, : [x1,%,] — R be nondecreasing. Suppose that v : [x1,x,] — R* is positive inte-
grable. If f{,f, € L®[x1,%,], then for all T,x > 0, we have

|w;ﬁf (i) 2) + 1 ATV (2) 3 I (i) @)

~ L TR )Y IR ) IR @)Y T (0 ()

l? T
< [ [ e v wianoa

*1

2 T
-2 [ oW ) - ¥ @)W e de

1

(‘I’(xz) - W (x))*

Lo Jy (“"xz)‘%));'lw%wv(md@]'

Proof Setting u(9) = 1, 9 € [x1,x3], in Theorem 3.4, we obtain the desired result. O

Corollary 3.11 Let ¥ be a measurable increasing positive function on (x1,x;) with contin-
uous derivative ¥'(0) on [x1,x3]. Let fi,f> : [x1,%2] — R be absolutely continuous functions,
and let f, : [x1,%;] — R be nondecreasing. Suppose that i : [x1,x,] — R* is positive inte-
grable. If f|,f, € L*[x1,%3], then for all v,k > 0, we have

W) W)y o oo

o I wwa)y T (i) ) +

I (Tt +«)
= II ) )} 2 (o) (2) = 5 2 (W) w2)y I () (x2)
A oo U5 1o .
_%[”’f 2u(xz)/ (¥ () - ¥ (0)* ¥ (o) do

% T
9 () / o(¥(x) - (o)) W' () do

A (xz)/ xz)—'I’(Q)) W/(Q)dQ}
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Proof Setting v(¥) = 1, ¥ € [x1,%;], in Theorem 3.4, we obtain the desired result. O

Corollary 3.12 Let ¥ be a measurable increasing positive function on (x1,x,) with contin-
uous derivative W'(0) on [x1,%,]. Let fi,f> : [x1,%2] — R be absolutely continuous functions,
and let f5 : [x1,%3] — R be nondecreasing. If f{,f; € L*°[x1, %3], then for all T,x > 0, we have

’%‘” A DR A ALCH AL AIC)

I lloo IF3 o e [ o
< [ [ - Vo

x1

L T
-2 70 [ o(vm) - @) W o) de

9 t
+;”1ﬂ[u(xz)/ (¥ (x2) - ¥ (0))* W’(@)dg]~

Proof Setting u(9) = v(9) = 1,9 € [x1,%2], in Theorem 3.4, we obtain the desired result. (]

4 Particular cases

Here we present some inequalities in terms of the Riemann-Liouville «-fractional inte-

grals, which are the particular cases of the main results.

Theorem 4.1 Suppose that @ : [x1,x,] — R is absolutely continuous on [x1,x;] with

(@)% € L1[x1,%) and that u,v : [x1,%,] — R* are positive integrable. Then for all T,k > 0,
we have

[, I 1) | [, I (vD?) (2) ] + [ IS v () [[ 10 2 (1D?) (32)]
= 2[1, I (u®@)(x2) | [, I (V@) (2) |

1o ’ -
(1) . |:x1‘ﬂl( lel«(xz)/xl (%2 —0)* 1V(Q)dQ

S

9
—xlfiu(xz)/ 0(x; —Q);_IV(Q)dQ:| (0/(9)) dv.

Proof Applying Theorem 3.1 with ¥ (1) = ¢ gives the proof of the theorem. O
Theorem 4.2 Suppose that fi,f> : [x1,%3] — R are absolutely continuous functions with

(f))* € L1[x1,x2] and (fy)? € L1[x1,%,] and that j1,v : [x1,x2] — R* are positive integrable.
Then for all T,k > 0, we have

i1 2 1(%2) s, T (Wfifo) (32) + ) T V(%) I (WFS2) (%2)
— 1 I W) ®2)x, T () (%2) — 2y I (W) (X2)xy F (1) (32) |

1 Xx2 ? T
< KF—(T)< f 1 [ S apul) / -0 v de

9 7
— 0 I (x2) / (%2 —0)* () d@} (@) dﬂ)
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X2 9 .
x( / [xlf;xwxz) / (52— 0)F Lv(0)do

1
1

v 2
—xlfkfu(xz)/ Q(?C2—Q)%_IV(Q)dQ:|(f2’(19))2dl9> . (19)

Proof Applying Theorem 3.2 with ¥ (1) = ¢ gives the proof of the theorem. O

Similarly, we can get several new inequalities in terms of the Riemann-Liouville «-
fractional integrals for ¥ () = ¢ in Theorems 3.3-3.4. Also, employing Corollaries 3.1

3.12 for ¥ (¥) = ¥ results in various new inequalities.

Remark 4.1 We can also establish other types of new inequalities by taking the following
assumptions:

i. Setting u(9) = v(¥) and ¥ () = ¥ throughout the paper.

ii. Setting () =v(¥) =1 and ¥ () = ¥ throughout the paper.

Remark 4.2 1f we take « = 1, then all established results reduce to the work of Bezziou et
al. [5].

Remark 4.3 Setting u(9) = v(9), k = 1, and ¥ () = ¥ in Theorems 3.1-3.4 restores the

results of Bezziou et al. [4].

5 Concluding remarks

In this present paper, we derived some double-weighted generalized fractional integral
inequalities by employing the generalized Riemann—Liouville « -fractional integrals con-
taining another function ¥ in the kernels, where ¥ is integrable, measurable, positive,
and monotone. We can quickly form many new fractional integral inequalities for differ-

ent fractional definitions by considering Remark 2.2.
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