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Abstract

Nonlinearities, such as dead-zone, backlash, hysteresis, and saturation, are common in
the mechanical and mechatronic systems’ components and actuators. Hence, an
effective control strategy should take into account such nonlinearities which, if
unaccounted for, may cause serious response problems and might even result in
system failure. Input saturation is one of the most common nonlinearities in practical
control systems. So, this article introduces a novel adaptive variable structure control
strategy for nonlinear Caputo fractional-order systems despite the saturating inputs.
Owing to the complex nature of the fractional-order systems and lack of proper
identification strategies for such systems, this research focuses on the canonic
systems with complete unknown dynamics and even those with model uncertainties
and external noise. Using mathematical stability theory and adaptive control strategy,
a simple stable integral sliding mode control is proposed. The controller will be
shown to be effective against actuator saturation as well as unknown characteristics
and system uncertainties. Finally, two case studies, including a mechatronic device,
are considered to illustrate the effectiveness and practicality of the proposed
controller in the applications.

Keywords: Variable structure control; Unknown dynamical system; Fractional
differential equation; Adaptive approach; Mechanical system

1 Introduction

Leibniz and L'Hopital introduced the notion of fractional-order differential equations [1].
Despite its long history, fractional calculus did not see engineering applications until many
centuries later. In the last three decades, however, fractional calculus has found a number
of applications in science and engineering [1]. Nowadays, fractional-order derivatives and
integrals are extensively adopted for precise description and modeling of a wide range
of physical phenomena which are observed in practical systems and applications. As an
example, application of fractional calculus in accurately describing the behavior of oscil-
lators [2], medicine [3], mechanical devices [4], electrical systems [5], granular soils [6],
circuits [7], and financial systems [8] has been reported in the recent literature. As a result,

© The Author(s) 2020. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use,
sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other
third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’'s Creative Commons licence and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.


https://doi.org/10.1186/s13662-020-02829-0
http://crossmark.crossref.org/dialog/?doi=10.1186/s13662-020-02829-0&domain=pdf
http://orcid.org/0000-0002-5268-1173
mailto:m.p.aghababa@ee.uut.ac.ir
mailto:m.p.aghababa@gmail.com

Aghababa and Saif Advances in Difference Equations (2020) 2020:372 Page 2 of 18

the dynamical motions of real world physical systems have been more fittingly investi-
gated by fractional-order differential and/or difference equations rather than the integer-
order ones. Given the fact that high fidelity model of physical systems can be described
by fractional-order systems, the area has received a great deal of interest in the control
community which has focused its attention to stability and control problems in systems
represented by non-integer-order differential equations [9, 10].

Several control design strategies have been proposed for control and stabilization of
nonlinear systems of fractional-order systems. Owing to the intrinsic desirable character-
istics of sliding mode control (SMC), such as robustness against parameter variations and
external noise, easy realization, quick response to the external input, and suitable transient
action, the most suggested control methodology for stabilizing nonlinear fractional-order
systems is of variable structure type. For instance, in the works [9] and [10], the author de-
signed several finite-time SMC approaches for the canonical form of nonlinear fractional
systems while considering the influences of external disturbances and system uncertain-
ties. In [11], a cable-driven manipulator with system uncertainties was stabilized via a
composite adaptive fractional-order sliding mode controller. Adaptive controllers are the
other class of controllers applied for fractional systems. A fractional-order PID control
scheme with an exact stability condition was proposed in [12] for a bilateral teleopera-
tion. The work in [13] presented a fractional-order adaptive control approach for robotic
manipulators subject to system uncertainties and external noise. Liu et al. [14] derived
an intelligent adaptive dynamic surface feedback control method for nonlinear fractional-
order systems.

However, all of the aforementioned studies have assumed that the dynamics of nonlin-
ear fractional systems is fully (or partially) known in advance. Nevertheless, most physical
systems inherently possess nonlinear dynamics with no exact and/or straightforward in-
formation about their structure. Undertaking such fractional systems with limited knowl-
edge about their dynamics has rarely been studied in the literature. Moreover, in real world
applications, applied fractional systems unavoidably involve additive model uncertainties
and external noise. The effects of plant uncertainties and external disturbances may desta-
bilize the system and degrade the prescribed performance of the system. Therefore, a con-
trol engineer should pay considerable attention to such issues in order to successfully de-
sign a robust stable system with desired performance.

Components used in an engineered system, including those used in actuators in a con-
trol system, have physical limits in their operation. Actuator components may include
electronic circuitry with operational amplifiers, etc.; electromechanical apparatus; mecha-
tronic machines, pneumatic devices, and hydraulic machines; and others, most of which
are limited in their range of operation and involve nonlinearities. Many scholars have in-
dicated that actuator saturation becomes a serious nonlinearity in control devices. The
appearance of actuator saturation in industrial processes will introduce a lower efficiency,
bias harmful fluctuations on the output signals along with unwanted responses, or could
even result in system failure as well as unstable processes [15—18]. Hence, a special at-
tention should be paid to the effects of such nonlinearities in the procedure of synthesis,
design, and application of fractional-order processes.

The problem of control of uncertain fractional-order systems with actuator saturation
was investigated in [19], and an adaptive fuzzy approximation approach was presented
to deal with the uncertain parts of the system dynamics. The research [20] investigated
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the existence of actuator saturation in linear fractional processes, and some applicable hy-
potheses were obtained using the conventional Lyapunov theorems. In [21], an adaptive
fractional-order control algorithm was developed for control of robotic manipulators with
actuator saturation. However, the convergence to zero was not guaranteed in mathemat-
ical synthesis of that research, and the outputs of the system might involve steady state
errors. The work [22] adopted a useful mathematical lemma along with a special func-
tion to compensate the influences of situation nonlinearities in fractional-order processes
using some state feedback robust control algorithms. The paper [23] applied the same
lemma in [22] to asymptotically stabilize linear non-integer-order processes in spite of
sector actuation nonlinearities through a linear matrix inequality approach. In [24], a dis-
turbance estimator control algorithm was proposed to synchronize to chaotic fractional
devices in the prepense of actuator saturation and measurement noises. Nevertheless, that
work supposed a fully known structure and dynamics for the fractional processes, which
makes the control design to be extensive and far from practical standpoint. Soorki and
Tavazoei [25] developed an asymptotic state feedback control strategy for convergence
analysis of linear non-integer-order swarm groups with actuator saturation. The research
[26] provided some results on the stability region and the disturbance rejection properties
of the linear fractional processes working with saturating actuators. Wang et al. [27] pro-
posed a backstepping-based neural network control algorithm for stabilization of a class
of fractional-order plants in the presence of dead-zone input nonlinearity. However, most
of the above-mentioned research works have been developed either for linear fractional
systems where the outputs of the controlled systems involve steady state errors or for the
systems with known structures and dynamics.

According to the above discussion, few studies in the literature deal with stabilization
of fractional-order systems with input saturation. However, here we propose a switch-
ing type adaptive SMC method for a widely used class of nonlinear fractional systems i.e.
the canonical (normal) systems. Many of the existing real world physical systems are rep-
resented by the said canonical form, and many others can be easily transformed to this
type of systems using a proper change of coordinates and mapping. After formulating the
problem, a suitable fractional integral type sliding surface with desired dynamics is de-
signed. We assume that the bounds and the rate of the input saturation function are fully
unknown. For tackling such a situation, an adaptive rule is suggested and implemented.
To consider the effect of uncertain terms and external noise, an unknown time-varying
bounded uncertain term is included in the system model. It is also assumed that there is
no information about the bounds of this term. On the basis of the parameter separation
principle [28], we parameterize the nonlinear dynamics of the system to some bounded
unknown terms. In this case, several other appropriate adaptive rules are proposed to un-
dertake the parameterized unknown dynamics of the fractional system. Afterward, using
the derived update laws and the fractional Lyapunov stability theory, a switching control
signal is proposed to guarantee the occurrence of the sliding mode. At last, for evaluating
the effectiveness of the proposed adaptive variable structure controller, two illustrative ex-
amples, including the control of a chaotic system and a mechatronic device, are involved
in the paper.

It is worth mentioning the main contributions and motivations of this research, which
are as follows: (i) Owing to the more precise ability of the fractional-order systems along
with more interesting stability properties rather than the conventional integer-order sys-
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tems, this research aims to investigate the control problem of canonical fractional-order
nonlinear systems whose dynamics is applicable for most chaotic and mechatronic sys-
tems; (ii) Since input saturation nonlinearity does exist in practical realizations of the
controllers, this work is inspired to propose an adaptive scheme to undertake the satu-
rating control signals; (iii) We assume that there is no information available for the non-
linear dynamics of the system and, therefore, the introduced control technology would be
able to stabilize the system without requiring exact modeling data which would lessen the
burden of complexity of modeling procedure; (iv) The robustness of the closed-loop con-
trolled system against lumped uncertainties and external disturbances is guaranteed using
a simple adaptive mechanism; and (v) We suppose that the uncertain parts are fully un-
known and there is no prior knowledge about the bounds in which this feature facilitates
development of a simple controller with less measurement requirements.

To the best of our knowledge, the problem of input saturation with unknown bounds for
nonlinear fractional-order plants with fully unknown dynamics, model uncertainties, and
the external noise has not been considered before, and it is addressed for the first time in
this research. The remainder of this paper is structured as follows. In Sect. 2, some prelim-
inaries on fractional calculus as well as fractional stability theory are given. Section 3 deals
with problem formulation. In Sect. 4, the proposed adaptive variable structure controller
design is presented. Numerical computer simulations are presented in Sect. 5. Finally, con-
cluding remarks are made in Sect. 6.

2 Fractional calculus preliminaries
Definition 1 ([1]) The Caputo fractional derivative of a function f(¢) is defined as follows:

CD(: () [:S‘ adtmf( WZ 0()[ )a -m+1 d‘L’ (1)

wherem—1<a<meN.

Property 1 ([1]) The following equality holds for m = 1:

cDilief () 2)
Property 2 ([1]) For the Caputo definition, the following equality is satisfied for m = 1:
I CDES(0) = £(0) — f(to). 3)

Note 1 In this paper, we use the Caputo definition of the fractional derivatives and for
convenience denote it by D.

Lemma 1 ([29]) Assume f(t) € R to be a continuous and derivable function. Then, for any
time instant t > ty, the following inequality holds:

%cDi‘ofz(t) <fOCDLf ). @

Lemma 2 ([28]) For any real-valued continuous function f(x,y), there are smooth scalar-
valued functions a(x) > 1 and b(y) > 1 such that the following inequality holds for all values
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of x and y:
If (x,9)] < a(®)b(y). (5)

Remark 1 It is easy to check that inequality (5) can be rewritten as follows:

If (x,9)] < A®)B©) + ¢, (6)

where A(x) > 0 and B(y) > 0 are smooth scalar-valued functions and ¢ > 0 is a regulating

constant.

3 System dynamics and problem formulation

It is well known that many real world systems, such as robot manipulators, mass-spring-
damper systems, structure dynamics, most of mechatronic and mechanical systems, and
many of chaotic models belong to a special class of nonlinear systems called canonical (or
normal) systems. Furthermore, a wide range of other classes of nonlinear systems can be
transformed into the canonic forms using some mappings [27]. Therefore, in this paper a
class of uncertain n-dimensional fractional-order systems in the canonic form is consid-
ered and is described as follows:

D%x; = %41, i<l<n-1,

D%x, = f(X,p) + Af(X, t) + sat(u(t), i=n,

7)

where o € (0,1) is the order of the system, X(¢) = [x1,%,...,%,]7 € R" is the state vector,
f(X, p) € Ris a nonlinear smooth function of X, and p in which p € R” is the unknown pa-
rameter vector, Af (X, t) € R represents an unknown uncertainty and external disturbance
term, u(f) € R is the control signal and saz(.) represents the saturation function as follows:

UH lf I/l(t) Z Mh,
sat(u(t)) = { Qu(t) if u! <u(t) <u, (8)
ur ifu(t) <u,

where uy, u”" € R* and u;, u! € R~ are the bounds of the saturation function and 6 € R is
the saturation slope.

Assumption 1 All parameters of the saturation function are bounded yet unknown.
Now, one can rewrite the saturation function (8) in the following form:

sat(u(t)) = u(t) + Au(u(t)), 9)
where Au(u(t)) is given as follows:

u —u()  iful) >u",
A(u(®)) =1 0 - Dule) ifu' <u(t) <ul, (10)

up—u(t)  iful) <d.
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Assumption 2 Based on Assumption 1 and the boundedness property of practical control
signals, one can conclude that the term Au(u(t)) should be always bounded. Therefore, the
following inequity should be held in practice:

|Au(u(t))| <M < o0, (11)
where M is a positive constant.

Assumption 3 Since the uncertain terms and external noises are always bounded in prac-
tical situations, the term Af (X, ¢) is assumed to be bounded by

|Af(X,8)| <y < o0, (12)
where y is a positive constant.
Assumption 4 It is assumed that both the constants M and y are unknown.
Remark 2 The nonlinear smooth function f(X, p) satisfies the following inequality:
[fX.p)| <OIX] +¢, (13)
where © is a positive constant.
Proof According to Lemma 2 and Remark 1, one has
(X, p)| < AX)B(p) +c. (14)
Since p is a constant vector, we have
B(p) < llpll < & < 00, (15)
where Z is a positive unknown constant.
Now, based on Lemma 2 since A(X) is a smooth scalar-valued function, it should be
Lipschitz in X. In other words, one has
AX) -AY)| <LIX-Y], (16)

where L > 0 is the unknown Lipschitz constant.
For the case Y =0, and since Y = 0 is the equilibrium point of the system (i.e. A(0) =0
for p #0), one obtains
|[AX)| < LIIX|I. (17)
So, according to inequalities (14), (15), and (17), letting set &L < ® < 0o, we get

[F(Xp)| < ELIX| +c< O X +c. (18)

This completes the proof. g
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Assumption 5 The nonlinear part of the system f(X, p) is fully unknown and, therefore,

the parameter © is also unknown.

Remark 3 On the basis of inequalities (12) and (13), one can get the following inequality:
[FO )|+ |[AfCGD| < ©1X) + 1T, (19)
where ¢ + y < IT < 00 is an unknown constant.

Remark 4 The control objective pursued in this paper is to propose a robust fractional-
order variable structure SMC to stabilize the origin of system (7) in the presence of un-
known nonlinear dynamics, unknown uncertainties and external noises, and unknown

input saturation with satisfying Assumptions 1-5.

4 Design of adaptive switching variable structure controller
In this section, first an integral type fractional sliding manifold is given and the stability
of the resulting sliding motion is analyzed. Next, some adaptive rules as well as sliding
mode control laws are proposed to make the occurrence of the sliding motion satisfying
all limitations faced in the system and actuator.

As step one in the design procedure of the variable structure SMC, the following

fractional-order integral type sliding manifold is adopted in this paper:
n
s(t)=x, + D™ Z CiXi, (20)
i=1

where x;,i = 1,2,...,n, are the system states and ¢;,i = 1,2,...,n, are sliding mode parame-
ters to be set later.
According to the sliding mode control theory, once the system reaches the sliding man-

ifold (i.e. once the sliding motion takes place), one has the following equalities [30]:

s(t) =0, 5(t)=0. (21)
Consequently, noting to (1) for 0 < « < 1, D%s(¢) is related to $(¢) as D*s(t) = ﬁ X
ftz i ts_(?)a dt.In other words, $(¢) = 0 implies D*s(¢). Therefore, using (21) one can conclude

that in the sliding motion we should have
s(t) =0, D%s(t) = 0. (22)

So, obtaining the fractional derivative of the sliding manifold (20) and noting Property 1,

one gets

n n
D%s(t) = D%x,, + Z cxi=0 = D%, =- Z CiXi. (23)
i=1 i=1
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Thus, the following dynamic equations represent the closed-loop dynamics of the system

in the sliding motion:

D%x; = %41, i<l<mn-1, 24)
Dxy ==Y L cx;, i=n.
One can choose the parameters ¢; in which the eigenvalues of linear system (24) satisfy
the stability condition | arg(eigA)| > % mentioned in [31].
In step two of the control design for the system, we propose suitable update rules to
account for the unknown dynamics and parameters as well as uncertainties and external

noises of the system. Towards that, the following fractional-order update rules are pro-

posed:
D" =pls|IX|,
DIT = qs|, (25)
DM =rls|,

in which ©, I1, and M are adaptive parameters to be estimations of the unknown param-
eters ©, I, and M, respectively, and p, g, and r are positive constants called adaptation
gains.

The last step in our controller design is to propose the final switching control signal to
force the system states to reach the sliding manifold and remain there for the subsequent
times. In this regard, the following simple switching control law is proposed:

u(t) = —|:Z(cixi) +(ONIX| + T + M + k) sgn(s):|, (26)

i=1
where k > 0 is the switch gain and sgn(.) is the standard sign function.

Remark 5 It is noted that the constant coefficients p,q, and r in update rules (25) tune
the convergence rate of the adaptive parameters ©,11, and M. Although one can choose
any positive large values for these constants, according to the control signal (26), such
high values may result in a big control effort which can restrict the physical realization
of the controller. On the other hand, very small coefficient parameters would not be able
to undertake the effects of uncertainties and input saturation. So, a trade-off between the
rate of lumped uncertainty compensation and control energy can be performed by the
designer according to the application requirements.

The following theorem uses the fractional Lyapunov stability theory to prove the exis-

tence of the sliding mode.

Theorem 1 Assume that the uncertain dynamical fractional-order canonical system (7)
with saturating input is forced by the proposed adaptive variable structure controller com-
posed of (20), (25), and (26). If Assumptions 1-5 are held, then the states of this system will
attain the sliding surface s(t) = 0.
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Proof On the basis of the fractional stability theorem, we adopt a Lyapunov function can-

didate for the system as follows:
1
V() = 2( (@ ) + = (17 m)?* + (M M) ) (27)
p

Taking fractional time derivative of the Lyapunov function and using Lemma 1, one

obtains
DV(t) = 1 e <52 + 1(é —0)?+ l(ﬁ —I)?+ l(1\71—1\4)2)
2 q r
<sD% + p(o O)D*(O - O) + - (n D*(IT - IT)
+ %(M — M)D*(M - M). (28)

Owing to the Caputo derivative property for the constants (i.e. D*k = 0), we have

A

D"‘V(t)<sD“s+p(O O)D*6 + é(n DIT + = (M M)D* M. (29)

Inserting D* s from (23) into the above inequality, one gets
- 1 1 1
D*V () < s(D“xn ) cixl) +=(O=0)D*O + = (IT-IT)D*IT+ - (M~M)D*M. (30)
. p q r
i=1

Using the system state equations (7) and Eq. (9), one has

DYV (t) < s(f(X p) + AF(X, 6) + ut) + Au(u(?)) Zcxl>
+$(é—(~))Daé) + é(ﬁ—n)D“ﬁJr ;(M—M)D“M. (31)

Based on the absolute value operator characteristic, inequality (31) can be rewritten as

follows:

D*V(e) < Isl([f (X, p)| + |AF (X, 0)| + | Aw(uule +s(u Zcxl)

A A

}9(@ - O)D"6O + Zz( I)DIT + = (M M)D*M (32)

The usage of Assumptions 1-5 and adaptation laws (25) results in the following inequality:

D*V(t) < |s|(@ X + IT + M) + s(u(t) + Zc x) +=(6 -0)D"O

i=1

1. .1 .
+ =T - M)D*IT + =(M - M)D*M (33)
q r

Page 9 of 18
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After some simplifications and introduction of the control input (26) to the above in-
equality, one has

DV(t) < s(OIX| + IT + M+ k) sgn(s) + O|s[|X|| + IT|s| + Ms|. (34)
Noting the definition sgn(s) = 'i—', we obtain

D*V(t) < —Is|(ONX|| + [T + M + k) + Os| | X|| + IT|s| + M]s]. (35)
It is obvious that

D*V(t) < —kls|. (36)

So, referencing to [32], one can conclude that the states of fractional-order system (7)
reach s(¢) = 0. Thus, the proof is complete. d

Remark 6 1t is known that owing to the appearance of the discontinuous sign function in
the control signals of the conventional sliding mode controllers, chattering phenomenon
might appear on the outputs. One alternative to reduce the effects of chattering is known
as boundary layer method. In this method, the sign function is approximated by a satura-
tion function. However, in this article, the continuous smooth function tanh is utilized to
substitute the sign function in the control input. This alternative eliminates the disconti-
nuity of the control signal and, therefore, chattering phenomenon is evaded.

5 Numerical examples

This section presents two case studies to illustrate the usefulness and efficacy of the pro-
posed fractional adaptive variable structure control in dealing with the unknown dynami-
cal systems subject to saturating inputs. The numerical algorithm introduced in [33] with

a step time of 0.001 is adopted for solving the fractional-order equations.

5.1 Case study 1
In this case study, the fractional-order Arneodo system (37) is stabilized using the pro-
posed adaptive SMC strategy:

D"‘xl =X,
DQJCQ = X3, (37)
D%x3 = 5.5x1 — 3.5x7 — x3 + x5 + Af(X, £) + sat(u(t)),

It is shown that this system can exhibit chaotic behavior when the fractional order « is set
to 0.97 [34]. The chaotic behavior of this system without any control input is depicted in
Fig. 1.

As mentioned before, we assume that the dynamics of the system is fully unknown and
bounded by inequality (13). To show the robustness of the designed adaptive controller
against uncertainties and external noises, the following term is added to the dynamics of
the system:

Af(X, £) = 0.45sin(t)xy + 0.5 cos(5t)x3 + 0.3 tanh(2£)x; — 0.45 cos(3£). (38)
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Figure 1 Chaotic behavior of the uncontrolled Arneodo system

The vector X(0) = [1.5,2,-3]7 is taken as the initial conditions of the system. And, ac-
cording to Eq. (20), the following sliding manifold is established:

s(8) = x5 + D% (10x1 + 7% + 3x3). (39)
The saturation control is defined as follows:

5 if u(t) > 5,
sat(u(t)) =qu(t) if -5=<u(t) <5, (40)
-5 ifu(t) <-5.

Subsequently, with attention to the proposed adaptive controller in Egs. (25) and (26),
we implement the controller as follows:

D*O=s|IX],  6(0)=0,
DM =01ls|, [1(0)=0, (41)
D*M=01|s|,  M(0)=0,
u(t) = —(15%1 + 12x5 + 93 + (é X+ T + M + 0.1) tanh(50s)). (42)

Figure 2 depicts the state trajectories of the Arneodo system. One sees that the system
states approach to the origin in less than eight seconds, which indicates that the fractional-
order Arneodo system is indeed stabilized. Also, it is seen that the initial oscillations are
soft and there are no steady state errors in the system response. The time histories of the
sliding manifold and the saturated control input are given in Figs. 3 and 4, respectively.
It can be seen that the saturation is undertaken using the adaptive method. Thus, the
proposed control signal can be implemented using real physical actuators.

Page 11 0f 18
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Figure 2 States of the Arneodo system with the proposed controller
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Figure 3 Time history of the sliding manifold applied for the Arneodo system

5.2 Case study 2

This case study examines the efficient performance of the suggested simple adaptive vari-
able structure controller in stabilization of a mechatronic system called fractional-order
horizontal platform system (FHPS). In fact, a FHPS is a mechatronic device that can freely
rotate around the horizontal axis. The horizontal platform devices are widely used in off-

Page 12 0f 18
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Figure 4 Time history of the saturated control input applied for the Arneodo system

shore and earthquake engineering. It has been shown that the FHPS possesses chaotic
and oscillatory motions [35]. The dynamic behavior of FHPS is governed by the following
equations and with « = 0.1 is illustrated in Fig. 5.

D"‘x1 =X, (43)
D%xy = —ax, — bsin(x) + [sin(x1) cos(x;) + F cos(wt) + sat(u(t)),

where x; is the rotation of the platform relative to the earth and F cos(wt) = cos 3.4cos 1.8
is the harmonic torque and a = 4/3, b = 3.776, and [ = 4.6 x 107° are system constant
parameters.

The aim of this case study is to stabilize the FHPS with fully unknown dynamics, uncer-
tain parameters, and external noises subjected to the input saturation nonlinearity. There-
fore, the dynamics of the system is disturbed by the uncertain terms as follows:

Af(X,t) = 0.4sin(2t)xy + 0.4 tanh(3t)x; + 0.5 sin(z). (44)

The vector X(0) = [0.5,-0.5]7 is taken as the initial conditions of the system. According
to Eq. (20), the following sliding manifold is established:

s(8) = x5 + D01 (15%; + 10x5). (45)
The saturation control is also defined as follows:

1 iful)>1,
sat(u(®) = { 0.5u() if ~1<u() <1, (46)
-1 ifu(t) <-1.
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Figure 5 Dynamical behavior of the uncontrolled FHPS

Subsequently, with attention to the proposed adaptive controller in Egs. (25) and (26), we
implement the controller as follows:

DO =X,  6(0)=0,
DM =01ls|, [1(0)=0, (47)
DM =0.1|s|,  M(0)=0,
u(t) = —(15x1 + 10x, + (@ X+ IT + M + 0.1) tanh(SOS)). (48)

Figure 6 depicts the time responses of the system states controlled with the adaptive
control algorithm. The results demonstrate that although the uncontrolled FHPS includes
chaotic oscillations, the controller given in this paper can converge the system states to
an equilibrium after passing some reasonable transient oscillations. This indicates that
the developed adaptive sliding mode control strategy makes the closed-loop system cope
with the fractional-order horizontal platform device’s unknown dynamics in spite of being
some actuator saturation nonlinearities. The time responses of the active sliding surface
and the final control signal applied to the chaotic system are shown in Figs. 7 and 8, re-
spectively. The given curves in these figures point out that the sliding surface and the
control signal converge to the origin indicating that the introduced controller possesses
finite control effort and energy in a practical manner. Subsequently, it is concluded that
the developed control signal can be implemented through the existing physical actuators
for mechatronic devices.

6 Conclusion
Application and implementation of controllers designed for fractional nonlinear engineer-
ing systems has been an active area of research in recent years. A wide class of fractional
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Figure 7 Time history of the sliding manifold applied for the FHPS

systems, in canonical forms, is considered in this paper. Owing to the existence of satura-
tion phenomenon in practice, the influence of unknown saturating functions in the control
signal is taken into account. On the other hand, due to the complex and uncertain dynam-
ics of the recent applied fractional dynamical systems, it is assumed that the dynamics of

the system is fully unknown and the system is subject to external noise and model un-
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Figure 8 Time history of the saturated control input applied for the FHPS

certainties. In this regard, a novel simple adaptive sliding mode controller is proposed to
handle all the above-mentioned effects. The stable steady state behavior of the controlled
system is ensured and is proved mathematically. Two case studies, which include the sta-
bilization of a chaotic fractional Arneodo system and an oscillating dynamical horizontal
platform mechatronic device, illustrate that not only there is no steady state error in the
controlled output, but also satisfactory transient response is achieved. Also, boundedness
of the saturated control inputs confirms that the findings of this research can be imple-

mented in practice using physical devices and actuators.
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