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1 Introduction
Higher-order Apostol–Genocchi, Apostol–Bernoulli, and Apostol–Euler polynomials are
defined by the following relations, respectively (see [7]):
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n=0
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wn

n!
=

(
2w

λew + 1

)m

ewz, |w| < π when λ = 1 (1.1)

and |w| <
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∣∣ when λ �= 1;λ ∈C,
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ewz, |w| < π when λ = 1 (1.2)

and |w| <
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∞∑

n=0
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n (z;λ)
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=
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λew + 1

)m

ewz, |w| < π when λ = 1 (1.3)

and |w| <
∣∣log(–λ)

∣∣ when λ �= 1;λ ∈C.

When m = 1, the above equations give the generating functions for the Apostol–Genocchi,
Apostol–Bernoulli, and Apostol–Euler polynomials, respectively (see [3]). When m = 1
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and λ = 1, the equations give the generating functions for the classical Genocchi, Bernoulli,
and Euler polynomials (see [4, 10]).

New formulas for the product of an arbitrary number of the Apostol–Bernoulli,
Apostol–Euler, and Apostol–Genocchi polynomials were established in [6] where these
polynomials were referred to as Apostol-type polynomials. Further, higher-order con-
volutions for these polynomials were established in [7]. New identities for the Apostol–
Bernoulli polynomials and Apostol–Genocchi polynomials were also presented in [8].

Fourier expansion, being a sum of multiple of sines and cosines, is easily differentiated
and integrated, which often simplifies analysis of functions such as saw waves which are
common signals in experimentation [9]. Real world applications of Fourier series include
the use for audio compression [5].

Fourier expansions of Genocchi polynomials and Apostol–Genocchi polynomials were
obtained by Luo (see [11, 12]) using Lipschitz summation, while Bayad [3] obtained
Fourier expansion for the Apostol–Bernoulli, Apostol–Euler, and Apostol–Genocchi
polynomials using complex analysis theory of residues. Following Luo [12] and Bayad
[3], the Fourier expansion of Apostol Frobenius–Euler polynomials was derived by Araci
and Acikgoz [2]. Fourier series of periodic Genocchi functions and construction of good
links between Genocchi functions and zeta function were also obtained in [1]. Fourier
series of higher-order Bernoulli and Euler polynomials were used by López and Temme
[10] to obtain asymptotic approximations of these polynomials. Using the method in [10],
approximations for higher-order Genocchi polynomials were derived in [4].

In this paper, Fourier expansions for higher-order Apostol–Genocchi, Apostol–
Bernoulli, and Apostol–Euler polynomials are derived as no Fourier expansions of these
polynomials are available in the literature. The method of López and Temme [10] is used
to derive the desired Fourier expansions. It is found out that the method using Lipschitz
summation is not applicable to these higher-order polynomials. Moreover, it is shown that
for m = 1 the Fourier series obtained reduce to those obtained in [3] and [12] . Exceptional
values of the parameter λ are also considered.

2 Fourier expansions
In this section Fourier expansions for higher-order Apostol-type polynomials mentioned
above are presented and proved.

Theorem 2.1 For λ ∈C, λ �= 0, –1, 0 < z < 1, and n ≥ m,

Gm
n (z;λ) =

2mneπ in

λz

(
n – 1
m – 1

)

×
∞∑

k=–∞

m–1∑

ν=0

(
m – 1

ν

)
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ν (z)
e(2k+1)π iz

[logλ – (2k + 1)π i]n–ν
, (2.1)

where Bm
ν (z) = Bm

ν (z; 1) denotes the Bernoulli polynomials of higher order defined in (1.2).

Proof Applying the Cauchy integral formula to (1.1),
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where C is a circle about zero with radius < |iπ – logλ|. Let

f (w) =
(

2w
λew + 1

)m ewz

wn+1 . (2.3)

Note that 0 is a pole of order n – m + 1, while the values wk such that λewk + 1 = 0 are poles
of order m. For k ∈ Z,

wk = – logλ + (2k + 1)π i. (2.4)

Let Ck be a circle about 0 with radius < |wk|. Letting k → ∞ and using the residue theorem,

lim
k→∞

1
2π i

∫

Ck

(
2w

λew + 1

)m ewz

wn+1 dz = Res
(
f (w), 0

)
+

∞∑

k=–∞
Rk , (2.5)

where Rk = Res(f (w), wk).
For 0 < z < 1, the limit on the left-hand side of (2.5) is 0. For k = 0,

R0 = Res
(
f (w), 0

)
=

1
2π i

∫

C
f (w) dw =

Gm
n (z;λ)

n!
.

Then (2.5) becomes

0 =
Gm

n (z;λ)
n!

+
∞∑

k=–∞
Rk

⇔ Gm
n (z;λ) = –(n!)

∞∑

k=–∞
Rk . (2.6)

To compute the residues Rk , k ≥ 1, the Laurent series of f (w) about wk will be used. Since
wk is a pole of order m, its Laurent series is

f (w) =
∞∑

r=0

ar(w – wk)r +
–m∑

r=–1

ar(w – wk)r , (2.7)

where a–1 = Res(f (w), wk).
Multiplying both sides of (2.7) by (w – wk)m, we have

(w – wk)mf (w) =
∞∑

r=0

ar(w – wk)m+r + a–1(w – wk)m–1

+ a–2(w – wk)m–2 + · · · + a–m,

where a–1 is now the coefficient of (w – wk)m–1. That is, a–1 = am–1 in the expansion

(w – wk)mf (w) =
∞∑

r=0

ar(w – wk)r . (2.8)
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Let

Gm
n (z;λ) =

2(n!)
λz

∞∑

k=–∞
βm

k (n, z)
e(2k+1)π iz

[– logλ + (2k + 1)π i]n , (2.9)

where βm
k (n, z) are to be determined. From [3] and [12],

Gn(z;λ) =
2(n!)
λz

∞∑

k=–∞

e(2k+1)π iz

[– logλ + (2k + 1)π i]n , (2.10)

it is seen that β1
k (n, z) = 1, ∀k.

To find an explicit formula for βm
k (n, z), substitute wk = – logλ + (2k + 1)π i to (2.8) and

use f (z) in (2.3) to give

(
w –

[
– logλ + (2k + 1)π i

])m 2mewz

(λew + 1)mwn–m+1

=
∞∑

r=0

ar
(
w –

[
– logλ + (2k + 1)π i

])r . (2.11)

Let s = w – [– logλ + (2k + 1)π i]. Then w = s – logλ + (2k + 1)π i and (2.11) becomes

(–2)me(2k+1)π ize–z logλ

[s – logλ + (2k + 1)π i]n–m+1 · smezs

(es – 1)m =
∞∑

r=0

arsr . (2.12)

Using (1.2) and writing

[
s – logλ + (2k + 1)π i

]m–n–1 =
∞∑

ν=0

(
m – n – 1

ν

)
sν

[
– logλ + (2k + 1)π i

]m–n–1–ν ,

the left-hand side of (2.12) becomes

(–2)mλ–ze(2k+1)π iz

( ∞∑

ν=0

(
m – n – 1

ν

)
sν

[
– logλ + (2k + 1)π i

]m–n–1–ν

)

×
( ∞∑

ν=0

Bm
ν (z)
ν!

sν

)
. (2.13)

Applying Cauchy-product on (2.13) will yield

(–2)mλ–ze(2k+1)π iz

[– logλ + (2k + 1)π i]n+1–m

∞∑

r=0

r∑

v=0

(
m – n – 1

r – ν

)[
– logλ + (2k + 1)π i

]ν–r Bm
ν (z)
ν!

sr

=
∞∑

r=0

arsr . (2.14)
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Thus,

ar =
(–2)me(2k+1)π iz

λz[– logλ + (2k + 1)π i]n+1–m

×
r∑

ν=0

(
m – n – 1

r – ν

)[
– logλ + (2k + 1)π i

]ν–r Bm
ν (z)
ν!

. (2.15)

In particular,

am–1 =
(–2)me(2k+1)π iz

λz[– logλ + (2k + 1)π i]n

m–1∑

ν=0

(
m – n – 1
m – 1 – ν

)
Bm

ν (z)
ν!

[
– logλ + (2k + 1)π i

]ν . (2.16)

Comparing (2.6) and (2.9),

βm
k (n, z) =

λz[– logλ + (2k + 1)π i]n

–2e(2k+1)π iz am–1. (2.17)

Substituting (2.16) to (2.17),

βm
k (n, z) = (–2)m–1

m–1∑

ν=0

(
m – n – 1
m – 1 – ν

)
Bm

ν (z)
ν!

[
– logλ + (2k + 1)π i

]ν . (2.18)

Using the identity

(–1)m–1+ν

(
n – 1
m – 1

)(
m – 1

ν

)
(n – v – 1)!

(n – 1)!
=

1
ν!

(
m – n – 1
m – 1 – ν

)
, (2.19)

(2.18) becomes

βm
k (n, z) = 2m–1

(
n – 1
m – 1

) m–1∑

ν=0

(
m – 1

ν

)
(n – ν – 1)!

(n – 1)!
Bm

ν (z)
[
logλ – (2k + 1)π i

]ν . (2.20)

Substituting to (2.9), the desired Fourier expansion for Gm
n (z;λ) is obtained. �

Remark 2.2 When m = 1, (2.1) reduces to

Gn(z;λ) =
2(n!)
λz

∞∑

k=–∞

e(2k+1)π it

[– logλ + (2k + 1)π i]n ,

which coincides with that of Luo [12] and Bayad [3].

Theorem 2.3 For λ ∈C, λ �= 0, 1, 0 < z < 1, and n ≥ m,

Bm
n (z;λ) =

ne(n–m)π i

λz

(
n – 1
m – 1

)

×
∞∑

k=–∞

m–1∑

v=0

(
m – 1

v

)
(n – v – 1)!Bm

v (z)
e2kπ iz

[logλ – 2kπ i]n–v . (2.21)
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Proof The method used in proving Theorem 2.1 will be applied here. Applying the Cauchy
integral formula to (1.2), we obtain

Bm
n (z;λ)

n!
=

1
2π i

∫

C

(
w

λew – 1

)m

ewz dw
wn+1 , (2.22)

where C is a circle about zero with radius < | logλ|.
Let

g(w) =
(

w
λew – 1

)m ewz

wn+1 . (2.23)

Note that zero is a pole of order n – m + 1, while the values uk such that λeuk – 1 = 0 are
poles of order m. For k ∈ Z,

uk = – logλ + 2kπ i. (2.24)

Let Ck be a circle about 0 with radius < |wk|. Letting k → ∞ and using the residue theorem,

lim
k→∞

1
2π i

∫

Ck

(
w

λew – 1

)m ewz

wn+1 dw = Res
(
g(w), 0

)
+

∞∑

k=–∞
Sk , (2.25)

where Sk = Res(g(w), uk).
For 0 < z < 1, the limit on the left-hand side of (2.25) is 0 and

Res
(
g(w), 0

)
=

1
2π i

∫

C
g(w) dw =

Bm
n (z;λ)

n!
.

Then (2.25) becomes

0 =
Bm

n (z;λ)
n!

+
∞∑

k=–∞
Sk

⇔ Bm
n (z;λ) = –(n!)

∞∑

k=–∞
Sk . (2.26)

To compute the residues Sk , use the Laurent series of g(w) about uk . Since uk is a pole of
order m, the Laurent series of g(w) about uk is

g(w) =
∞∑

r=0

br(w – uk)r +
–m∑

r=–1

br(w – uk)r , (2.27)

where b–1 = Res(g(w), uk).
Multiplying both sides of (2.27) by (w – uk)m,

(w – uk)mg(w) =
∞∑

r=0

br(w – uk)m+r + b–1(w – uk)m–1 + b–2(w – uk)m–2 + · · · + b–m,

where b–1 is now the coefficient of (w – uk)m–1. That is, b–1 = bm–1 in the expansion

(w – uk)mg(w) =
∞∑

r=0

br(w – uk)r . (2.28)
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Let

Bm
n (z;λ) =

n!
λz

∞∑

k=–∞
γ m

k (n, z)
e2kπ iz

[2kπ i – logλ]n , (2.29)

where γ m
k (n, z) are to be determined. From [3],

Bn(z;λ) =
–(n!)
λz

∞∑

k=–∞

e2kπ iz

[– logλ + 2kπ i]n for λ �= 1, (2.30)

it is seen that γ 1
k (n, z) = –1, ∀k.

To find an explicit formula for γ m
k (n, z), substitute uk = – logλ + 2kπ i and the function

g(w) in (2.23) to (2.28) to obtain

(
w – [– logλ + 2kπ i]

)m ewz

(λew – 1)mwn–m+1 =
∞∑

r=0

br
(
w – [– logλ + 2kπ i]

)r . (2.31)

Let t = w – [– logλ + 2kπ i]. Then w = t – logλ + 2kπ i and (2.31) becomes

λ–ze2kπ iz

[t – logλ + 2kπ i]n–m+1

(
t

et – 1

)m

etz =
∞∑

r=0

brtr . (2.32)

Using (1.2) and writing

[t – logλ + 2kπ i]m–n–1 =
∞∑

ν=0

(
m – n – 1

ν

)
tν(– logλ + 2kπ i)m–n–1–ν ,

the left-hand side of (2.32) becomes

λ–ze2kπ iz

( ∞∑

ν=0

(
m – n – 1

ν

)
tν(– logλ + 2kπ i)m–n–1–ν

)( ∞∑

ν=0

Bm
ν (z)
ν!

tν

)
. (2.33)

Applying Cauchy-product on (2.33) will yield

λ–ze2kπ iz

[– logλ + 2kπ i]n–m+1

∞∑

r=0

{ r∑

ν=0

(
m – n – 1

r – ν

)
Bm

ν (z)
ν!

(– logλ + 2kπ i)ν–r

}
tr

=
∞∑

r=0

brtr . (2.34)

Thus,

br =
e2kπ iz

λz(– logλ + 2kπ i)n–m+1

r∑

ν=0

(
m – n – 1

r – ν

)
Bm

ν (z)
ν!

(– logλ + 2kπ i)ν–r . (2.35)

In particular,

bm–1 =
e2kπ iz

λz(– logλ + 2kπ i)n

m–1∑

ν=0

(
m – n – 1
m – ν – 1

)
Bm

ν (z)
ν!

(– logλ + 2kπ i)ν . (2.36)



Corcino and Corcino Advances in Difference Equations        (2020) 2020:346 Page 8 of 13

Comparing (2.26) and (2.29),

γ m
k (n, z) =

–λz(– logλ + 2kπ i)n

e2kπ iz · bm–1. (2.37)

Substituting (2.36) to (2.37),

γ m
k (n, z) = –

m–1∑

ν=0

(
m – n – 1
m – ν – 1

)
Bm

ν (z)
ν!

(– logλ + 2kπ i)ν . (2.38)

Using the identity in (2.19), we have

γ m
k (n, z) = (–1)m

(
n – 1
m – 1

) m–1∑

ν=0

(
m – 1

ν

)
(n – ν – 1)!

(n – 1)!
Bm

ν (z)(logλ – 2kπ i)ν . (2.39)

Substituting (2.39) to (2.29), the desired Fourier expansion of Bm
n (z;λ) is obtained. �

Remark 2.4 When m = 1, (2.21) reduces to

Bn(z;λ) =
–(n)!
λz

∞∑

k=–∞

e2kπ iz

[– logλ + 2kπ i]n ,

which coincides with that in [3].

Theorem 2.5 For λ ∈C, λ �= 0, –1, 0 < z < 1, and n ≥ m,

Em
n (z;λ) =

2meπ i(n+m)

(m – 1)!λz

∞∑

k=–∞

m–1∑

ν=0

(
m – 1

ν

)
(n + m – ν – 1)!Bn+m

ν (z)

× e(2k+1)π iz

[logλ – (2k + 1)π i]n+m–ν
. (2.40)

Proof Multiplying both sides of (1.3) by wm yields

(
2w

λew + 1

)m

ezw =
∞∑

n=0

Em
n (z;λ)

wn+m

n!
, (2.41)

∞∑

n=0

Gm
n (z;λ)

wn

n!
=

∞∑

n=0

Em
n (z;λ)

wn+m

n!
. (2.42)

The left hand-side of (2.42) can be written

∞∑

n=0

Gm
n (z;λ)

wn

n!
=

∞∑

n=–m
Gm

n+m(z;λ)
wn+m

(n + m)!
(2.43)

=
∞∑

n=–m
Gm

n+m(z;λ)
n!

(n + m)!
· wn+m

(n)!
. (2.44)
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Thus,

∞∑

n=0

Em
n (z;λ)

wn+m

n!
=

∞∑

n=–m
Gm

n+m(z;λ)
n!

(n + m)!
· wn+m

(n)!
. (2.45)

Comparing coefficients in (2.45) gives

Em
n (z;λ) =

n!
(n + m)!

Gm
n+m(z;λ). (2.46)

Using (2.1),

Em
n (z;λ) =

n!
(n + m)!

{
2m(n + m)e(n+m)π i

λz

(
n + m – 1

m – 1

) ∞∑

k=–∞

m–1∑

v=0

(
m – 1

ν

)
(n + m – ν – 1)!

× Bn+m
ν (z)

e(2k+1)π iz

[logλ – (2k + 1)π i]n+m–ν

}
. (2.47)

Simplifying

n!
(n + m)!

(n + m)
(

n + m – 1
m – 1

)
=

1
(m – 1)!

,

and substituting to (2.47), the desired result is obtained. �

Remark 2.6 If m = 1, (2.40) reduces to

En(z;λ) =
2(n!)
λz

∞∑

k=–∞

e(2k+1)π iz

[– logλ + (2k + 1)π i]n+1 ,

which coincides with the corresponding result in [3].

3 The cases λ = –1 and λ = 1
Theorem 2.1 does not apply when λ = –1 because for λ = –1, wk = 0, ∀k, while Theorem 2.3
does not apply for λ = 1 for similar reason. So these cases are considered here. Using (1.2),

∞∑

n=0

Bm
n (z; 1)

wn

n!
=

(
w

ew – 1

)m

ewz, |w| < 2π . (3.1)

On the other hand, using (1.1), we get

∞∑

n=0

Gm
n (z; –1)

wn

n!
=

(
2w

–ew + 1

)m

ewz

= (–2)m
(

w
ew – 1

)m

ewz, |w| < 2π

= (–2)m
∞∑

n=0

Bm
n (z; 1)

wn

n!
.
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Thus,

Gm
n (z; –1) = (–2)mBm

n (z; 1). (3.2)

Also, from (2.43),

Em
n (z; –1) =

n!
(n + m)!

Gm
n+m(z; –1)

=
n!

(n + m)!
(–2)mBm

n+m(z; 1). (3.3)

We proceed to finding the Fourier expansion for Bm
n (z; 1). The method in the previous

section will be applied. First consider m = 1. The Fourier expansion for B1
n(z; 1) = Bn(z; 1)

is given in the following lemma.

Lemma 3.1 For 0 < z < 1 and n ≥ 1,

Bn(z; 1) = –(n!)
∞∑

k=–∞,k �=0

e2kπ iz

(2kπ i)n . (3.4)

Proof By (1.2)

Bn(z; 1) = B1
n(z; 1) =

n!
2π i

∫

C

ewz

ew – 1
dw
wn ,

where C is a circle about the origin with radius < 2π . Let f (w) = ewz

(ew–1)wn . Following the
method in the previous section, we obtain

Bn(z; 1) = –(n!)
∞∑

k=–∞,k �=0

Rk ,

where Rk = Res(f (w), 2kπ i), k = ±1,±2, . . . .
These residues can be computed to be

Rk =
e2kπ i(z–1)

(2kπ i)n .

Thus,

Bn(z; 1) = –(n!)
∞∑

k=–∞,k �=0

e2kπ iz

(2kπ i)n .
�

For m > 1, the Fourier series of Bm
n (z;1) is given in the following theorem.

Theorem 3.2 For 0 < z < 1 and n ≥ m > 1,

Bm
n (z; 1) = (–1)mn

(
n – 1
m – 1

) ∞∑

k=–∞,k �=0

m–1∑

ν=0

(
m – 1

ν

)
(n – v – 1)!Bm

ν (z)(–1)ν
e2kπ iz

(2kπ i)n–ν
. (3.5)
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Proof By the Cauchy integral formula,

Bm
n (z; 1)

n!
=

1
2π i

∫

C

ewz

(ew – 1)mwn–m+1 dw, |w| < 2π , (3.6)

where C is a circle about the origin with radius < 2π .
The complex numbers uk = 2kπ i, k = ±1,±2, . . . are poles of order m of the function

h(w) =
ewz

(ew – 1)mwn–m+1 . (3.7)

Then

Bm
n (z; 1) = –(n!)

∞∑

k=–∞,k �=0

Rk , (3.8)

where Rk = Res(h(w), 2kπ i), k = ±1,±2, . . . .
Let

h(w) =
∞∑

r=0

cr(w – uk)r +
–m∑

r=–1

cr(w – uk)r (3.9)

be the Laurent series of h(w), where

c–1 = Res
(
h(w); uk

)
. (3.10)

Multiplying both sides of (3.9) by (w – uk)m gives

(w – uk)mh(w) =
∞∑

r=0

cr(w – uk)m+r + c–1(w – uk)m–1 + · · · + c–m,

where c–1 is now the coefficient of (w – uk)m–1.
That is, c–1 = cm–1 in the expansion

(w – uk)mh(w) =
∞∑

r=0

cr(w – uk)r . (3.11)

Following (3.4), write

Bm
n (z; 1) = –(n!)

∞∑

k=–∞,k �=0

γ m
k (n, z; 1)

e2kπ iz

(2kπ i)n , (3.12)

where γ m
k (n, z; 1) are to be determined. Note that γ 1

k (n, z; 1) = 1 (see (3.4)). From (3.11),

(w – 2kπ i)m ewz

(ew – 1)men–m+1 =
∞∑

r=0

cr(w – 2kπ i)r . (3.13)
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Let t = w – 2kπ i. Then w = t + 2kπ i and (3.13) becomes

tm

(et – 1)m etz · e2kπ iz

(t + 2kπ i)n–m+1 =
∞∑

r=0

crtr . (3.14)

Writing

(t + 2kπ i)m–n–1 =
∞∑

ν=0

(
m – n – 1

ν

)
tν(2kπ i)m–n–1–ν (3.15)

and using (3.1), (3.14) yields

( ∞∑

n=0

Bm
n (z; 1)

tn

n!

)( ∞∑

ν=0

(
m – n – 1

ν

)
tν(2kπ i)m–n–1–ν

)
e2kπ iz =

∞∑

r=0

crtr . (3.16)

Applying Cauchy-product, (3.15) becomes

e2kπ iz

(2kπ i)n–m+1

∞∑

r=0

{ r∑

ν=0

(
m – n – 1

r – ν

)
Bm

ν (z)
ν!

(2kπ i)ν–r

}
tr =

∞∑

r=0

crtr . (3.17)

Thus,

cr =
e2kπ iz

(2kπ i)n–m+1

r∑

ν=0

(
m – n – 1

r – ν

)
Bm

ν (z)
ν!

(2kπ i)ν–r . (3.18)

In particular,

cm–1 =
e2kπ iz

(2kπ i)n

m–1∑

ν=0

(
m – n – 1
m – ν – 1

)
Bm

ν (z)
ν!

(2kπ i)ν . (3.19)

Comparing (3.8) and (3.12),

γ m
k (n, z; 1) =

m–1∑

ν=0

(
m – n – 1
m – ν – 1

)
Bm

ν (z)
ν!

(2kπ i)ν . (3.20)

Applying (2.19),

γ m
k (n, z; 1) = (–1)m–1

(
n – 1
m – 1

) m–1∑

ν=0

(
m – 1

ν

)
(n – ν – 1)

(n – 1)!
Bm

ν (z)(–2kπ i)ν . (3.21)

Substituting to (3.12), the theorem follows. �

Remark 3.3 When m = 1, the formula in Lemma 3.1 and Theorem 3.2 agrees with that
obtained in [3].

Using (3.2) and (3.3) the following corollary is a direct consequence of Theorem 3.2.
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Corollary 3.4 For 0 < z < 1 and n ≥ m > 1,

Gm
n (z; –1) = 2mn

(
n – 1
m – 1

) ∞∑

k=–∞,k �=0

m–1∑

ν=0

(
m – 1

ν

)
(n – ν – 1)!Bm

ν (z)(–1)ν
e2kπ iz

(2kπ i)n–ν
,

Em
n (z; –1) =

2m

(m – 1)!

∞∑

k=–∞,k �=0

m–1∑

ν=0

(
m – 1

ν

)
(n + m – ν – 1)!Bn

ν (z)(–1)ν
e2kπ iz

(2kπ i)n+m–ν
.

4 Conclusion
It is seen that the Fourier expansions for higher-order Apostol–Genocchi, Apostol–
Bernoulli, and Apostol–Euler polynomials are readily obtained using the method of Lopez
and Temme [10]. Following [12] and [10] it will be interesting to consider the integral rep-
resentations and asymptotic approximations of these polynomials for future study.
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