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Abstract
We propose a modified version of the classical Cesáro means method endowed with
the hybrid shrinking projection method to solve the split equilibrium and fixed point
problems (SEFPP) in Hilbert spaces. One of the main reasons to equip the classical
Cesáro means method with the shrinking projection method is to establish strong
convergence results which are often required in infinite-dimensional functional
spaces. As a consequence, the convergence analysis is carried out under mild
conditions on the underlying shrinking Cesáro means method. We emphasize that
the results accounted in this manuscript can be considered as an improvement and
generalization of various existing exciting results in this field of study.
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1 Introduction
Throughout the introduction, we first fix some necessary notions and concepts which will
be required in the sequel. The inner product and the induced norm associated with a real
Hilbert space H are denoted by 〈·, ·〉 and ‖ · ‖ :=

√〈·, ·〉, respectively. For a sequence {xn}∞n=1

in H , the strong convergence characteristics (resp. weak convergence characteristics) of
{xn}∞n=1 is denoted as xn → x (resp. xn ⇀ x). For a self-mapping T over a nonempty subset
C of H , the set of all fixed points of the mapping T is denoted by F(T). Recall that the self-
mapping T is said to be total asymptotically nonexpansive mapping [1] if, for all x, y ∈ C,
we have

∥
∥Tnx – Tny

∥
∥ ≤ ‖x – y‖ + λnξ

(‖x – y‖) + μn for all n ≥ 1, (1)

where {un} and {vn} are nonnegative sequences satisfying λn, μn
n→∞−→ 0 and ξ : [0,∞) →

[0,∞) satisfying ξ (0) = 0 and ξ (x) < ξ (y) for x < y.
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It is remarked that the fixed points of certain nonlinear mappings can be constructed
with the effective iterative algorithms by employing a suitable set of control conditions.
On the other hand, computational investigation associated with the fixed points of gen-
eralized nonexpansive mappings is the only main tool to establish the consequent fixed
point property in various framework of spaces. We remark that the convergence analysis
of effective iterative algorithms associated with the class of total asymptotically nonex-
pansive mappings, as defined in (1), contributes significantly in metric fixed point theory.
The introduction of the aforementioned class of mappings includes, inter alia, the gener-
alization of nonlinear mappings as well as unification of different notions associated with
the class of asymptotically nonexpansive mappings. Some useful results concerning the
iterative construction of fixed points can be found in [18, 19, 22] and the references cited
therein.

In 1975, Baillon [2] established the nonlinear version of a classical ergodic theorem in-
volving a nonexpansive self-mapping T defined over a closed bounded convex subset C
of a Hilbert space H . In fact, he proved that, for every x ∈ C, the Cesáro (-arithmetical)
means method

x + Tx + · · · + Tnx
n + 1

exhibits weak convergence towards a fixed point of the mapping provided that F(T) is
nonempty. This nonlinear ergodic theorem was then generalized to Banach spaces in
[4, 15, 26]. Moreover, Hirano and Takahashi [16] extended the Baillon’s result to asymptot-
ically nonexpansive mappings. Since then, the Cesáro means method has been employed
for the construction of fixed points of (asymptotically) nonexpansive mappings; see, for
instance, [27–29] and the references cited therein. We remark that the so-called ergodic
average 1

n+1
∑n

i=0 Tix converges weakly, whereas a strongly convergent iterative algorithm
involving a nonlinear mapping is much more desirable than the weakly convergent itera-
tive algorithm in infinite dimensional functional spaces. In 1967, Halpern [13] suggested
the following strongly convergent iterative algorithm:

Pα
0 x = x, Pα

n+1x = αn+1x + (1 – αn+1)TPα
n x,

where α = {αn}∞n=1 is a sequence in [0, 1]. Note that for a particularly important choice for
T being positively homogeneous (i.e., T(tx) = tTx for any t ≥ 0 and x ∈ C) and {αn}∞n=1

to be { 1
n+1 }∞n=1, the so-called Halpern iterative algorithm is a nonlinear generalization of

the Cesáro means method such that Pα
n x = 1

n+1 Snx, where S0x := x and Sn+1x := x + T(Snx).
In 1968, Haugazeau [14] proposed and analyzed a hybrid projection algorithm or outer-
approximation methods in Hilbert spaces. This method has been modified in different
ways to ensure the strong convergence characteristics of an iterative algorithm. In 2008,
Takahashi et al. [32] firstly proposed a strongly convergent hybrid algorithm, based on
the shrinking effect of the half-space, for nonexpansive mappings in Hilbert spaces. We
are aiming to employ a modified version of the classical Cesáro means method endowed
the hybrid shrinking projection method for the construction of common fixed points of a
finite family of total asymptotically nonexpansive mappings.

In 2012, Censor et al. [8] coined the concept of split variational inequality problem
(SVIP) in Hilbert spaces. The concept of SVIP was then generalized to split monotone
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variational inclusions (SMVI) in [25]. The concept of split equilibrium problem (SEP) is
considered as a special case of SMVI which aims to solve a pair of equilibrium problems
in such a way that the equilibrium points of an equilibrium problem solve another equi-
librium problem under the action of a given bounded linear operator. The above stated
theoretical problems have been successfully implemented to real world applications, for
example, medical image reconstruction, see [6, 7]. Moreover, SEP can also be employed
for problems in phase retrieval, data compression, sensor networks, inverse problems,
and computerized tomography; see, for example, [5, 10]. We now introduce the concept
of SEP:

Let F : C × C → R and G : Q × Q → R be two bifunctions, where ∅ �= C ⊆ H1 and
∅ �= Q ⊆ H2, respectively. An SEP is as follows:

find a point x∗ ∈ C which solves F
(

x∗, x
) ≥ 0 for all x ∈ C (2)

and

find the image y∗ = Ax∗ ∈ Q which solves G
(

y∗, y
) ≥ 0 for all y ∈ Q, (3)

where A is a bounded linear operator from H1 onto H2.
The set Ω = {z ∈ EP(F) : Az ∈ EP(G)} denotes the equilibrium points of SEP (2) and (3).

Some important implications of SEP are as follows: If H1 = H2, C = Q and A := I (the
identity mapping), then inequalities (2) and (3) coincide with the classical equilibrium
problem whose solution set is denoted as EP(F). Moreover, if F(x∗, x) = 〈f (x∗), x – x∗〉 and
G(x∗, x) = 〈g(x∗), x – x∗〉 in (2) and (3), then we have the concept of SVIP. As a consequence,
the existence and approximation results for these problems can easily be derived from the
ones established for SEFFP. Hence, it shows the significance and range of applicability of
SEFFP. Some interesting methods have been proposed and analyzed to find a feasible so-
lution of SEFPP associated with different classes of nonlinear mappings in the framework
of Hilbert spaces [9, 12, 17, 20, 21, 23, 24, 30, 31, 33].

Inspired and motivated by the aforementioned results, we aim to establish convergence
results of the shrinking Cesáro means method satisfying an appropriate set of conditions
devised for the control sequences of parameters. As a consequence, the proposed algo-
rithm strongly converges to an element in the set of solutions of SEFPP associated with a
finite family of total asymptotically nonexpansive mappings. We emphasize that the results
accounted in this manuscript can be considered as an improvement and generalization of
various existing exciting results in this field of study.

The remainder of the manuscript is furnished in the following manner. In Sect. 2, we
recall some definitions, mathematical tools, and important results in the form of lemmas
required in the sequel. In Sect. 3, we establish results concerning the convergence char-
acteristics of shrinking Cesáro means method in Hilbert spaces. Section 4 deals with the
results deduced from the main results of Sect. 3.

2 Preliminaries
This section is devoted to recalling some useful definitions, entailing mathematical tools,
and helpful results in the form of lemmas required in the sequel.
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We assume that C is a nonempty closed convex subset of a Hilbert space H1. For each
x ∈ H1, we can find a projection denoted by PCx, which is the unique nearest point in C
such that

‖x – PCx‖ := inf
{‖x – y‖ : for all y ∈ C

}

.

Such a mapping PC is known as the nearest point projector or the metric projection of H1

onto C. Now, for all x, y ∈ C, we concluded that the metric projection PC :
(i) satisfies nonexpansiveness in Hilbert spaces;

(ii) satisfies firm nonexpansiveness in Hilbert spaces, that is,

‖PCx – PCy‖2 ≤ 〈x – y, PCx – PCy〉.

Moreover, if PCx ∈ C, then for all x ∈ H1 and for all y ∈ C, we have

〈x – PCx, PCx – y〉 ≥ 0. (4)

It is remarked that (4) is equivalent to

‖x – y‖2 ≥ ‖x – PCx‖2 + ‖y – PCx‖2. (5)

We now recall some important classes of monotone operators required in the sequel.
A nonlinear mapping A : C → H1 is: (i) monotone if 〈Ax – Ay, x – y〉 ≥ 0 for all x, y ∈ C and
(ii) λ-inverse strongly monotone if for λ > 0 we have that 〈Ax – Ay, x – y〉 ≥ λ‖Ax – Ay‖2 for
all x, y ∈ C. Note that a λ-inverse strongly monotone operator satisfies monotonicity de-
fined in (i) as well as Lipschitz continuity with the Lipschitz constant being ( 1

λ
). Moreover,

the relation between the concepts of metric projection operator and variational inequality
problem can be expressed as follows:

x∗ ∈ VI(C, f ) ⇐⇒ x∗ = PC
(

x∗ – λAx∗) for all λ > 0.

It is remarked that the linear operator defined as A = I –T is ( 1
2 )-inverse strongly monotone

provided that T satisfies nonexpansiveness.
The following lemma collects some useful equations and inequalities in the context of a

real Hilbert space.

Lemma 2.1 Let H1 be a real Hilbert space, then:
(i) ‖x – y‖2 = ‖x‖2 – ‖y‖2 – 2〈x – y, y〉 for all x, y ∈ H1;

(ii) 2〈y, x + y〉 ≥ ‖x + y‖2 – ‖x‖2 for all x, y ∈ H1;
(iii) 2〈x – y, u – v〉 = ‖x – v‖2 + ‖y – u‖2 – ‖x – u‖2 – ‖y – v‖2 for all x, y, u, v ∈ H1;
(iv) ‖λx + (1 – λ)y‖2 + λ(1 – λ)‖x – y‖2 = λ‖x‖2 + (1 – λ)‖y‖2 for all x, y ∈ H1 and λ ∈R.

An important tool in metric fixed point theory is the well-known Opial condition which
is defined as follows: let {xn} be a sequence in a Hilbert space H1 satisfying xn

n→∞
⇀ x, then

the following inequality

lim inf
n→∞ ‖xn – x‖ < lim inf

n→∞ ‖xn – y‖

holds for all y ∈ H1 with x �= y.



Harisa et al. Advances in Difference Equations        (2020) 2020:345 Page 5 of 19

Another important tool in metric fixed point theory is the demiclosedness principal
which states that a mapping T : H1 → H1 is demiclosed at the origin provided that a se-
quence {xn} in H1 satisfies xn

n→∞
⇀ x as well as ‖xn – Txn‖

n→∞−→ 0, we have x = Tx.
The class of equilibrium problems, involving a bifunction F : C × C → R, can be solved

assuming the following essential conditions (cf. [3] and [11]):
(A1) F(x, x) = 0 for all x ∈ C;
(A2) F(x, y) + F(y, x) ≤ 0 for all x, y ∈ C implies that F is monotone;
(A3) for each x, z ∈ C, the following relation

lim
t→0

F
(

tz + (1 – t)x, y
) ≤ F(x, y)

implies that the function x �→ F(x, y) is upper hemicontinuous for all y ∈ C;
(A4) the function y �→ F(x, y) is convex and lower semicontinuous for all x ∈ C.

Lemma 2.2 ([11]) Let C be a closed convex subset of a real Hilbert space H1, and let F :
C × C → R be a bifunction satisfying conditions (A1)–(A4). For r > 0 and x ∈ H1, there
exists z ∈ C such that

F(z, y) +
1
r
〈y – z, z – x〉 ≥ 0 for all y ∈ C.

Moreover, define a mapping TF
r : H1 → C by

TF
r (x) =

{

z ∈ C : F(z, y) +
1
r
〈y – z, z – x〉 ≥ 0 for all y ∈ C

}

for all x ∈ H1. Then the following hold:
(i) TF

r is single-valued;
(ii) TF

r is firmly nonexpansive, i.e., for every x, y ∈ H ,

∥
∥TF

r x – TF
r y

∥
∥

2 ≤ 〈

TF
r x – TF

r y, x – y
〉

;

(iii) F(TF
r ) = EP(F);

(iv) EP(F) is closed and convex.

It is remarked that if G : Q × Q → R is a bifunction satisfying conditions (A1)–(A4),
then for s > 0 and w ∈ H2 we can define a mapping

TG
s (w) =

{

d ∈ C : G(d, e) +
1
s
〈e – d, d – w〉 ≥ 0 for all e ∈ Q

}

,

which is nonempty, single-valued, and firmly nonexpansive. Moreover, EP(G) is closed
and convex, and F(TG

s ) = EP(G).

3 Main results
We now prove our main result of this section.

Theorem 3.1 Let C, Q be two nonempty closed convex subsets of two real Hilbert spaces H1

and H2, respectively. Let {fi}N
i=1 : C × C → R and {gi}N

i=1 : Q × Q → R be two finite families
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of bifunctions satisfying conditions (A1)–(A4) such that each gi is upper semicontinuous
for each i ∈ {1, 2, 3, . . . , N}. Let {Ai}N

i=1 : H1 → H2 be a finite family of bounded linear opera-
tors, and let {Si}N

i=1 : C → C be a finite family of uniformly continuous total asymptotically
nonexpansive mappings satisfying the condition that

lim
n→∞ sup

x∈K

∥
∥Sn+1

i x – Sn
i x

∥
∥ = 0, 1 ≤ i ≤ N , (6)

for any bounded subset K of C. Assume that the solution set F := [
⋂N

i=1 F(Si)]∩Ω �= ∅, where
Ω = {z ∈ C : z ∈ ⋂N

i=1 EP(fi) and Aiz ∈ ⋂N
i=1 EP(gi) for 1 ≤ i ≤ N}. Let {xn} be a sequence

generated by

x1 ∈ C1 = C,

un = Tfn(mod N)
rn

(

xn – γ A∗
n(mod N)

(

I – Tgn(mod N)
sn

)

An(mod N)xn
)

,

yn = αnun + (1 – αn)
1
N

N
∑

i=1

Sn
i un,

Cn+1 =
{

z ∈ C :‖yn – z‖2 ≤ ‖xn – z‖2 + θn
}

,

xn+1 = PCn+1 x1, n ≥ 1,

(7)

where θn = (1 – αn){λnξn(Mn) + λnM∗
nDn + μn} with Dn = sup{‖xn – p‖ : p ∈ F}. Let {rn}, {sn}

be two positive real sequences, and let {αn} be in (0, 1) such that αn ≤ a. Assume that if the
following set of conditions holds:

(C1) γ ∈ (0, 1
L ) where L = max{L1, L2, . . . , LN } and Li is the spectral radius of the operator

A∗
i Ai where A∗

i is the adjoint of Ai for each i ∈ {1, 2, 3, . . . , N};
(C2) lim infn→∞ rn > 0 and lim infn→∞ sn > 0;
(C3)

∑∞
n=1 λn < ∞ and

∑∞
n=1 μn < ∞;

(C4) there exist constants Mi, M∗
i > 0 such that ξi(λi) ≤ M∗

i λi for all λi ≥ Mi,
i = 1, 2, 3, . . . , N , then the sequence {xn} generated by (7) converges strongly to PFx1.

Proof For the sake of simplicity, we divide the proof into five steps.
Step 1. The sequence {xn} is well defined.

Proof of Step 1. We first show by mathematical induction that F ⊂ Cn for all n ≥ 1. It is
obvious from the assumption that F ⊂ C1 = C. Let F ⊂ Ck for some k ≥ 1. We show that
F ⊂ Ck+1 for some k ≥ 1. It follows from (7) that

‖uk – p‖2 =
∥
∥Tfk(mod N)

rk

(

xk – γ A∗
k(mod N)

(

I – Tgk(mod N)
sk

)

Ak(mod N)xk
)

– Tfk(mod N)
rk p

∥
∥

2

≤ ∥
∥xk – γ A∗

k(mod N)
(

I – Tgk(mod N)
sk

)

Ak(mod N)xk – p
∥
∥

2

≤ ‖xk – p‖2 + γ 2∥∥A∗
k(mod N)

(

I – Tgk(mod N)
sk

)

Ak(mod N)xk
∥
∥

2

+ 2γ
〈

p – xk , A∗
k(mod N)

(

I – Tgk(mod N)
sk

)

Ak(mod N)xk
〉

≤ ‖xk – p‖2 + γ 2〈Ak(mod N)xk – Tgk(mod N)
sk Ak(mod N)xk ,

Ak(mod N)A∗
k(mod N)

(

I – Tgk(mod N)
sk

)

Ak(mod N)xk
〉
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+ 2γ
〈

p – xk , A∗
k(mod N)

(

I – Tgk(mod N)
sk

)

Ak(mod N)xk
〉

≤ ‖xk – p‖2

+ Lγ 2〈Ak(mod N)xk – Tgk(mod N)
sk Ak(mod N)xk , Ak(mod N)xk – Tgk(mod N)

sk Ak(mod N)xk
〉

+ 2γ
〈

p – xk , A∗
k(mod N)

(

I – Tgk(mod N)
sk

)

Ak(mod N)xk
〉

= ‖xk – p‖2 + Lγ 2∥∥Ak(mod N)xk – Tgk(mod N)
sk Ak(mod N)xk

∥
∥

2

+ 2γ
〈

p – xk , A∗
k(mod N)

(

I – Tgk(mod N)
sk

)

Ak(mod N)xk
〉

. (8)

Denote Λ = 2γ 〈p – xk , A∗
k(mod N)(I – Tgk(mod N)

sk )Ak(mod N)xk〉, we have

Λ = 2γ
〈

p – xk , A∗
k(mod N)

(

I – Tgk(mod N)
sk

)

Ak(mod N)xk
〉

= 2γ
〈

Ak(mod N)(p – xk), Ak(mod N)xk – Tgk(mod N)
sk Ak(mod N)xk

〉

= 2γ
〈

Ak(mod N)(p – xk) +
(

Ak(mod N)xk – Tgk(mod N)
sk Ak(mod N)xk

)

–
(

Ak(mod N)xk – Tgk(mod N)
sk Ak(mod N)xk

)

, Ak(mod N)xk – Tgk(mod N)
sk Ak(mod N)xk

〉

= 2γ
{〈

Ak(mod N)p – Tgk(mod N)
sk Ak(mod N)xk , Ak(mod N)xk – Tgk(mod N)

sk Ak(mod N)xk
〉

–
∥
∥Ak(mod N)xk – Tgk(mod N)

sk Ak(mod N)xk
∥
∥

2}

≤ 2γ

{
1
2
∥
∥Ak(mod N)xk – Tgk(mod N)

sk Ak(mod N)xk
∥
∥

2

–
∥
∥Ak(mod N)xk – Tgk(mod N)

sk Ak(mod N)xk
∥
∥

2
}

= – γ
∥
∥Ak(mod N)xk – Tgk(mod N)

sk Ak(mod N)xk
∥
∥

2.

Substituting the above simplified value of Λ in (8), we have

‖uk – p‖2 ≤ ‖xk – p‖2 + γ (Lγ – 1)
∥
∥Ak(mod N)xk – Tgk(mod N)

sk Ak(mod N)xk
∥
∥

2. (9)

From the definition of γ and condition (C1), we obtain

‖uk – p‖2 ≤ ‖xk – p‖2. (10)

Let Sk = 1
N

∑N
i=1 Sk

i , it then follows that

∥
∥Skx – Sky

∥
∥ =

∥
∥
∥
∥
∥

1
N

N
∑

i=1

Sk
i x –

1
N

N
∑

i=1

Sk
i y

∥
∥
∥
∥
∥

≤ 1
N

N
∑

i=1

(‖x – y‖ + λkξk
(‖x – y‖) + μk

)

≤ ‖x – y‖ + λkξk
(‖x – y‖) + μk for all x, y ∈ C. (11)
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Now, for any p ∈ F, we have Skp = 1
N

∑N
i=1 Sk

i p = p. It follows from (8) and (11) that

‖yk – p‖ =
∥
∥αkuk + (1 – αk)Skuk – p

∥
∥

= αk‖uk – p‖ + (1 – αk)
∥
∥Skuk – p

∥
∥

≤ αk‖uk – p‖ + (1 – αk)
{‖uk – p‖ + λkξk

(‖uk – p‖) + μk
}

≤ ‖uk – p‖ + (1 – αk)
{

λkξk(Mk) + λkM∗
k‖uk – p‖) + μk

}

≤ ‖xk – p‖ + (1 – αk)
{

λkξk(Mk) + λkM∗
k‖xk – p‖2 + μk

}

≤ ‖xk – p‖ + θk , (12)

where θk = (1 – αk)[(λkξk(Mk) + λkDkM∗
k + μk)] with Dk = sup{‖xk – p‖ : p ∈ F}. Estimate

(12) implies that p ∈ Ck+1 and hence F⊂ Cn for all n ≥ 1. Since

{

z ∈ C :‖yn – z‖2 ≤ ‖xn – z‖2 + θn
}

=
{

z ∈ C :‖yn‖2 – ‖xn‖2 ≤ 2〈yn – xn, z〉 + θn
}

,

it is closed and convex; therefore the sequence {xn} is well defined.
Step 2. The sequence {‖xn – x1‖} is Cauchy.
Proof of Step 2. Note that xn = PCn x1, therefore we have

0 ≤ 〈

xn – x1, x∗ – xn
〉

for each x∗ ∈ Cn.

In particular,

0 ≤ 〈xn – x1, p – xn〉 for each p ∈ F.

This further implies that

0 ≤ 〈xn – x1, p – xn〉
= 〈xn – x1, p + x1 – x1 – xn〉
= 〈xn – x1, x1 – xn〉 + 〈xn – x1, p – x1〉
= –‖xn – x1‖2 + ‖xn – x1‖‖p – x1‖.

That is,

‖xn – x1‖ ≤ ‖p – x1‖ for all p ∈ F and n ≥ 1.

Moreover, from xn = PCn x1 and xn+1 = PCn+1 x1 ∈ Cn+1 ⊂ Cn, we have

0 ≤ 〈xn – x1, xn+1 – xn〉

and

0 ≤ 〈xn – x1, xn+1 – xn〉
= 〈xn – x1, xn+1 + x1 – x1 – xn〉
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= 〈xn – x1, x1 – xn〉 + 〈xn – x1, xn+1 – x1〉
= –‖xn – x1‖2 + ‖xn – x1‖‖xn+1 – x1‖.

This implies that

‖xn – x1‖ ≤ ‖xn+1 – x1‖ for all n ≥ 1.

Hence, the sequence {‖xn – x1‖} is bounded and nondecreasing; therefore we have

lim
n→∞‖xn – x1‖ exists. (13)

Note that

‖xn+1 – xn‖2 = ‖xn+1 – x1 + x1 – xn‖2

= ‖xn+1 – x1‖2 + ‖xn – x1‖2 – 2〈xn – x1, xn+1 – x1〉
= ‖xn+1 – x1‖2 + ‖xn – x1‖2 – 2〈xn – x1, xn+1 – xn + xn – x1〉
= ‖xn+1 – x1‖2 – ‖xn – x1‖2 – 2〈xn – x1, xn+1 – xn〉
≤ ‖xn+1 – x1‖2 – ‖xn – x1‖2.

It now follows from estimate (13) that

lim
n→∞‖xn+1 – xn‖ = 0. (14)

Step 3. Show that:
(i) limn→∞ ‖yn – xn+1‖ = limn→∞ ‖yn – xn‖ = 0,

(ii) limn→∞ ‖un – xn‖ = 0,
(iii) limn→∞ ‖yn – un‖ = 0,
(iv) limn→∞ ‖Snun – un‖ = 0.

Proof of Step 3. By xn+1 ∈ Cn+1, we have ‖yn – xn+1‖ ≤ ‖xn – xn+1‖ + θn. Using (14), we have

lim
n→∞‖yn – xn+1‖ = 0 for all n ≥ 1. (15)

Since ‖yn – xn‖ ≤ ‖yn – xn+1‖ + ‖xn+1 – xn‖, therefore using (14)–(15) we obtain

lim
n→∞‖yn – xn‖ = 0 for all n ≥ 1 (16)

as n → ∞.
Altogether, we deduce from (7), (9), and (12) that

γ (1 – γ L)
∥
∥An(mod N)xn – Tgn(mod N)

sn An(mod N)xn
∥
∥

2

≤ ‖xn – p‖2 – ‖un – p‖2

≤ ‖xn – p‖2 – ‖yn – p‖2 + θn

≤ (‖xn – p‖ + ‖yn – p‖)‖xn – yn‖ + θn.
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From γ (1 – Ly) > 0 and (16), we obtain

lim
n→∞

∥
∥An(mod N)xn – Tgn(mod N)

sn An(mod N)xn
∥
∥

2 = 0 for all n ≥ 1. (17)

Next, we show that ‖un – xn‖ → 0 as n → ∞. Since p ∈ F, we have

‖un – p‖2 =
∥
∥Tfn(mod N)

rn

(

xn – γ A∗
n(mod N)

(

I – Tgn(mod N)
sn

)

An(mod N)xn
)

– Tfn(mod N)
rn p

∥
∥

2

≤ 〈

un – p, xn – γ A∗
n(mod N)

(

I – Tgn(mod N)
sn

)

An(mod N)xn – p
〉

=
1
2
{‖un – p‖2 +

∥
∥xn – γ A∗

n(mod N)
(

I – Tgn(mod N)
sn

)

An(mod N)xn – p
∥
∥

2

–
∥
∥un – xn + γ A∗

n(mod N)
(

I – Tgn(mod N)
sn

)

An(mod N)xn
∥
∥

2}

≤ 1
2
{‖un – p‖2 + ‖xn – p‖2

–
∥
∥un – xn + γ A∗

n(mod N)
(

I – Tgn(mod N)
sn

)

An(mod N)xn
∥
∥

2}

=
1
2
{‖un – p‖2 + ‖xn – p‖2

–
(‖un – xn‖2 + γ 2∥∥A∗

n(mod N)
(

I – Tgn(mod N)
sn

)

An(mod N)xn
∥
∥

2

– 2γ
〈

un – xn, A∗
n(mod N)

(

I – Tgn(mod N)
sn

)

An(mod N)xn
〉)}

≤ ‖xn – p‖2 – ‖un – xn‖2

+ 2γ ‖un – xn‖
∥
∥An(mod N)xn – Tgn(mod N)

sn An(mod N)xn
∥
∥. (18)

Consider the following variant of (12) together with (10):

‖yn – p‖2 ≤ αn‖xn – p‖2 + (1 – αn)‖un – p‖2 + θn. (19)

Altogether, it follows from (18) and (19) that

(1 – αn)‖un – xn‖2 ≤ (‖xn – p‖ + ‖yn – p‖)‖xn – yn‖
+ 2γ ‖un – xn‖

∥
∥An(mod N)xn – Tgn(mod N)

sn An(mod N)xn
∥
∥ + θn.

From (16) and (17), the above estimate implies that

lim
n→∞‖un – xn‖ = 0 for all n ≥ 1. (20)

Utilizing (16) and (20), we get

‖yn – un‖ ≤ ‖yn – xn‖ + ‖xn – un‖
→ 0 as n → ∞. (21)

Since ‖yn – un‖ = (1 – αn)‖Snun – un‖ and αn ≤ a < 1, then from (21) it follows that

lim
n→∞

∥
∥Snun – un

∥
∥ = 0 for all n ≥ 1. (22)
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From (20) and (22), we obtain

∥
∥Snun – xn

∥
∥ ≤ ∥

∥Snun – un
∥
∥ + ‖xn – un‖

→ 0 as n → ∞. (23)

Reasoning as above, we obtain

lim
n→∞

∥
∥Snun – yn

∥
∥ = 0 for all n ≥ 1. (24)

It is evident from (20) and (23) that the following estimate implies that

∥
∥Snxn – xn

∥
∥ ≤ ∥

∥Snxn – Snun
∥
∥ +

∥
∥Snun – xn

∥
∥

≤ (

1 + λnM∗
n
)‖xn – un‖ + λnξn(Mn) + μn +

∥
∥Snun – xn

∥
∥

→ 0 as n → ∞. (25)

Note that 1
N ‖Sn

i un – un‖2 ≤ 1
N

∑N
i=1 ‖Sn

i un – un‖2, therefore using (22) we have

lim
n→∞

∥
∥Sn

i un – un
∥
∥ = 0 for each i = 1, 2, . . . , N .

Similarly, we also have that

lim
n→∞

∥
∥Sn

i xn – xn
∥
∥ = 0 for each i = 1, 2, . . . , N . (26)

Moreover, utilizing the uniform continuity of Si and (26), we get

‖xn – Sixn‖ ≤ ∥
∥xn – Sn

i xn
∥
∥ +

∥
∥Sn

i xn – Sixn
∥
∥

→ 0 as n → ∞ for each i = 1, 2, . . . , N .

Similarly, we also have that

lim
n→∞‖un – Siun‖ = 0 for each i = 1, 2, . . . , N .

Now, we show that ω(xn) ⊂ F, where ω(xn) is the set of all weak ω-limits of {xn}. Since {xn}
is bounded, therefore ω(xn) �= ∅. Let q ∈ ω(xn), then there exists a subsequence {xNn+i} of
{xn} such that xNn+i ⇀ q. Using the fact that SNn+i = Si for all n ≥ 1 and the demiclosedness
principle for each Si, we have that x ∈ F(Si) for each 1 ≤ i ≤ N . Next, we show that q ∈
Ω , i.e., q ∈ ⋂N

i=1 EP(fi) and Aiq ∈ EP(gi) for each 1 ≤ i ≤ N . In order to show that q ∈
⋂N

i=1 EP(fi), that is, q ∈ EP(fi) for each 1 ≤ i ≤ N , we define a subsequence {nj} of index {n}
such that nj = Nj + i for all n ≥ 1. As a consequence, we can write fnj = fi for 1 ≤ i ≤ N .

From unj = Tfi(mod N)
rnj

(I – γ A∗
nj(mod N)

(I – T
gnj(mod N)
snj

)Anj(mod N) )xnj , for all n ≥ 1, we have

fi(mod N)(unj , y)

+
1

rnj

〈

y – unj , unj – xnj – γ A∗
nj(mod N)

(

I – T
gnj(mod N)
snj

)

Anj(mod N) xnj

〉 ≥ 0

for all y ∈ C.
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This implies that

fi(mod N)(unj , y) +
1

rnj

〈y – unj , unj – xnj〉

–
1

rnj

〈

y – unj ,γ A∗
nj(mod N)

(

I – T
gnj(mod N)
snj

)

Anj(mod N) xnj

〉 ≥ 0.

From condition (A2), we have

1
rnj

〈y – unj , unj – xnj〉

–
1

rnj

〈

y – unj ,γ A∗
nj(mod N)

(

I – T
gnj(mod N)
snj

)

Anj(mod N) xnj

〉 ≥ fi(mod N)(y, unj )

for all y ∈ C. Since lim infj→∞ rni > 0 (by (C2)), it follows from (17) and (20) that

fi(mod N)(y, q) ≤ 0 for all y ∈ C and for 1 ≤ i ≤ N .

Let yt = ty + (1 – t)q for some 0 < t < 1 and y ∈ C. Since q ∈ C, this implies that yt ∈ C.
Using conditions (A1) and (A4), the following estimate

0 = fi(mod N)(yt , yt) ≤ tfi(mod N)(yt , y) + (1 – t)fi(mod N)(yt , q) ≤ tfi(mod N)(yt , y)

implies that

fi(mod N)(yt , y) ≥ 0 for 1 ≤ i ≤ N .

Letting t → 0, we have fi(mod N)(q, y) ≥ 0 for all y ∈ C. Thus, q ∈ EP(fi) for 1 ≤ i ≤ N .
That is, q ∈ ⋂N

i=1 EP(Fi). Reasoning as above, we show that Ai(mod N)q ∈ EP(gi) for each
1 ≤ i ≤ N . Since xnl −→ q and Anl(mod N) is a bounded linear operator, therefore
Anl(mod N) xnl −→ Anl(mod N) q. Hence, it follows from (17) that

T
gnl (mod N)
snl

Anl(mod N) xnl −→ Anl(mod N) q as l → ∞.

Now, from Lemma 2.2, we have

gi(mod N)
(

T
gnl(mod N)
snl

Anl(mod N)xnl , z
)

+
1

snl

〈

z – T
gnl(mod N)
snl

Anl(mod N)xnl , T
gnl(mod N)
snl

Anl(mod N) xnl – Anl(mod N) xnl

〉 ≥ 0

for all z ∈ Q.
Since gi is upper hemicontinuous in the first argument for each 1 ≤ i ≤ N , taking lim sup

on both sides of the above estimate as l → ∞ and utilizing (C2) and (17), we get

gi(mod N)(Anl(mod N)x, z) ≥ 0 for all z ∈ Q and for each 1 ≤ i ≤ N .
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Hence Ai(mod N)q ∈ EP(gi) for each 1 ≤ i ≤ N and consequently q ∈ F. It remains to show
that xn → q = PFx1. Let x = PFx1, then from ‖xn – x1‖ ≤ ‖x – x1‖ we have

‖x – x1‖ ≤ ‖q – x1‖
≤ lim inf

j→∞ ‖xnj – x1‖
≤ lim sup

j→∞
‖xnj – x1‖

≤ ‖x – x1‖.

This implies that

lim
j→∞‖xnj – x1‖ = ‖q – x1‖.

Hence xnj → q = PFx1. From the arbitrariness of the subsequence {xnj} of {xn}, we conclude
that xn → x as n → ∞. It is easy to see that yn,i → x and un,i → x. This completes the
proof. �

We now give an example to justify the main result of this section.

Example 3.2 Let H1 = H2 = R, C = Q = [0, 10]. Let Si : C → C be defined by Six = x
i+1 for

each i = 1, 2, . . . , N with strictly increasing function ξ : [0,∞) → [0,∞) satisfying ξ (0) = 0
and λn = μn = 1

n2
n→∞−→ 0. Then observe that, for each fixed i = 1, 2, . . . , N ,

∥
∥Sn

i x – Sn
i y

∥
∥ – ‖x – y‖ – λnξn

(‖x – y‖) – μn

≤ 1
(i + 1)n ‖x – y‖ – ‖x – y‖ – λnξn

(‖x – y‖) – μn

≤ ‖x – y‖ – ‖x – y‖ – λnξn
(‖x – y‖) – μn ≤ 0.

This shows that, for each fixed i = 1, 2, . . . , N , the mapping Si is total asymptotically non-
expansive with

⋂N
i=1 F(Si) = {0}. Let A : R → R be defined by Ax = x for all x ∈ H1 = R.

This implies that A∗y = y for all y ∈ H2 = R. The two bifunctions f and g are defined by
fi(u, v) = f (u, v) = 2u(v – u) for all u, v ∈ C and gi(x, y) = g(x, y) = x(y – x) for all x, y ∈ Q, re-
spectively. It is easy to check that f and g satisfy all the conditions in Theorem 3.1 (Main
Result) with Ω = {0}, and hence F = {0}. Set βn = rn = n

100n+1 and γ = 1
100 . For each r > 0

and x ∈ C, we compute our iteration as follows.
Step 1. Find z ∈ Q such that g(z, y) + 1

r 〈y – z, z – Ax〉 ≥ 0 for all y ∈ Q. Since Ax = x, we
have

g(z, y) +
1
r
〈y – z, z – Ax〉 ≥ 0 ⇔ z(y – z) +

1
r
〈y – z, z – x〉 ≥ 0,

⇔ rz(y – z) + (y – z)(z – x) ≥ 0,

⇔ (y – z)
(

(1 + r)z – x
) ≥ 0.

It follows from Lemma 2.2(i) that Tg
r Ax is single-valued; therefore we get z = x

1+r . This
implies that Tg

r Ax = x
1+r .
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Table 1 Numerical results of Example 3.2 with αn = 0.5 and initial guess x1 = 10.

αn = 0.5 and x1 = 10

n un yn Cn xn

1 9.804864 4.950971 [0, 10.000000] 10.000000
2 7.328900 1.282254 [0, 7.475485] 7.475485
3 4.292865 0.396959 [0, 4.378870] 4.378870
...

...
...

...
...

10 0.044694 0.000849 [0, 0.045592] 0.045592
11 0.022763 0.000398 [0, 0.023220] 0.023220
...

...
...

...
...

25 0.000002 0.000000 [0, 0.000002] 0.000002
26 0.000001 0.000000 [0, 0.000001] 0.000001
27 0.000000 0.000000 [0, 0.000000] 0.000000

Step 2. Find s ∈ C such that s = w – γ A∗(I – TG
r )Aw. It follows from Step 1 that

s = x – γ A∗(I – Tg
r
)

Ax

= x –
1

100
A∗

(

x –
x

1 + r

)

= x –
1

100

(

x –
x

1 + r

)

=
(

1 –
1

100

)

x +
1

100

(
x

1 + r

)

.

Step 3. Find u ∈ C such that f (u, v) + 1
r 〈v – u, u – s〉 ≥ 0 for all v ∈ C. It follows from Step

2 that

f (u, v) +
1
r
〈v – u, u – s〉 ≥ 0 ⇔ 2u(v – u) +

1
r
〈v – u, u – s〉 ≥ 0,

⇔ 2ru(v – u) + (v – u)(u – s) ≥ 0,

⇔ (v – u)
(

(1 + 2r)u – s
) ≥ 0.

Similarly, from Lemma 2.2(i) we obtain that u = s
1+2r = (1 – 1

100 ) x
1+2r + 1

100 ( x
(1+r)(1+2r) ).

Step 4. Find yn = αnun + (1 – αn) 1
N

∑N
i=1 Sn

i un where un = (1 – 1
100 ) xn

1+2rn
+ 1

100 ( xn
(1+rn)(1+2rn) ).

Step 5. Find Cn+1 = {z ∈ C : ‖yn – z‖ ≤ ‖wn – z‖} where C1 = [0, 10]. Since 0 ≤ y1 ≤ x1 ≤
10, therefore C2 = {z ∈ C1 : ‖y1 – z‖ ≤ ‖x1 – z‖} = [0, y1+x1

2 ]. Since y1+x1
2 ≤ x1 and in partic-

ular y1+x1
2 ≤ x1, therefore x2 = PC2 x1 = y1+x1

2 . In a similar fashion, we have Cn+1 = [0, yn+xn
2 ]

and xn+1 = PCn+1 x1 = yn+xn
2 .

Step 6. Compute the numerical results of xn+1 = PCn+1 x1.

Table 1 exhibits the performance of sequence {xn} defined in Theorem 3.1.

4 Applications
In this section, we deduce some results from Theorem 3.1. An immediate consequence of
Theorem 3.1 is to establish the same result for a class of nonexpansive mappings.

Corollary 4.1 Let H1 and H2 be two real Hilbert spaces, and let C ⊆ H1 and Q ⊆ H2 be
nonempty closed convex subsets of Hilbert spaces H1 and H2, respectively. Let fi : C ×C →R



Harisa et al. Advances in Difference Equations        (2020) 2020:345 Page 15 of 19

and gi : Q×Q →R be two finite families of bifunctions satisfying conditions (A1)–(A4) such
that each gi is upper semicontinuous for each i ∈ {1, 2, 3, . . . , N}. Let Si : C → C be a finite
family of nonexpansive mappings, and let Ai : H1 → H2 be a finite family of bounded linear
operators for each i ∈ {1, 2, 3, . . . , N}. Suppose that F := F(S) ∩ Ω �= ∅, where Ω = {z ∈ C :
z ∈ ⋂N

i=1 EP(fi) and Aiz ∈ ⋂N
i=1 EP(gi) for 1 ≤ i ≤ N}. Let {xn} be a sequence generated by

x1 ∈ C1 = C,

un = Tfn(mod N)
rn

(

xn – γ A∗
n(mod N)

(

I – Tgn(mod N)
sn

)

An(mod N)xn
)

,

yn = αnun + (1 – αn)
1
N

N
∑

i=1

Siun,

Cn+1 =
{

z ∈ C :‖yn – z‖2 ≤ ‖xn – z‖2 + θn
}

,

xn+1 = PCn+1 x1, n ≥ 1,

(27)

where θn = (1 – αn){λnξn(Mn) + λnM∗
nDn + μn} with Dn = sup{‖xn – p‖ : p ∈ F}. Let {rn}, {sn}

be two positive real sequences, and let {αn} be in (0, 1). Assume that if the following set of
conditions holds:

(C1) 0 ≤ k < a ≤ αn ≤ b < 1 and γ ∈ (0, 1
L ) where L = max{L1, L2, . . . , LN } and Li is the

spectral radius of the operator A∗
i Ai and A∗

i is the adjoint of Ai for each
i ∈ {1, 2, 3, . . . , N};

(C2) lim infn→∞ rn > 0 and lim infn→∞ sn > 0;
(C3)

∑∞
n=1 λn < ∞ and

∑∞
n=1 μn < ∞;

(C4) there exist constants Mi, M∗
i > 0 such that ξi(λi) ≤ M∗

i λi for all λi ≥ Mi,
i = 1, 2, 3, . . . , N , then the sequence {xn} generated by (27) converges strongly to PFx1.

Corollary 4.2 Let H1 and H2 be two real Hilbert spaces, and let C ⊆ H1 and Q ⊆ H2

be nonempty closed convex subsets of Hilbert spaces H1 and H2, respectively. Let fi : C ×
C →R and gi : Q × Q →R be two finite families of bifunctions satisfying conditions (A1)–
(A4) such that each gi is upper semicontinuous for each i ∈ {1, 2, 3, . . . , N}. Let S : C → C
be a nonexpansive mapping, and let Ai : H1 → H2 be a finite family of bounded linear
operators for each i ∈ {1, 2, 3, . . . , N}. Suppose that F := F(S) ∩ Ω �= ∅, where Ω = {z ∈ C :
z ∈ ⋂N

i=1 EP(fi) and Aiz ∈ ⋂N
i=1 EP(gi) for 1 ≤ i ≤ N}. Let {xn} be a sequence generated by

x1 ∈ C1 = C,

un = Tfn(mod N)
rn

(

xn – γ A∗
n(mod N)

(

I – Tgn(mod N)
sn

)

An(mod N)xn
)

,

yn = αnun + (1 – αn)Sun,

Cn+1 =
{

z ∈ C :‖yn – z‖2 ≤ ‖xn – z‖2 + θn
}

,

xn+1 = PCn+1 x1, n ≥ 1,

(28)

where θn = (1 – αn){λnξn(Mn) + λnM∗
nDn + μn} with Dn = sup{‖xn – p‖ : p ∈ F}. Let {rn}, {sn}

be two positive real sequences, and let {αn} be in (0, 1). Assume that if the following set of
conditions holds:
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(C1) 0 ≤ k < a ≤ αn ≤ b < 1 and γ ∈ (0, 1
L ) where L = max{L1, L2, . . . , LN } and Li is the

spectral radius of the operator A∗
i Ai and A∗

i is the adjoint of Ai for each
i ∈ {1, 2, 3, . . . , N};

(C2) lim infn→∞ rn > 0 and lim infn→∞ sn > 0;
(C3)

∑∞
n=1 λn < ∞ and

∑∞
n=1 μn < ∞;

(C4) there exist constants Mi, M∗
i > 0 such that ξi(λi) ≤ M∗

i λi for all λi ≥ Mi,
i = 1, 2, 3, . . . , N , then the sequence {xn} generated by (28) converges strongly to PFx1.

Proof Set Si = S for i ∈ {1, 2, 3, . . . , N}, then the desired result follows from Corollary 4.1
immediately. �

The following results suggest an iterative construction for a common solution of the
classical equilibrium problem together with the fixed point problem.

Corollary 4.3 Let H1 and H2 be two real Hilbert spaces, and let C ⊆ H1 and Q ⊆ H2 be
nonempty closed convex subsets of Hilbert spaces H1 and H2, respectively. Let fi : C ×C →R

and gi : Q × Q → R be two finite families of bifunctions satisfying conditions (A1)–(A4)
such that each gi is upper semicontinuous for each i ∈ {1, 2, 3, . . . , N}. Let Si : C → C be a
finite family of uniformly continuous total asymptotically nonexpansive mappings, and let
Ai : H1 → H2 be a finite family of bounded linear operators for each i ∈ {1, 2, 3, . . . , N}.
Suppose that F := [

⋂N
i=1 F(Si)] ∩ Ω �= ∅, where Ω = {z ∈ C : z ∈ ⋂N

i=1 EP(fi) and Aiz ∈
⋂N

i=1 EP(gi) for 1 ≤ i ≤ N}. Let {xn} be a sequence generated by

x1 ∈ C1 = C,

un = Tfn(mod N)
rn

(

xn – γ A∗
n(mod N)

(

I – Tgn(mod N)
sn

)

An(mod N)xn
)

,

yn = αnun + (1 – αn)
1
N

N
∑

i=1

Sn
i un,

Cn+1 =
{

z ∈ C :‖yn – z‖2 ≤ ‖xn – z‖2 + θn
}

,

xn+1 = PCn+1 x1, n ≥ 1,

(29)

where θn = (1 – αn){λnξn(Mn) + λnM∗
nDn + μn} with Dn = sup{‖xn – p‖ : p ∈ F}. Let {rn}, {sn}

be two positive real sequences, and let {αn} be in (0, 1). Assume that if the following set of
conditions holds:

(C1) 0 ≤ k < a ≤ αn ≤ b < 1 and γ ∈ (0, 1
L ) where L = max{L1, L2, . . . , LN } and Li is the

spectral radius of the operator A∗
i Ai and A∗

i is the adjoint of Ai for each
i ∈ {1, 2, 3, . . . , N};

(C2) lim infn→∞ rn > 0 and lim infn→∞ sn > 0;
(C3)

∑∞
n=1 λn < ∞ and

∑∞
n=1 μn < ∞;

(C4) there exist constants Mi, M∗
i > 0 such that ξi(λi) ≤ M∗

i λi for all λi ≥ Mi,
i = 1, 2, 3, . . . , N , then the sequence {xn} generated by (29) converges strongly to PFx1.

Proof Set H1 = H2, C = Q and Ai = I (the identity mapping) for i = 1, 2, 3, . . . , N , then the
desired result follows from Theorem 3.1 immediately. �
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Corollary 4.4 Let H1 and H2 be two real Hilbert spaces, and let C ⊆ H1 and Q ⊆ H2 be
nonempty closed convex subsets of Hilbert spaces H1 and H2, respectively. Let fi : C ×C →R

and gi : Q × Q → R be two finite families of bifunctions satisfying conditions (A1)–(A4)
such that each gi is upper semicontinuous for each i ∈ {1, 2, 3, . . . , N}. Let Si : C → C be a
finite family of nonexpansive mappings, and let Ai : H1 → H2 be a finite family of bounded
linear operators for each i ∈ {1, 2, 3, . . . , N}. Suppose that F := [

⋂N
i=1 F(Si)] ∩ Ω �= ∅, where

Ω = {z ∈ C : z ∈ ⋂N
i=1 EP(fi) and Aiz ∈ ⋂N

i=1 EP(gi) for 1 ≤ i ≤ N}. Let {xn} be a sequence
generated by

x1 ∈ C1 = C,

un = Tfn(mod N)
rn

(

xn – γ A∗
n(mod N)

(

I – Tgn(mod N)
sn

)

An(mod N)xn
)

,

yn = αnun + (1 – αn)
1
N

N
∑

i=1

Siun,

Cn+1 =
{

z ∈ C :‖yn – z‖2 ≤ ‖xn – z‖2 + θn
}

,

xn+1 = PCn+1 x1, n ≥ 1,

(30)

where θn = (1 – αn){λnξn(Mn) + λnM∗
nDn + μn} with Dn = sup{‖xn – p‖ : p ∈ F}. Let {rn}, {sn}

be two positive real sequences, and let {αn} be in (0, 1). Assume that if the following set of
conditions holds:

(C1) 0 ≤ k < a ≤ αn ≤ b < 1 and γ ∈ (0, 1
L ) where L = max{L1, L2, . . . , LN } and Li is the

spectral radius of the operator A∗
i Ai and A∗

i is the adjoint of Ai for each
i ∈ {1, 2, 3, . . . , N};

(C2) lim infn→∞ rn > 0 and lim infn→∞ sn > 0;
(C3)

∑∞
n=1 λn < ∞ and

∑∞
n=1 μn < ∞;

(C4) there exist constants Mi, M∗
i > 0 such that ξi(λi) ≤ M∗

i λi for all λi ≥ Mi,
i = 1, 2, 3, . . . , N , then the sequence {xn} generated by (27) converges strongly to PFx1.

Proof Set H1 = H2, C = Q, and Ai = I (the identity mapping) for i = 1, 2, 3, . . . , N , then the
desired result follows from Corollary 4.1 immediately. �

Corollary 4.5 Let H1 and H2 be two real Hilbert spaces, and let C ⊆ H1 and Q ⊆ H2

be nonempty closed convex subsets of Hilbert spaces H1 and H2, respectively. Let fi : C ×
C →R and gi : Q × Q →R be two finite families of bifunctions satisfying conditions (A1)–
(A4) such that each gi is upper semicontinuous for each i ∈ {1, 2, 3, . . . , N}. Let S : C → C
be a nonexpansive mapping, and let Ai : H1 → H2 be a finite family of bounded linear
operators for each i ∈ {1, 2, 3, . . . , N}. Suppose that F := F(S) ∩ Ω �= ∅, where Ω = {z ∈ C :
z ∈ ⋂N

i=1 EP(fi) and Aiz ∈ ⋂N
i=1 EP(gi) for 1 ≤ i ≤ N}. Let {xn} be a sequence generated by

x1 ∈ C1 = C,

un = Tfn(mod N)
rn

(

xn – γ A∗
n(mod N)

(

I – Tgn(mod N)
sn

)

An(mod N)xn
)

,

yn = αnun + (1 – αn)Sun,

Cn+1 =
{

z ∈ C :‖yn – z‖2 ≤ ‖xn – z‖2 + θn
}

,

xn+1 = PCn+1 x1, n ≥ 1,

(31)
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where θn = (1 – αn){λnξn(Mn) + λnM∗
nDn + μn} with Dn = sup{‖xn – p‖ : p ∈ F}. Let {rn}, {sn}

be two positive real sequences, and let {αn} be in (0, 1). Assume that if the following set of
conditions holds:

(C1) 0 ≤ k < a ≤ αn ≤ b < 1 and γ ∈ (0, 1
L ) where L = max{L1, L2, . . . , LN } and Li is the

spectral radius of the operator A∗
i Ai and A∗

i is the adjoint of Ai for each
i ∈ {1, 2, 3, . . . , N};

(C2) lim infn→∞ rn > 0 and lim infn→∞ sn > 0;
(C3)

∑∞
n=1 λn < ∞ and

∑∞
n=1 μn < ∞;

(C4) there exist constants Mi, M∗
i > 0 such that ξi(λi) ≤ M∗

i λi for all λi ≥ Mi,
i = 1, 2, 3, . . . , N , then the sequence {xn} generated by (31) converges strongly to PFx1.

Proof Set Si = S for i ∈ {1, 2, 3, . . . , N}, then the desired result follows from Corollary 4.4
immediately. �
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