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Abstract
In this article, a finite volume element method with the second-order weighted and
shifted Grünwald difference (WSGD) formula is proposed and studied for nonlinear
time fractional mobile/immobile transport equations on triangular grids. By using the
WSGD formula of approximating the Riemann–Liouville fractional derivative and an
interpolation operator I∗h , a second-order fully discrete finite volume element (FVE)
scheme is formulated. The existence, uniqueness, and unconditional stability for the
fully discrete FVE scheme are derived, the optimal a priori error estimates in L∞(L2(Ω ))
and L2(H1(Ω )) norms are obtained, in which the convergence orders are independent
of the fractional parameters. At the end of this article, two numerical examples with
different nonlinear terms are given to verify the feasibility and effectiveness.
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1 Introduction
The theories and numerical methods of fractional differential equations (FDEs) have be-
come hot topics, which attract more and more scholars in science and engineering. This is
because the FDEs are widely used in many fields, such as physics, chemistry, biology, and
ecology [1–7]. Many practical problems with some properties such as memory, hetero-
geneity, or heredity can be described well by the corresponding FDEs, including fractional
cable equations, fractional diffusion equations, fractional Allen–Cahn equations, and so
on. However, due to the existence and complexity of fractional derivative, it is difficult
to obtain the analytical solutions for most of the FDEs. Thus, many numerical methods
[8–19] have been proposed and studied to solve different types of the FDEs.

In this article, we focus on the following nonlinear time fractional mobile/immobile
transport equations

β1
∂u(x, t)

∂t
+ β2

∂αu(x, t)
∂tα

– div
(
A(x)∇u(x, t)

)
+ g

(
u(x, t)

)
= f (x, t) (1)
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for (x, t) ∈ Ω × J , with boundary and initial conditions

{
u(x, t) = 0, (x, t) ∈ ∂Ω × J̄ ,
u(x, 0) = u0(x), x ∈ Ω̄ ,

(2)

where Ω ⊂ R
2 is a bounded convex polygonal domain with boundary ∂Ω , J = (0, T] with

0 < T < ∞, β1 > 0 and β2 ≥ 0 are two given nonnegative constants. The source function
f (x, t) and initial data u0(x) are smooth enough. Moreover, we assume that the coefficient
A(x) = {ai,j(x)}2×2 is a sufficiently smooth matrix function, which is symmetric and uni-
formly positive definite, that is, there exists a constant β0 > 0 such that

ξTA(x)ξ ≥ β0ξ
Tξ , ∀ξ ∈R

2,∀x ∈ Ω̄ . (3)

The nonlinear term g(u) satisfies |g ′(u)| ≤ C, where C > 0 is a constant. Also ∂αu(x,t)
∂tα is the

Riemann–Liouville time fractional derivative defined by

∂αu(x, t)
∂tα

=
1

Γ (1 – α)
∂

∂t

∫ t

0

u(x, s)
(t – s)α

ds, 0 < α < 1. (4)

The mobile/immobile transport equations have been widely used in unsaturated trans-
port through homogeneous media [20–24]. Due to some partitioning between the phases
[25], mobile/immobile formulations equate the divergence of advective and dispersive
flux of a mobile phase to the change in concentration in both the mobile and immobile
zones. Fractional mobile/immobile transport equations, as described in [26] by Schumer
et al., are equivalent to the mobile/immobile model with power law memory function,
and are considered to be the limiting equation which governs continuous time random
walks with heavy tailed random waiting times. Recently, some numerical methods have
been designed to solve the fractional mobile/immobile models. Liu et al. [27] proposed
an implicit finite difference (FD) method for the fractional mobile/immobile advection–
dispersion equation, in which the Caputo time fractional derivative is discretized by L1
formula [12, 13] and the Riemann–Liouville space fractional derivative is discretized by
shifted Grünwald–Letnikov formula [1, 28]. Zhang et al. [29] provided a stable implicit Eu-
ler approximation scheme to solve the fractional mobile/immobile advection–dispersion
equation with the Coimbra variable-order derivative. Liu et al. [30] proposed a mesh-
less method to treat the two-dimensional fractional mobile/immobile transport equation
based on radial basis functions for the spatial discretization. Wang [31] constructed a high-
order compact FD scheme to solve the fractional mobile/immobile convection–diffusion
equations, and gave a Richardson extrapolation algorithm to improve the temporal con-
vergence accuracy. Yin et al. [32] constructed a generalized BDF2-θ scheme for the frac-
tional mobile/immobile transport equations with the initial singularity of the time frac-
tional derivative. However, we find that there is no report about the finite volume element
method with the weighted and shifted Grünwald–Letnikov difference (WSGD) formula
to solve the nonlinear time fractional mobile/immobile transport equations.

The finite volume element (FVE) method, as an important numerical method, has been
widely used to solve various differential equations [33–39] in the field of science and en-
gineering. This method can preserve the local conservation laws for some physical quan-
tities, which is very important in scientific computing. Recently, the FVE method has
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been used to solve some FDEs by some scholars. Sayevand and Arjang [40] designed an
FVE scheme to solve the time fractional subdiffusion equation on a rectangular partition,
where the Caputo fractional derivative was approximated by using L1 formula. Karaa et
al. [41] constructed an FVE scheme for the time fractional subdiffusion equation with
the Riemann–Liouville fractional derivative, and applied a piecewise linear discontinuous
Galerkin method in time, where the convergence rate in time was k1+α (0 < α < 1). In order
to improve the results in [41], Karaa and Pani [42] considered smooth and nonsmooth ini-
tial data, and gave two fully discrete numerical schemes by using convolution quadrature
in time generated by the backward Euler difference method and the second-order back-
ward difference method. Recently, numerical methods based on the WSGD formula have
attracted more and more scholars, and have been studied to solve many FDEs [43–49].
Compared with the L1 formula, the WSGD formula can obtain the second-order conver-
gence rate, which is independent of the fractional parameters. This motivates us to find
a way to combine the FVE methods with the WSGD formula so that we can use their
advantages to solve more FDEs.

In this article, our purpose is to construct an FVE scheme for the nonlinear time frac-
tional mobile/immobile transport equations on triangular girds by using the WSGD for-
mula. In spatial discretization, we construct the primal and dual partitions, select the
piecewise linear polynomial space and the piecewise constant function space as the trial
and test function spaces, respectively, then construct the FVE scheme by using the inter-
polation operator. In temporal discretization, we adopt the second-order WSGD formula
to approximate the Riemann–Liouville fractional derivative ∂αu/∂tα , apply a second-order
three-level difference scheme to approximate the time derivative ∂u/∂t, and give a second-
order approximation formula for the nonlinear term g(u). We give the existence, unique-
ness, and unconditional stability analyses for the FVE scheme in detail, and obtain the
optimal a priori error estimates in L∞(L2(Ω)) and L2(H1(Ω)) norms. Compared with the
discrete schemes in [27, 29, 30], our scheme can achieve second-order temporal conver-
gence rate.

This article is organized as follows. In Sect. 2, a fully discrete FVE scheme for the non-
linear time fractional mobile/immobile transport equation (1)–(2) is proposed. In Sect. 3,
the existence, uniqueness, and unconditional stability analyses are derived. In Sect. 4, the
optimal a prioir error estimates are obtained. Finally, in Sect. 5, two examples with differ-
ent nonlinear terms are given to illustrate the feasibility and effectiveness. Furthermore,
we use general definitions and notations of the Sobolev spaces as in [50], and adopt the
symbol C to represent a generic positive constant, which is independent of temporal and
spatial mesh.

2 Fully discrete finite volume element scheme
In order to construct the FVE scheme, we first give primal and dual partitions. Let Th = {K}
be a set of quasiuniform triangulation mesh of the domain Ω with h = max{hK }, referring
to Fig. 1, where hK denote the diameter of the triangle K ∈ Th. Then we have Ω =

⋃
K∈Th

K .
Moreover, let Zh = {Z : Z is a vertex of element K , K ∈ Th} represent all vertices, and Z0

h ⊂
Zh represent the set of interior vertices in Th.

Next, let T ∗
h be the dual mesh based on the primary mesh Th. With Z0 ∈Z0

h as an interior
node, let Zi (i = 1, 2, . . . , m) be the corresponding adjacent nodes (as shown in Fig. 1, m = 6).
We denote the midpoints of Z0Zi by Mi (i = 1, 2, . . . , m), and denote the barycenters of the
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Figure 1 Primal and dual partitions

triangle �Z0ZiZi+1 by Qi (i = 1, 2, . . . , m), where Zm+1 = Z1. Thus, we define the control
volume K∗

Z0
by joining successively M1, Q1, . . . , Mm, Qm, M1. Then, we denote the union of

the control volumes K∗
Zi

as the dual mesh T ∗
h . With Qi, i = 1, 2, . . . , m as the nodes of control

volume K∗
Z0

, we denote Z∗
h be the set of all dual nodes Qi.

Then, we define the following piecewise linear function space Vh as the trial function
space:

Vh =
{

v ∈ H1
0 (Ω) : v|K ∈ P1(K),∀K ∈ Th

}
,

and define the piecewise constant function space V ∗
h as the test function space, that is,

V ∗
h =

{
v ∈ L2(Ω) : v|K∗

Z
∈ P0

(
K∗

Z
)
,∀K∗

Z ∈ T ∗
h , and v|∂Ω = 0

}
.

Let ΦZ be the general nodal linear basis function associated with the node Z ∈ Z0
h , and

Ψz be the characteristic function of the control volume K∗
Z . We have Vh = span{ΦZ(x) :

Z ∈ Z0
h } and V ∗

h = span{ΨZ(x) : Z ∈ Z∗
h }. Let Ih : C(Ω) → Vh be the classical piecewise

linear interpolation operator and I∗
h : C(Ω) → V ∗

h be the piece constant interpolation op-
erator, that is,

Ihv(x) =
∑

Z∈Z0
h

v(Z)ΦZ(x) and I∗
h v(x) =

∑

Z∈Z0
h

v(Z)ΨZ(x).

Now, integrating (1) on the relevant control volume K∗
Z with a vertex Z ∈ Zh, and apply-

ing the Green formula, we have

β1

∫

K∗
z

∂u
∂t

dx + β2

∫

K∗
z

∂αu
∂tα

dx –
∫

∂K∗
z

A∇u · n ds +
∫

K∗
z

g(u) dx =
∫

K∗
z

f dx, (5)

where n denotes the outer-normal direction on ∂K∗
Z . We apply the operator I∗

h to rewrite
(5) as the following formulation:

β1

(
∂u
∂t

, I∗
h vh

)
+ β2

(
∂αu
∂tα

, I∗
h vh

)
+ a

(
u, I∗

h vh
)

+
(
g(u), I∗

h vh
)

=
(
f , I∗

h vh
)
, ∀vh ∈ Vh, (6)
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where the bilinear form a(·, ·), following [33, 34], can be taken as follows:

a(ū, v̄) =

{
–

∑
z∈Zh

v̄(z)
∫
∂K∗

z
A∇ū · n ds, ∀ū ∈ Vh, v̄ ∈ V ∗

h ,
∫
Ω
A∇ū · ∇ v̄ dx, ∀ū, v̄ ∈ H1

0 (Ω).
(7)

In our theoretical analysis, we also need to give the variational formulation of the prob-
lem (1)–(2) to find u(t) ∈ H1

0 (Ω) such that

β1

(
∂u
∂t

, v
)

+ β2

(
∂αu
∂tα

, v
)

+ a(u, v) +
(
g(u), v

)
= (f , v), ∀v ∈ H1

0 (Ω), (8)

where a(u, v) =
∫
Ω
A∇u · ∇v dx, ∀u, v ∈ H1

0 (Ω).
Now, we introduce the mesh of the temporal interval J̄ = [0, T] given by 0 = t0 < t1 < · · · <

tN = T for some positive integer N , where tn = nτ and τ = T/N , n = 0, 1, . . . , N . We denote
ϕn = ϕ(tn) for a function ϕ and

∂2
t φn+1 =

{
φ1–φ0

τ
, if n = 0,

3φn+1–4φn+φn–1

2τ
, if n ≥ 1.

(9)

Next, following [43, 44], we apply the WSGD formula to approximate the Riemann–
Liouville fractional derivative ∂αu(x,t)

∂tα at time t = tn+1 as follows:

∂αu(x, tn+1)
∂tα

= τ–α

n+1∑

k=0

qα(k)un–k+1 + En+1
u,α , (10)

where the truncation error En+1
u,α = O(τ 2), and

qα(k) =

{
α+2

2 gα
0 , if k = 0,

α+2
2 gα

k + –α
2 gα

k–1, if k > 0,
(11)

gα
0 = 1, gα

k =
Γ (k – α)

Γ (–α)Γ (k + 1)
, gα

k =
(

1 –
α + 1

k

)
gα

k–1, k ≥ 1. (12)

For approximating the nonlinear term g(u) at t = tn+1, as in [51], we use the linearized
formulation denoted by G[un+1] as follows:

G
[
un+1] =

{
g(u0), if n = 0,
2g(un) – g(un–1), if n ≥ 1.

(13)

Then, we can obtain the equivalent formulation of variational formulation (8) at t = tn+1

which is to find un+1 = u(tn+1) ∈ H1
0 (Ω) such that

β1
(
∂2

t un+1, v
)

+ β2τ
–α

n+1∑

k=0

qα(k)
(
un–k+1, v

)
+ a

(
un+1, v

)
+

(
G

[
un+1], v

)

=
(
f n+1, v

)
– β1

(
En+1

u,t , v
)

– β2
(
En+1

u,α , v
)

–
(
En+1

g , v
)
, ∀v ∈ H1

0 (Ω), (14)



Zhao et al. Advances in Difference Equations        (2020) 2020:360 Page 6 of 20

where

En+1
u,t =

∂u(tn+1)
∂t

– ∂2
t un+1 =

{
O(τ ), if n = 0,
O(τ 2), if n ≥ 1,

(15)

and

En+1
g = g

(
un+1) – G

[
un+1] =

{
O(τ ), if n = 0,
O(τ 2), if n ≥ 1.

(16)

Now, we denote by Un the approximate solution of u at t = tn, make use of (9), (10), and
(13), and obtain the fully discrete FVE scheme to find Un+1 ∈ Vh (n = 0, 1, . . . , N – 1) such
that

β1
(
∂2

t Un+1, I∗
h vh

)
+ β2τ

–α

n+1∑

k=0

qα(k)
(
Un–k+1, I∗

h vh
)

+ a
(
Un+1, I∗

h vh
)

+
(
G

[
Un+1], I∗

h vh
)

=
(
f n+1, I∗

h vh
)
, ∀vh ∈ Vh. (17)

We can also split the FVE scheme (17) into the following equivalent iterative formulation:
Case n = 0:

β1
(
U1, I∗

h vh
)

+ β2τ
1–αqα(0)

(
U1, I∗

h vh
)

+ τa
(
U1, I∗

h vh
)

= β1
(
U0, I∗

h vh
)

– β2τ
1–αqα(1)

(
U0, I∗

h vh
)

– τ
(
g
(
U0), I∗

h vh
)

+ τ
(
f 1, I∗

h vh
)
, ∀vh ∈ Vh. (18)

Case n ≥ 1:

3
2
β1

(
Un+1, I∗

h vh
)

+ β2τ
1–αqα(0)

(
Un+1, I∗

h vh
)

+ τa
(
Un+1, I∗

h vh
)

= 2β1
(
Un, I∗

h vh
)

–
1
2
β1

(
Un–1, I∗

h vh
)

– β2τ
1–α

n+1∑

k=1

qα(k)
(
Un–k+1, I∗

h vh
)

– τ
(
2g

(
Un) – g

(
Un–1), I∗

h vh
)

+ τ
(
f n+1, I∗

h vh
)
, ∀vh ∈ Vh. (19)

Then we will prove the existence and uniqueness of the fully discrete solutions for the FVE
scheme (17) (or (18)–(19)) in the next section.

Remark 2.1 For the fully discrete FVE scheme (17) or equivalent formulations (18)–(19),
in the practical calculations, we can obtain U1 by using U0 and solving (18), where U0 =
Phu0 defined in Sect. 4. Thus, when Un and Un–1 (n ≥ 1) have been obtained, we can solve
(19) to obtain Un+1.

3 Existence, uniqueness, and stability analyses
In this section, we will derive the results of the existence, uniqueness, and stability for the
fully discrete FVE scheme (17). First, we give some properties of the coefficients in WSGD
formula and the interpolation operator I∗

h in Sect. 3.1.
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3.1 Some lemmas
Lemma 3.1 ([52, 53]) For the sequence {gα

k } defined by (12), we have

gα
0 = 1 > 0, gα

k < 0 (k = 1, 2, . . .),
∞∑

k=1

gα
k = –1. (20)

Lemma 3.2 ([33]) The interpolation operators Ih and I∗
h satisfy the following properties:

‖v – Ihv‖m ≤ Ch2–m‖v‖2, m = 0, 1,∀v ∈ H2(Ω), (21)
∥
∥v – I∗

h v
∥
∥ ≤ Ch‖v‖1, ∀v ∈ H1(Ω). (22)

Lemma 3.3 ([33]) The bilinear form (·, I∗
h ·) satisfies the following property:

(
uh, I∗

h vh
)

=
(
vh, I∗

h uh
)
, ∀uh, vh ∈ Vh, (23)

and there exist two positive constants μ1 and μ2 independent of h such that

(
uh, I∗

h uh
) ≥ μ1‖uh‖2, ∀uh ∈ Vh, (24)

(
uh, I∗

h vh
) ≤ μ2‖uh‖‖vh‖, ∀uh, vh ∈ Vh. (25)

Lemma 3.4 ([33, 34]) There exist positive constants h0, μ3, and μ4 such that, for 0 < h ≤ h0,

a
(
uh, I∗

h uh
) ≥ μ3‖uh‖2

1, ∀uh ∈ Vh, (26)

a
(
uh, I∗

h vh
) ≤ μ4‖uh‖1‖vh‖1, ∀uh, vh ∈ Vh. (27)

Making use of Lemma 3.3, similar to the proof in [43, 44], we can also obtain the follow-
ing property of the sequence {qα(k)}∞k=1.

Lemma 3.5 For the sequence {qα(k)}∞k=1 defined by (11), and any real vector (u0, u1,
. . . , uP) ∈R

P+1, where P is an arbitrary positive integer, the following inequality holds:

P∑

n=0

n∑

k=0

qα(k)
(
un–k , I∗

h un) ≥ 0. (28)

Lemma 3.6 Let {φn} be a function sequence on Vh. Then the following inequalities hold:

(
∂2

t φn+1, I∗
hφn+1) ≥

{
1

2τ
[(φ1, I∗

hφ1) – (φ0, I∗
hφ0)], if n = 0,

1
4τ

(Λ[φn+1,φn] – Λ[φn,φn–1]), if n ≥ 1,
(29)

where

Λ
[
φn,φn–1] .=

(
φn, I∗

hφn) +
(
2φn – φn–1, I∗

h
(
2φn – φn–1)). (30)
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Proof When n = 0, making use of Lemma 3.3 and the definition of ∂2
t φn, we obtain the

following result:

(
∂2

t φ1, I∗
hφ1) =

1
τ

(
φ1 – φ0, I∗

hφ1) =
1
τ

(
φ1, I∗

hφ1) –
1
τ

(
φ0, I∗

hφ1)

≥ 1
τ

(
φ1, I∗

hφ1) –
1

2τ

[(
φ1, I∗

hφ1) +
(
φ0, I∗

hφ0)]

=
1

2τ

[(
φ1, I∗

hφ1) –
(
φ0, I∗

hφ0)]. (31)

For the case of n ≥ 1, we have

(
∂2

t φn+1, I∗
hφn+1)

=
1

2τ

(
3φn+1 – 4φn + φn–1, I∗

hφn+1)

=
1

2τ

[(
φn+1, I∗

hφn+1) +
(
2φn+1 – φn, I∗

hφn+1)

–
(
φn, I∗

hφn+1) –
(
2φn – φn–1, I∗

hφn+1)]

≥ 1
2τ

[(
φn+1, I∗

hφn+1) +
1
2
(
2φn+1 – φn, I∗

h
(
2φn+1 – φn))

–
1
2
(
φn, I∗

hφn) –
(
2φn – φn–1, I∗

hφn+1)
]

. (32)

Noting that

(
2φn – φn–1, I∗

hφn+1) ≤ 1
2
(
2φn – φn–1, I∗

h
(
2φn – φn–1)) +

1
2
(
φn+1, I∗

hφn+1), (33)

we substitute (33) into (32), and obtain the desired result. �

3.2 Existence and uniqueness
Theorem 3.1 There exists a unique discrete solution for the fully discrete FVE scheme (17).

Proof Let M0
Z be the number of the vertices in Z0

h , and {Φi : i = 1, 2, . . . , M0
Z} be the basis

functions of the space Vh, then Un ∈ Vh can be expressed as follows:

Un(x) =
M0

Z∑

i=1

ũn
i Φi(x). (34)

We substitute (34) into the formulations (18) and (19) equivalent to the FVE scheme (17),
take vh = Φj (j = 1, 2, . . . , M0

Z), then rewrite (18) and (19) in the matrix form, and search for
ũn such that

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(a) β1A1ũ1 + β2τ
1–αqα(0)A1ũ1 + τA2ũ1

= β1A1ũ0 – β2τ
1–αqα(1)A1ũ0 – τ G̃(ũ0) + τF1,

(b) 3
2β1A1ũn+1 + β2τ

1–αqα(0)A1ũn+1 + τA2ũn+1

= 2β1A1ũn – 1
2β1A1ũn–1 – β2τ

1–α
∑n+1

k=1 qα(k)A1ũn–k+1

– 2τ G̃(ũn) + τ G̃(ũn–1) + τFn+1, n ≥ 1,

(35)
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where

ũn =
(
ũn

1, ũn
2, . . . , ũn

M0
Z

)T , A1 =
((

Φi, I∗
hΦj

))
i,j=1,...,M0

Z
,

A2 =
(
a
(
Φi, I∗

hΦj
))

i,j=1,...,M0
Z

, G̃
(

ũn) =
((

g
(
Un), I∗

hΦj
))T

j=1,...,M0
Z

,

Fn =
((

f (tn), I∗
hΦj

))T
j=1,...,M0

Z
.

It is easy to see that A1 is a symmetric positive definite matrix. Let B1 = β1A1 +
β2τ

1–αqα(0)A1 + τA2 and B2 = 3
2β1A1 + β2τ

1–αqα(0)A1 + τA2. Next, we will prove B1 and
B2 are invertible. Applying Lemma 3.4, for ∀Y = (y1, y2, . . . , yM0

Z
)T ∈ RM0

Z \ {0}, we have

Y T A2Y = a(zh, I∗
h zh) ≥ μ3‖zh‖2

1 > 0, where zh =
∑M0

Z
i=1 yiΦi �= 0. This means that Y T A2Y (for

Y ∈ RM0
Z ) is a positive definite quadratic form generated by the asymmetric matrix A2.

Therefore, Y T B1Y and Y T B2Y (for Y ∈ RM0
Z ) are positive definite quadratic forms gen-

erated by asymmetric matrices B1 and B2, respectively. Then we have that B1 and B2 are
invertible. Hence, the linear equations (35) have a unique solution, and so the FVE scheme
(17) has a unique solution. Thus, we complete the proof of Theorem 3.1. �

3.3 Stability
The fully discrete FVE scheme (17) satisfies the following unconditional stability results.

Theorem 3.2 Let {Un}N
n=1 be the solutions of the fully discrete FVE scheme (17), then there

exists a constant C > 0 independent of h and τ such that

∥∥Un∥∥ ≤ C
(∥∥U0∥∥ + sup

t∈[0,T]

∥∥f (t)
∥∥
)

.

Proof Taking vh = Un+1 in (17) yields the following result:

β1
(
∂2

t Un+1, I∗
h Un+1) + β2τ

–α

n+1∑

k=0

qα(k)
(
Un–k+1, I∗

h Un+1) + a
(
Un+1, I∗

h Un+1)

= –
(
G

[
Un+1], I∗

h Un+1) +
(
f n+1, I∗

h Un+1). (36)

Making use of Lemma 3.4, and applying the Cauchy–Schwarz and Young inequalities, we
have

β1
(
∂2

t Un+1, I∗
h Un+1) + β2τ

–α

n+1∑

k=0

qα(k)
(
Un–k+1, I∗

h Un+1) + μ3
∥∥Un+1∥∥2

1

≤ C
(∥∥G

[
Un+1]∥∥2 +

∥
∥f n+1∥∥2) +

μ3

2
∥
∥Un+1∥∥2. (37)

For the term ‖G[Un+1]‖2 in (37), when n ≥ 1, we have

∥∥G
[
Un+1]∥∥2 ≤ ∥∥2g

(
Un) – g

(
Un–1)∥∥2 ≤ C

(∥∥Un∥∥2 +
∥∥Un–1∥∥2). (38)

When n = 0, we have

∥
∥G

[
U1]∥∥2 =

∥
∥g

(
U0)∥∥2 ≤ C

∥
∥U0∥∥2. (39)
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Next, for the case of n ≥ 1 in (37), we apply Lemma 3.6 to obtain

β1

4τ

(
Λ

[
Un+1, Un] – Λ

[
Un, Un–1]) +

μ3

2
∥∥Un+1∥∥2

1

+ β2τ
–α

n+1∑

k=0

qα(k)
(
Un–k+1, I∗

h Un+1)

≤ C
(∥∥Un∥∥2 +

∥∥Un–1∥∥2 +
∥∥f n+1∥∥2). (40)

Multiplying (40) by 4τ , and summing over n from 1 to m, we have

β1Λ
[
Um+1, Um]

+ 2τμ3

m∑

n=1

∥
∥Un+1∥∥2

1

+ 4β2τ
1–α

m∑

n=1

n+1∑

k=0

qα(k)
(
Un–k+1, I∗

h Un+1)

≤ β1Λ
[
U1, U0] + Cτ

m∑

n=1

(∥∥Un∥∥2 +
∥∥Un–1∥∥2) + Cτ

m∑

n=1

∥∥f n+1∥∥2. (41)

For the case of n = 0 in (37), taking vh = U1 in the FVE system (17), we have

β1

2τ

[(
U1, I∗

h U1) –
(
U0, I∗

h U0)] + β2τ
–α

1∑

k=0

qα(k)
(
U1–k , I∗

h U1) + a
(
U1, I∗

h U1)

= –
(
G

[
U1], I∗

h U1) +
(
f 1, I∗

h U1). (42)

Multiplying (42) by 2τ , and applying Lemma 3.4, we obtain

β1
(
U1, I∗

h U1) + 2β2τ
1–α

1∑

k=0

qα(k)
(
U1–k , I∗

h U1) + 2τμ3
∥∥U1∥∥2

1

≤ β1
(
U0, I∗

h U0) + Cτ
(∥∥G

[
U1]∥∥2 +

∥
∥f 1∥∥2) + τμ3

∥
∥U1∥∥2. (43)

Substitute (39) into (43) to obtain

β1
(
U1, I∗

h U1) + 2β2τ
1–α

1∑

k=0

qα(k)
(
U1–k , I∗

h U1) + τμ3
∥∥U1∥∥2

1

≤ β1
(
U0, I∗

h U0) + Cτ
(∥∥U0∥∥2 +

∥∥f 1∥∥2). (44)

We rewrite (44) as follows:

β1
(
U1, I∗

h U1) + 2β2τ
1–α

1∑

n=0

n∑

k=0

qα(k)
(
Un–k , I∗

h Un) + τμ3
∥
∥U1∥∥2

1

≤ β1
(
U0, I∗

h U0) + 2β2τ
1–αqα(0)

(
U0, I∗

h U0) + Cτ
(∥∥U0∥∥2 +

∥∥f 1∥∥2). (45)
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Use Lemma 3.5 to obtain

β1
(
U1, I∗

h U1)

≤ β1
(
U0, I∗

h U0) + 2β2τ
1–αqα(0)

(
U0, I∗

h U0) + Cτ
(∥∥U0∥∥2 +

∥∥f 1∥∥2). (46)

Now, making use of (41) and (45), we have

β1Λ
[
Um+1, Um]

+ 2β1
(
U1, I∗

h U1) + 2τμ3

m∑

n=0

∥∥Un+1∥∥2
1

+ 4β2τ
1–α

m∑

n=0

n+1∑

k=0

qα(k)
(
Un–k+1, I∗

h Un+1)

≤ β1Λ
[
U1, U0] + 2β1

(
U0, I∗

h U0) + Cτ

m∑

n=0

1∑

j=0

∥∥Un–j∥∥2 + Cτ

m∑

n=0

∥∥f n+1∥∥2. (47)

Applying Lemma 3.6, we obtain

Λ
[
U1, U0] =

(
U1, I∗

h U1) +
(
2U1 – U0, I∗

h
(
2U1 – U0))

≤ 7
(
U1, I∗

h U1) + 3
(
U0, I∗

h U0). (48)

Substituting (48) into (47), and making use of (46), we rewrite (47) as follows:

β1Λ
[
Um+1, Um]

+ 2β1
(
U1, I∗

h U1) + 2τμ3

m∑

n=0

∥
∥Un+1∥∥2

1

+ 4β2τ
1–α

m+1∑

n=0

n∑

k=0

qα(k)
(
Un–k , I∗

h Un)

≤ 12β1
(
U0, I∗

h U0) + 18β2τ
1–αqα(0)

(
U0, I∗

h U0) + Cτ
(∥∥U0∥∥2 +

∥∥f 1∥∥2)

+ Cτ

m∑

n=0

1∑

j=0

∥
∥Un–j∥∥2 + Cτ

m∑

n=0

∥
∥f n+1∥∥2. (49)

Applying Lemma 3.5 and the discrete Gronwall lemma yields

β1Λ
[
Um+1, Um]

+ 2β1
(
U1, I∗

h U1) + 2τμ3

m∑

n=0

∥
∥Un+1∥∥2

1

≤ C
(∥
∥U0∥∥2 + sup

t∈[0,T]

∥
∥f (t)

∥
∥2

)
. (50)

Thus, we apply Lemma 3.3 to complete the proof. �

Remark 3.1 From the results (50), we can also see that the fully discrete solution is uncon-
ditional stable in the discrete L2(H1(Ω)) norm, that is,

(

τ

N∑

n=1

∥∥Un∥∥2
1

) 1
2

≤ C
(∥∥U0∥∥ + sup

t∈[0,T]

∥∥f (t)
∥∥
)

.
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In the next section, we also give the optimal a priori error estimate in this discrete
L2(H1(Ω)) norm.

4 A priori error analysis
In order to give the error analysis for the fully discrete FVE scheme (17), we need to in-
troduce an elliptic projection operator Ph : H1

0 (Ω) ∩ H2(Ω) → Vh, which is defined by

a
(
u – Phu, I∗

h vh
)

= 0, ∀vh ∈ Vh. (51)

Following [33], the above projection operator Ph satisfies the following estimates.

Lemma 4.1 There exists a positive constant C such that

‖u – Phu‖1 ≤ Ch|u|2, ∀u ∈ H1
0 (Ω) ∩ H2(Ω), (52)

‖u – Phu‖ ≤ Ch2‖u‖3,p, ∀u ∈ H1
0 (Ω) ∩ W 3,p(Ω), p > 1. (53)

Next, we give the main results in this paper about the error estimates.

Theorem 4.1 Let u(tn) and Un be the solutions of system (8) and the FVE scheme (17),
respectively. Suppose that U0 = Phu0. Then there exists a positive constant C independent
of h and τ such that

max
1≤n≤N

∥
∥u(tn) – Un∥∥ ≤ C

(
τ 2 + h2).

Moreover, we can also obtain the following error estimate:

(

τ

N∑

n=1

∥
∥u(tn) – Un∥∥2

1

) 1
2

≤ C
(
τ 2 + h

)
.

Proof We split the error u(tn) – Un = (u(tn) – Phu(tn)) + (Phu(tn) – Un) = ξn + ηn. Applying
Lemma 4.1, we only need to estimate ‖ηn‖. It is easy to see that ‖ηn‖ satisfies the following
error equation:

β1
(
∂2

t ηn+1, I∗
h vh

)
+ β2τ

–α

n+1∑

k=0

qα(k)
(
ηn–k+1, I∗

h vh
)

+ a
(
ηn+1, I∗

h vh
)

= –β1
(
∂2

t ξn+1, I∗
h vh

)
– β2

(

τ–α

n+1∑

k=0

qα(k)ξn–k+1, I∗
h vh

)

–
(
G

[
un+1] – G

[
Un+1], I∗

h vh
)

– β1
(
En+1

u,t , I∗
h vh

)

– β2
(
En+1

u,α , I∗
h vh

)
–

(
En+1

g , I∗
h vh

)
, ∀vh ∈ Vh. (54)
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Choose vh = ηn+1 in (54) to obtain

β1
(
∂2

t ηn+1, I∗
hηn+1) + β2τ

–α

n+1∑

k=0

qα(k)
(
ηn–k+1, I∗

hηn+1) + a
(
ηn+1, I∗

hηn+1)

= –β1
(
∂2

t ξn+1, I∗
hηn+1) – β2

(
∂αξ (tn+1)

∂tα
+ O

(
τ 2), I∗

hηn+1
)

–
(
G

[
un+1] – G

[
Un+1], I∗

hηn+1) – β1
(
En+1

u,t , I∗
hηn+1)

– β2
(
En+1

u,α , I∗
hηn+1) –

(
En+1

g , I∗
hηn+1). (55)

Making use of Lemma 3.4, we can obtain

β1
(
∂2

t ηn+1, I∗
hηn+1) + β2τ

–α

n+1∑

k=0

qα(k)
(
ηn–k+1, I∗

hηn+1) + μ3
∥
∥ηn+1∥∥2

1

≤ C
(∥∥∂2

t ξn+1∥∥2 +
∥∥G

[
un+1] – G

[
Un+1]∥∥2) + C

(
h4 + τ 4)

+ C
(∥∥En+1

u,t
∥
∥2 +

∥
∥En+1

u,α
∥
∥2 +

∥
∥En+1

g
∥
∥2) +

μ3

2
∥
∥ηn+1∥∥2. (56)

Next, we estimate some terms on the right-hand side of the inequality (56). Applying
Lemma 4.1 and the triangle inequality, for the case of n ≥ 1, we have

∥∥∂2
t ξn+1∥∥2 =

∥
∥∥
∥

3ξn+1 – 3ξn

2τ
–

ξn – ξn–1

2τ

∥
∥∥
∥

2

≤ C
τ

∫ tn+1

tn–1

‖ξt‖2 dt ≤ C‖ut‖2
L∞(W 3,p)h

4, p > 1. (57)

For the case of n = 0, we have

∥
∥∂2

t ξ 1∥∥2 =
∥∥
∥∥
ξ 1 – ξ 0

τ

∥∥
∥∥

2

≤ C
τ

∫ t1

t0

‖ξt‖2 dt ≤ C‖ut‖2
L∞(W 3,p)h

4, p > 1. (58)

We discuss the term ‖G[un+1] – G[Un+1]‖2 separately. For the case of n ≥ 1, we have

∥
∥G

[
un+1] – G

[
Un+1]∥∥2 ≤ (

2
∥
∥g

(
un) – g

(
Un)∥∥ +

∥
∥g

(
un–1) – g

(
Un–1)∥∥)2

≤ C
(∥∥un – Un∥∥ +

∥
∥un–1 – Un–1∥∥)2

≤ C
(∥∥ξn∥∥2 +

∥
∥ξn–1∥∥2 +

∥
∥ηn∥∥2 +

∥
∥ηn–1∥∥2), (59)

and for the case of n = 0, we have

∥∥G
[
u1] – G

[
U1]∥∥2 =

∥∥g
(
u0) – g

(
U0)∥∥2 ≤ C

∥∥u0 – U0∥∥2 ≤ Ch4. (60)

From the definitions of En+1
u,t , En+1

u,α , and En+1
g , we easily get

∥∥En+1
u,t

∥∥2 +
∥∥En+1

u,α
∥∥2 +

∥∥En+1
g

∥∥2 ≤
{

Cτ 2, if n = 0,
Cτ 4, if n ≥ 1.

(61)
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Now, for the case of n ≥ 1, making use of (57)–(61) in (56), and applying Lemma 3.6, we
obtain

β1

4τ

(
Λ

[
ηn+1,ηn] – Λ

[
ηn,ηn–1]) +

μ3

2
∥∥ηn+1∥∥2

1

+ β2τ
–α

n+1∑

k=0

qα(k)
(
ηn–k+1, I∗

hηn+1)

≤ C
(
h4 + τ 4 +

∥∥ηn∥∥2 +
∥∥ηn–1∥∥2). (62)

Multiplying (62) by 4τ , and summing over n from 1 to m, we have

β1Λ
[
ηm+1,ηm]

+ 4β2τ
1–α

m∑

n=1

n+1∑

k=0

qα(k)
(
ηn–k+1, I∗

hηn+1) + 2τμ3

m∑

n=1

∥
∥ηn+1∥∥2

1

≤ β1Λ
[
η1,η0] + Cτ

m∑

n=1

(
h4 + τ 4 +

∥∥ηn∥∥2 +
∥∥ηn–1∥∥2). (63)

For the case of n = 0, taking vh = η1 in (54), and applying Lemma 3.6, we obtain

β1

2τ

[(
η1, I∗

hη1) –
(
η0, I∗

hη0)] + β2τ
–α

1∑

k=0

qα(k)
(
η1–k , I∗

hη1) + a
(
η1, I∗

hη1)

≤ –β1
(
∂2

t ξ 1, I∗
hη1) – β2

(
∂αξ (t1)

∂tα
+ O

(
τ 2), I∗

hη1
)

–
(
G

[
u1] – G

[
U1], I∗

hη1)

– β1
(
E1

u,t , I∗
hη1) – β2

(
E1

u,α , I∗
hη1) –

(
E1

g , I∗
hη1). (64)

Multiplying (64) by 2τ , we have

β1
(
η1, I∗

hη1) + 2β2τ
1–α

1∑

k=0

qα(k)
(
η1–k , I∗

hη1) + 2τμ3
∥
∥η1∥∥2

1

≤ β1
(
η0, I∗

hη0) + Cτ
[∥∥∂2

t ξ 1∥∥2 + h4 + τ 4 +
∥∥G

[
u1] – G

[
U1]∥∥2]

+ Cτ 2(∥∥E1
u,t

∥
∥2 +

∥
∥E1

u,α
∥
∥2 +

∥
∥E1

g
∥
∥2) + τμ3

∥
∥η1∥∥2 +

β1

2
(
η1, I∗

hη1). (65)

Making use of (58), (60), and (61) in (65), we can obtain

β1
(
η1, I∗

hη1) + 4β2τ
1–α

1∑

k=0

qα(k)
(
η1–k , I∗

hη1) + 2τμ3
∥∥η1∥∥2

1

≤ 2β1
(
η0, I∗

hη0) + Cτh4 + Cτ 4. (66)

Thus, we rewrite (66) as follows:

β1
(
η1, I∗

hη1) + 4β2τ
1–α

0∑

n=0

n+1∑

k=0

qα(k)
(
ηn–k+1, I∗

hηn+1) + 2τμ3
∥∥η1∥∥2

1

≤ 2β1
(
η0, I∗

hη0) + C
(
τh4 + τ 4). (67)



Zhao et al. Advances in Difference Equations        (2020) 2020:360 Page 15 of 20

Noting that η0 = 0, and applying Lemma 3.5, we have

β1
(
η1, I∗

hη1) ≤ C
(
τh4 + τ 4). (68)

Next, adding (63) and (67), we have

β1Λ
[
ηm+1,ηm]

+ β1
(
η1, I∗

hη1) + 2τμ3

m∑

n=0

∥∥ηn+1∥∥2
1

+ 4β2τ
1–α

m∑

n=0

n+1∑

k=0

qα(k)
(
ηn–k+1, I∗

hηn+1)

≤ β1Λ
[
η1,η0] + C

(
h4 + τ 4) + Cτ

m∑

n=1

(∥∥ηn∥∥2 +
∥
∥ηn–1∥∥2). (69)

Making use of (30) and (68), we have

β1Λ
[
η1,η0] = 5β1

(
η1, I∗

hη1) ≤ C
(
τh4 + τ 4). (70)

Substituting (70) into (69), we rewrite (69) as follows:

β1Λ
[
ηm+1,ηm]

+ β1
(
η1, I∗

hη1) + 2τμ3

m∑

n=0

∥
∥ηn+1∥∥2

1

+ 4β2τ
1–α

m+1∑

n=0

n∑

k=0

qα(k)
(
ηn–k , I∗

hηn)

≤ 4β2τ
1–αqα(0)

(
η0, I∗

hη0) + C
(
h4 + τ 4) + Cτ

m∑

n=1

(∥∥ηn∥∥2 +
∥∥ηn–1∥∥2). (71)

Noting that η0 = 0, and applying Lemma 3.5 and the discrete Gronwall lemma, we obtain

β1Λ
[
ηm+1,ηm]

+ β1
(
η1, I∗

hη1) + 2μ3τ

m∑

n=0

∥
∥ηn+1∥∥2

1 ≤ C
(
h4 + τ 4). (72)

Finally, we apply Lemma 4.1 and the triangle inequality to complete the proof. �

5 Numerical examples
In order to illustrate the feasibility and effectiveness for the proposed FVE scheme, we give
two numerical examples with different nonlinear terms g(u) = sin(u) and g(u) = u3 – u and
different exact solutions.

Example 1 We consider the following nonlinear time fractional mobile/immobile trans-
port equation:

∂u(x, t)
∂t

+
∂αu(x, t)

∂tα
– div

(
A(x)∇u(x, t)

)
+ sin

(
u(x, t)

)
= f (x, t) (73)
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Table 1 Error results for Example 1 with mesh (h,τ ) = (
√
2

M , 1M )

α M ‖u – U‖L∞ (L2(Ω )) Order ‖u – U‖L2(H1(Ω )) Order

0.01 10 4.68701563e-05 – 2.66537172e-02 –
20 1.17042557e-05 2.00163642 1.33031431e-02 1.00256959
40 2.90499824e-06 2.01042399 6.63449496e-03 1.00370860
80 7.22513815e-07 2.00744021 3.31169265e-03 1.00241786

0.5 10 4.68341426e-05 – 2.66488702e-02 –
20 1.16937976e-05 2.00181712 1.33003382e-02 1.00261144
40 2.90228354e-06 2.01048316 6.63303459e-03 1.00372197
80 7.21827421e-07 2.00746261 3.31095230e-03 1.00242282

0.99 10 4.67925509e-05 – 2.66432453e-02 –
20 1.16819417e-05 2.00199878 1.32971532e-02 1.00265242
40 2.89920905e-06 2.01054882 6.63137914e-03 1.00373656
80 7.21048696e-07 2.00749076 3.31011171e-03 1.00242903

for (x, t) ∈ Ω × J , with boundary and initial conditions
{

u(x, t) = 0, (x, t) ∈ ∂Ω × J̄ ,
u(x, 0) = 0, x ∈ Ω̄ ,

(74)

where Ω = (0, 1) × (0, 1), J = (0, 1], the coefficient A(x) defined as follows:

A(x) =

(
1 + 2x2

1 + 2x2
2 x2

1 + x2
2

x2
1 + x2

2 1 + 2x2
1 + 2x2

2

)

, ∀x = (x1, x2) ∈ Ω . (75)

We choose the exact solution

u(x, t) = t2x2
1(x1 – 1)2x2

2(x2 – 1)2, ∀x = (x1, x2) ∈ Ω̄ .

Then we can get the corresponding source function f (x, t).
In this example, we choose some different mesh sizes and parameters α to conduct nu-

merical experiments, and give the error results in L∞(L2(Ω)) and L2(H1(Ω)) norms for
u(x, t), in which we use the Gauss integral formula with fifth-order algebraic accuracy to
calculate the space norms of the errors. In Table 1, we give the corresponding error re-
sults with different parameters α = 0.01, 0.5, 0.99 and mesh sizes (h, τ ) = (

√
2

10 , 1
10 ), (

√
2

20 , 1
20 ),

(
√

2
40 , 1

40 ), (
√

2
80 , 1

80 ). We point out here that error behaviors with other different parameters α

such as α = 0.1, 0.3, 0.7, 0.9 are similar, so we will not repeat them. From the error results,
we can easily see that the convergence order for u in L∞(L2(Ω)) norm is approximately
equal to 2, and the convergence order for u(x, t) in L2(H1(Ω)) norm is approximately equal
to 1. In order to observe the approximation effect intuitively, we choose the fractional pa-
rameter α = 0.5 in (73), and give the graphs of the exact solution and the numerical solu-
tion at time t = 1 in Fig. 2(a) (with mesh h =

√
2

40 ) and Fig. 2(b) (with mesh (h, τ ) = (
√

2
20 , 1

20 )),
respectively. It is easy to see that the graph of the numerical solution is also consistent with
that of the exact solution.

Example 2 We consider the space domain Ω̄ , time domain J̄ , initial data u0(x) and coef-
ficient A(x) as in Example 1. In this example, we choose the nonlinear term g(u) = u3 – u
and the exact solution is then

u(x, t) = t1+α sin(2πx1) sin(2πx2), ∀x = (x1, x2) ∈ Ω̄ .
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(a)

(b)

Figure 2 (a) The exact solution with α = 0.5 for Example 1. (b) The numerical solution with α = 0.5 and

(h,τ ) = (
√
2

20 ,
1
20 ) for Example 1

Table 2 Error results for Example 2 with mesh (h,τ ) = (
√
2

M , 1M )

α M ‖u – U‖L∞ (L2(Ω )) Order ‖u – U‖L2(H1(Ω )) Order

0.01 10 3.73407198e-02 – 3.69550417e-01 –
20 9.23390100e-03 2.01573757 1.84671627e-01 1.00080897
40 2.29539735e-03 2.00819635 9.22003887e-02 1.00211749
80 5.72342061e-04 2.00379438 4.60524354e-02 1.00149538

0.5 10 3.71756617e-02 – 3.69542982e-01 –
20 9.18108549e-03 2.01762178 1.84662989e-01 1.00084743
40 2.28104835e-03 2.00896771 9.21960929e-02 1.00211723
80 5.68639616e-04 2.00411051 4.60505161e-02 1.00148829

0.99 10 3.69646868e-02 – 3.69533934e-01 –
20 9.11194883e-03 2.02031614 1.84651841e-01 1.00089921
40 2.26187232e-03 2.01024215 9.21903788e-02 1.00211954
80 5.63632504e-04 2.00469077 4.60479242e-02 1.00148007

In this example, we also take some different mesh sizes and parameters α to con-
duct numerical experiments, and give the corresponding error results in L∞(L2(Ω)) and
L2(H1(Ω)) norms for u(x, t) in Table 2 with parameters α = 0.01, 0.5, 0.99 and mesh sizes
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(a)

(b)

Figure 3 (a) The exact solution with α = 0.5 for Example 2. (b) The numerical solution with α = 0.5 and

(h,τ ) = (
√
2

20 ,
1
20 ) for Example 2

(h, τ ) = (
√

2
10 , 1

10 ), (
√

2
20 , 1

20 ), (
√

2
40 , 1

40 ), (
√

2
80 , 1

80 ). We can see that the error behaviors are consis-
tent with those in Example 1. In Figs. 3(a) and 3(b), we describe the graphs of the exact
and numerical solutions with parameter α = 0.5 for u(x, t) at time t = 1, respectively, where
the mesh sizes are same as in Example 1. We also find that the exact solution u is approx-
imated well by the fully discrete FVE solution U . The numerical behaviors and figures
show that the constructed FVE scheme with second order WSGD formula for the non-
linear time fractional mobile/immobile transport equations in two-dimensional spatial
regions is feasible and effective.

6 Conclusions
We apply the FVE methods based on the second-order WSGD formula to treat the non-
linear time fractional mobile/immobile equations with the Riemann–Liouville time frac-
tional derivative. We construct the second-order fully discrete FVE scheme, give the ex-
istence, uniqueness, and unconditional stability results, derive the optimal a priori error
estimates in L∞(L2(Ω)) and L2(H1(Ω)) norms, and give two numerical examples with dif-
ferent nonlinear terms to verify the theoretical results. The proposed method by combin-
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ing the FVE method with the WSGD formula can not only make use of the advantages of
the FVE method, but also obtain the second-order convergence accuracy in time direc-
tion independent of the fractional parameters. In the future, we will extend and apply the
proposed method to solve more fractional differential equations.
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