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1 Introduction and preliminaries
Lately, fixed point theory has become the focus of many researchers and that is due to its
applications in many fields, such as engineering and computer sciences. Also fixed point
theory can be used to solve differential equations along with integral equations [1–14].
M-metric spaces were introduced by Asadi, Karapinar and Salimi, in [15], they are an
extension of a partial metric space. Then some relationships between a partial metric and
an M-metric were investigated in [16]. So, first we remind the reader of the definition of
a partial metric space and an M-metric space along with some other notations.

Definition 1.1 ([17, 18]) A partial metric on a nonempty set X is a function pi : X2 →
[0, +∞) such that for all λ, ε, z ∈ X

(pi1) pi(λ,λ) = pi(ε, ε) = pi(λ, ε) if and only if λ = ε,
(pi2) pi(λ,λ) ≤ pi(λ, ε),
(pi3) pi(λ, ε) = pi(ε,λ),
(pi4) pi(λ, ε) ≤ pi(λ, z) + pi(z, ε) – pi(z, z).
A partial metric space is a pair (X, pi) such that X is a nonempty set and pi is a partial

metric on X.

Notation 1.2 ([15])
1. kλ,ε := min{K(λ,λ), K(ε, ε)}.
2. Mλ,ε := max{K(λ,λ), K(ε, ε)}.
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Definition 1.3 ([15]) Let X be a nonempty set. If the function K : X2 → [0, +∞) satisfies
the following conditions:

(1) K(λ,λ) = K(ε, ε) = K(λ, ε) if and only if λ = ε,
(2) kλ,ε ≤ K(λ, ε),
(3) K(λ, ε) = K(ε,λ),
(4) (K(λ, ε) – kλ,ε) ≤ (K(λ, z) – kλ,z) + (K(z, ε) – kz,ε),

for all λ, ε, z ∈ X, then the pair (X, K) is called an M-metric space.

Recently, Mlaiki et al. [19], developed the concept of an Mb-metric space which ex-
tends an M-metric space, and some fixed point theorems are established. Also, Mb-metric
spaces are a generalization of b-metric spaces; see [20–22]. Now, we remind the reader of
some definitions and notations of Mb-metric spaces.

Notation 1.4 ([19])
1. kbλ,ε := min{Kb(λ,λ), Kb(ε, ε)}.
2. Mbλ,ε := maλ{Kb(λ,λ), Kb(ε, ε)}.

Definition 1.5 ([19]) An Mb-metric on a nonempty set X is a function Kb : X2 → [0, +∞)
that satisfies the following conditions:

(1) Kb(λ,λ) = Kb(ε, ε) = Kb(λ, ε) if and only if λ = ε,
(2) kbλ,ε ≤ Kb(λ, ε),
(3) Kb(λ, ε) = Kb(ε,λ),
(4) there exists a real number s ≥ 1 such that for all λ, ε, z ∈ X we have

(
Kb(λ, ε) – kbλ,ε

) ≤ s
[(

Kb(λ, z) – kbλ,z
)

+
(
Kb(z, ε) – kbz,ε

)]
– Kb(z, z),

for all λ, ε, z ∈ X. Then the pair (X, Kb) is called an Mb-metric space and the number s is
called the coefficient of the Mb-metric space (X, Kb).

Note that the condition (4) given in Definition 1.5 is equivalent to the following condi-
tion:

(4)′ There exists a real number s ≥ 1 such that for all λ, ε, z ∈ X we have

(
Kb(λ, ε) – kbλ,ε

) ≤ s
[(

Kb(λ, z) – kbλ,z
)

+
(
Kb(z, ε) – kbz,ε

)]
,

for all λ, ε, z ∈ X.
Indeed, if we take λ = r under the condition (4) then we get

Kb(λ,λ) – kbλ,λ = Kb(λ,λ) – min
{

Kb(λ,λ), Kb(λ,λ)
}

= 0

and so we have

0 ≤ s
[(

Kb(λ,λ) – kbλ,λ
)

+
(
Kb(λ,λ) – kbλ,λ

)]
– Kb(λ,λ) ≤ –Kb(λ,λ),

for z = λ. Therefore we get Kb(λ,λ) = 0 for all λ ∈ X since Kb(λ,λ) ∈ [0, +∞).
The concept of extended Mb-metric spaces was introduced in [23], which is a general-

ization of an Mb-metric space which also generalizes extended b-metric spaces [3]. We
give basic properties of this new space and its relation with some known metric spaces.
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First, we give the following notation.

Notation 1.6
(1) kαλ,ε := min{Kα(λ,λ), Kα(ε, ε)}.
(2) Mαλ,ε := max{Kα(λ,λ), Kα(ε, ε)}.

Definition 1.7 Let α : X2 → [1, +∞) be a function. An extended Mb-metric on a
nonempty set X is a function Kα : X2 → [0, +∞) satisfying the following conditions:

(1) Kα(λ,λ) = Kα(ε, ε) = Kα(λ, ε) if and only if λ = ε,
(2) kαλ,ε ≤ Kα(λ, ε),
(3) Kα(λ, ε) = Kα(ε,λ),
(4) (Kα(λ, ε) – kαλ,ε) ≤ α(λ, ε)[(Kα(λ, z) – kαλ,z) + (Kα(z, ε) – kαz,ε)],

for all λ, ε, z ∈ X. Then the pair (X, Kα) is called an extended Mb-metric space.

We note that if α(λ, ε) = s for s ≥ 1, then we get the definition of an Mb-metric space.

Example 1.8 Let X = C([a, d],R) be the set of all continuous real valued functions on [a, b].
We define the functions Kα : X2 → [0, +∞) and α : X2 → [1, +∞) by

Kα

(
λ(t), ε(t)

)
= sup

t∈[a,b]

∣
∣λ(t) – y(t)

∣
∣2

and

α
(
λ(t), ε(t)

)
=

∣∣λ(t)
∣∣ +

∣∣y(t)
∣∣ + 2.

Then (X, Kα) is an extended Mb-metric space with the function α.

Now we give the following proposition.

Proposition 1.9 Let (X, Kα) be an extended Mb-metric space and λ, ε, z ∈ X. Then we
have

(1) Mαλ,ε + kαλ,ε = Kα(λ,λ) + Kα(ε, ε) ≥ 0,
(2) Mαλ,ε – kαλ,ε = |Kα(λ,λ) – Kα(ε, ε)| ≥ 0,
(3) Mαλ,ε – kαλ,ε ≤ α(λ, ε)[(Mαλ,z – kαλ,z) + (Mαz,ε – kαz,ε)].

In this section, we give some topological notions on an extended Mb-metric space.

Definition 1.10 Let (X, Kα) be an extended Mb-metric space. Then:
(1) A sequence {λn} in X converges to a point λ if and only if

lim
n→+∞

(
Kα(λn,λ) – kαλn ,λ

)
= 0.

(2) A sequence {λn} in X is said to be a Kα-Cauchy sequence if

lim
n,m→+∞

(
Kα(λn,λm) – kαλn ,λm

)
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and

lim
n→+∞(Mαλn ,λm – kαλn ,λm )

exist and are finite.
(3) An extended Mb-metric space is said to be Kα-complete if every Kα-Cauchy

sequence {λn} converges to a point λ such that

lim
n→+∞

(
Kα(λn,λ) – kαλn ,λ

)
= 0

and

lim
n→+∞(Mαλn ,λ – kαλn ,λ) = 0.

Remark 1.11 If we consider Example 1.8, then it is not difficult to see that (X, Kα) is a
complete extended Mb-metric space.

Lemma 1.12 Let (X, Kα) be an extended Mb-metric space. Then we get:
(1) {λn} is an Kα-Cauchy sequence in (X, Kα) if and only if {λn} is a Cauchy sequence in

(X, Kb
α ).

(2) (X, Kα) is complete if and only if (X, Kb
α ) is complete.

2 Main result
First, we start this section by proving the following theorem, which we consider our main
result.

Theorem 2.1 Let (X, Kα) be a complete extended Mb-metric space and f be a continuous
self-mapping on X. Suppose that there exists p ∈ [0, 1) such that for all λ, ε ∈ X we have

Kα(f λ, f ε) ≤ pα(λ, ε)Kα(λ, ε). (2.1)

Also, fix λ0 ∈ X and define the sequence (λn) defined by λi = f λi–1. If

sup
m≥1

lim
n

α(λm,λn)α(λn,λn+1) <
1
p

,

and for every λ ∈ X we have {α(λ,λn)}n and {α(λn,λ)}n are bounded. Then f has a fixed
point on X. Moreover, if for every two fixed points r, s ∈ X we have α(r, s) < 1

p , then the fixed
point is unique.

Proof Using the sequence as defined in the hypotheses of the theorem and (2.1)

Kα(λn,λn+1) = Kα(f λn–1, f λn)

≤ pα(λn–1,λn)Kα(λn–1,λn)

= pα(λn–1,λn)Kα(f λn–2,λn–1)
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≤ p2α(λn–1,λn)α(λn–2,λn–1)Kα(λn–2,λn–1)

...

≤ pn
n∏

i=1

α(λi–1,λi)Kα(λ0,λ1).

Now, consider n, m ∈N where m > n. Then

Kα(λn,λm) – kαλn ,λm ≤ α(λn,λm)
[(

Kα(λn,λn+1) – kαλn ,λn+1

)

+
(
Kα(λn+1,λm) – kαλn+1,λm

)]

≤ α(λn,λm)
[
Kα(λn,λn+1) – kαλn ,λn+1

]

+ α(λn,λm)α(λn+1,λm)
[(

Kα(λn+1,λn+2) – kαλn+1,λn+2

)

+
(
Kα(λn+2,λm) – kαλn+2,λm

)]

...

≤
m–1∑

i=n

i∏

j=n

α(λj,λm)
[
Kα(λi,λi+1) – kαλi ,λi+1

]

≤
m–1∑

i=n

i∏

j=n

α(λj,λm)
[
Kα(λi,λi+1)

]

≤
m–1∑

i=n

i∏

j=n

α(λj,λm)pi
i∏

s=1

α(λs–1,λs)Kα(λ0,λ1).

Now, let

Γi :=
i∏

j=n

α(λj,λm)pi
i∏

s=1

α(λs–1,λs)Kα(λ0,λ1),

then

Γi+1 :=
i+1∏

j=n

α(λj,λm)pi
i+1∏

s=1

α(λs–1,λs)Kα(λ0,λ1).

Thus,

Γi+1

Γi
= α(λi+1,λm)α(λi+1,λi)p.

Therefore

sup
m≥1

lim
i

Γi+1

Γi
= p sup

m≥1
lim

i
α(λm,λi)α(λi,λi+1) < 1,

which leads us to conclude that (λn) is Kα-Cauchy sequence. Since (X, Kα) is a complete
extended Mb-metric space, we deduce that (λn) is convergent in X to some u ∈ X. Note



Mlaiki et al. Advances in Difference Equations        (2020) 2020:289 Page 6 of 12

that kαu,fu ≤ Kα(u, fu) and

Kα(u, fu) – kαu,fu ≤ α(u, fu)
[(

Kα(u,λn) – kαu,λn

)
+

(
Kα(λn, fu) – kαλn ,fu

)]
.

Since f is continuous and taking the limit in the above inequality we deduce that

Kα(u, fu) = kαu,fu.

Now, without loss of generality we can suppose that Mαu,fu = Kα(u, u).

Mαλn ,f λn = Kα(λn,λn) ≤ pα(λn–1,λn–1)Kα(λn–1,λn–1)

≤ p2α(λn–1,λn–1)α(λn–2,λn–2)Kα(λn–2,λn–2)

...

≤ pn
n–1∏

i=0

α(λi,λi)Kα(λ0,λ0).

Taking the limit on both sides as n → +∞ we have

Mαu,fu = 0.

Finally, since Kα(u, fu) = kαu,fu ≤ Mαu,fu = 0 and since Kα(fu, fu) = kαu,fu, it is easy to con-
clude that fu = u. That is, f has a fixed point. Now,assume that f has two fixed points say
s, r ∈ X, that is, fs = s and fr = r. Thus,

Kα(s, r) = Kα(fs, fr)

≤ pα(s, r)Kα(s, r)

< p.
1
p

Kα(s, r)

= Kα(s, r),

which implies that Kα(s, r) = 0, therefore Kα(s, r) = kαr,s = 0. Now, we may assume that
Mαr,s = Kα(s, s), hence Kα(s, s) = Kα(fs, fs) ≤ pα(s, s)Kα(s, s) < Kα(s, s). Hence, Kα(s, s) = 0,
which leads us to conclude that

Kα(s, r) = kαr,s = Mαr,s = 0

and that r = s as required. �

Example 2.2 Let X = [0, 1] and let f : X → X defined by

f (λ) =
λ

2 + 2λ
.

Then f has a unique fixed point.
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Proof For all λ, ε ∈ X, let Kα(λ, ε) = (λ+ε)2

2 and α(λ, ε) = 1 + λ + ε. An easy argument shows
that (X, Kα) is a Kα-complete extended Mb-metric space. Also we have

Kα(f λ, f ε) =
(f λ + f ε)2

2
=

( λ
2+2λ

+ ε
2+2ε

)2

2

≤ 1
4

(λ + ε)2

2

≤ 1
4

(1 + λ + ε)
(λ + ε)2

2

=
1
4
α(λ, ε)Kα(λ, ε).

Hence,

Kα(f λ, f ε) ≤ pα(λ, ε)Kα(λ, ε), where p =
1
4

.

Now, by induction it is not difficult to deduce that

λn = f n(λ) =
λ

2n + (
∑n

k=1 2k)λ

for all n ∈N. Thus,

lim
n→+∞α(λ,λn) = lim

n→+∞α(λn,λ) = 1 + λ.

On the other hand,

sup
m≥1

lim
n→+∞α(λn,λm)α(λn+1,λn) = sup

m≥1

(
1 +

λ

2m + (
∑m

k=1 2k)λ

)

= 1 +
λ

2 + 2λ

≤ 2 < 4 =
1
p

.

It is not difficult to check that f : (X, Kα) → (X, Kα) is continuous. Finally, note that f sat-
isfies all the hypotheses of Theorem 2.1. Therefore, f has a unique fixed point in X. �

Theorem 2.3 Let (X, Kα) be a complete extended Mb-metric space, and let f be a contin-
uous self-mapping on X. Assume that there exist a, b ∈ [0, +∞) with

lim
n

aα(λn,λn–1)
1 – bα(λn,λn+1)

< 1

and

α(λn,λn+1) <
1

a + b
, where λn = f nλ0.

If Kα(f λ, fy) ≤ aα(λ, f λKα(λ, f λ + bα(ε, fy)Kα(ε, fy), then f has a unique fixed point in X.
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Proof Let λ0 ∈ X and define the sequence {λn} as follows:

λ1 = f λ0, λ2 = f λ1 = f 2λ0, . . . , λn = f λn–1 = f nλ0, . . . .

We prove first that

Kα(λn,λn+1) ≤ an
n∏

i=1

[
α(λi,λi–1)

1 – bα(λi,λi+1)

]
Kα(λ0,λ1).

To this end, let n ∈N
�, then

Kα(λn,λn+1) = Kα(f λn–1, f λn)

≤ aα(λn–1, f λn–1)Kα(λn–1, f λn–1) + bα(λn, f λn)Kα(λn, f λn)

= aα(λn–1,λn)Kα(λn–1,λn) + bα(λn,λn+1)Kα(λn,λn+1).

Hence,

Kα(λn,λn+1) ≤ a
α(λn,λn–1)

1 – bα(λn,λn+1)
Kα(λn,λn–1)

= a
α(λn,λn–1)

1 – bα(λn,λn+1)
Kα(f λn–1, f λn–2)

≤ a2 α(λn,λn–1α(λn–1,λn–2)
(1 – bα(λn,λn+1))(1 – bα(λn–1,λn))

Kα(λn–1,λn–2)

≤ · · ·

≤ an
n∏

i=1

[
α(λi,λi–1)

1 – bα(λi,λi+1)

]
Kα(λ0,λ1).

Since limn
aα(λn ,λn–1)

1–bα(λn ,λn+1) < 1, it follows from the ratio test that

∞∑

n=1

an
n∏

i=1

α(λi,λi–1)
1 – bα(λi,λi+1)

converges, which implies that Kα(λn,λn+1)converges to 0.
Next, let n, m ∈ N

�, then

Kα(λn,λm) = Kα(f λn–1, f λm–1)

≤ aα(λn–1,λn)Kα(λn–1,λn) + bα(λm–1, f λm)Kα(λm–1,λm).

By the above inequality, we deduce that Kα(λn,λm)converges to 0. Since

kαλm ,λn := min
(
Kα(λn,λn), Kα(λm,λm)

) ≤ Kα(λn,λm),

we conclude that

lim
n,m→+∞

(
Kα(λn,λm) – kαλm ,λn

)
= 0.
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Now, without loss of generality we may assume that

Mαλm ,λn := max
(
Kα(λn,λn), Kα(λm,λm)

)
= Kα(λn,λn).

Hence, we obtain

Mαλm ,λn – kαλm ,λn ≤ Mαλm ,λn

= Kα(λn,λn)

≤ (a + b)α(λn–1,λn)Kα(λn–1,λn).

Taking the limit of the above inequality as n → +∞ we deduce that

lim
n,m→+∞(Mαλm ,λn – kαλm ,λn ) = 0.

Thus, the sequence {λn} is a Kα-Cauchy sequence. Since (X, Kα) is a Kα-complete extended
b-metric space, we conclude that {λn} converges to some ω ∈ X, and so {f λn = λn+1} con-
verges to ω ∈ X. On the other hand, by the hypotheses of the theorem (f : (X, Kα) → (X, Kα)
is continuous) it is not difficult to conclude that {f λn} converges to f ω ∈ X. From Lemma
3.3 in [23], we have

Kα(ω, f ω) – kαω,f ω = 0.

Then

Kα(ω, f ω) = Kα(f ω, f ω)

≤ aα(ω, f ω)Kα(ω, f ω) + bα(ω, f ω)Kα(ω, f ω)

= (a + b)α(ω, f ω)Kα(ω, f ω)

< Kα(ω, f ω).

Hence

Kα(ω, f ω) = Kα(f ω, f ω) = 0.

Similarly to the above we have

Kα

(
f ω, f 2ω

)
= Kα

(
f 2ω, f 2ω

)
= 0. (2.2)

Since (X, Kα) is an extended b-metric space, it follows that

ff ω = f ω.

We deduce that ω′ = f ω is a fixed point of f . Finally, to show uniqueness assume that there
exists another fixed point of f , say u. By the contractive property of f we have

Kα

(
u,ω′) = Kα

(
fu, f ω′)

≤ aα(u, fu)Kα(u, fu) + bα
(
ω′, f ω′)Kα

(
ω′, f ω′).
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From (2.2) we get

Kα

(
u,ω′) ≤ aα(u, fu)Kα(u, fu).

Hence,

Kα

(
u,ω′) ≤ aα(u, fu)Kα(u, fu)

= aα(u, fu)Kα(fu, fu)

≤ aα(u, fu)
[
(a + b)α(u, fu)

]
Kα(u, fu)

≤ · · ·
≤ aα(u, fu)

[
(a + b)α(u, fu)

]nKα(u, fu).

Since (a + b)α(u, fu) = (a + b)α(fu, f 2u) < 1, it follows that [(a + b)α(u, fu)]n converges to 0.
So Kα(u,ω′) = Kα(u, u) = 0. By (2.2) we have

Kα

(
u,ω′) = Kα(u, u) = Kα

(
ω′,ω′) = 0.

Thus, f has a unique fixed point as required. �

3 Application
Consider the set X = C([0, 1],R) and the following Fredholm type integral equation:

x′(t) =
∫ 1

0
G

(
t, s, x′(t)

)
ds, for t, s ∈ [0, 1], (3.1)

where G(t, s, x′(t)) is a continuous function from [0, 1]2 into R. Now, define

Kα : X × X −→R

(x, y) �→ sup
t∈[0,1]

( |x′(t)| + |y(t)|
2

)
.

Note that (X, Kα) is a Kα-complete extended Mb-metric space, where

α(x, y) = 1 + sup
t∈[0,1]

(∣∣x′(t)
∣
∣
∣
∣y(t)

∣
∣).

Theorem 3.1 Assume that for all x, y ∈ X:
(1) |G(t, s, x′(t))| + |G(t, s, y(t))| ≤ p(1 + supt∈[0,1]{|x′(t)||y(t)|})(|x′(t)| + |y(t)|), for some

p ∈ [0, 1
(1+supt,s |G(t,s,x′(t))||G(t,s,y(t))|)2 ).

(2) G(t, s,
∫ 1

0 G(t, s, x′(t)) ds) < G(t, s, x′(t)) for all t, s.
Then the above integral equation has a unique solution.

Proof Let f : X −→ X be defined by fx′(t) =
∫ 1

0 G(t, s, x′(t)) ds, then

Kα(fx, fy) = sup
t∈[0,1]

( |fx′(t)| + |fy(t)|
2

)
.
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Now we have

|fx′(t)| + |fy(t)|
2

=
| ∫ 1

0 G(t, s, x′(t)) ds| + | ∫ 1
0 G(t, s, y(t)) ds|

2

≤
∫ 1

0 |G(t, s, x′(t))|ds +
∫ 1

0 |G(t, s, y(t))|ds
2

=
∫ 1

0 (|G(t, s, x′(t))| + |G(t, s, y(t))|) ds
2

≤
∫ 1

0 p(1 + supt∈[0,1]{|x′(t)||y(t)|})(|x′(t)| + |y(t)|) ds
2

≤ pα(x, y)Kα(x, y).

Consequently, Kα(fx, fy) ≤ α(x, y)Kα(x, y). On the other hand, let n ∈N
� and x ∈ X, then

(
f nx

)
(t) = f

(
f n–1x′(t)

)
=

∫ 1

0
G

(
t, s, f n–1x′(t)

)
ds

=
∫ 1

0
G

(
t, s, f

(
f n–2x

)
(t)

)
ds

=
∫ 1

0
G

(
t, s,

∫ 1

0
G

(
t, s,

(
f n–2x′(t)

)))
ds

<
∫ 1

0
G

(
t, s,

(
f n–2x′(t)

))
ds =

(
f n–1x′(t)

)
.

Thus, for all t ∈ [0, 1] we find that (f nx′(t))n is strictly decreasing and a sequence bounded
below, and so it converges to some l. Since (fn)n is a monotone sequence, it follows from
the Dini theorem that supt |f nx′(t)| converges to some l′ ≤ supt,s |G(t, s, x′(t))|. Observe that
α(f nx, f m(x)) = 1 + supt |f nx′(t)||f mx′(t)| converges to 1 + l′2 ≤ 1 + (supt,s |G(t, s, x′(t))|)2. So

sup
m

lim
n

α
(
f nx, f m(x)

)
α
(
f nx, f n+1x′(t)

) ≤
(

1 +
(

sup
t,s

∣∣G
(
t, s, x′(t)

)∣∣
)2)2

<
1
p

.

Now, note that all the hypotheses of Theorem 2.1, are satisfied and thus Eq. (3.1) has a
unique solution. �

4 Conclusion
In closing, note that in this manuscript we proved fixed point results for mappings that
satisfy more general contractions, which generalizes many results obtained for mapping
satisfying Banach contraction and by taking α(λ, ε) = 1 for all λ, ε ∈ X in Theorem 2.1.
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8. Manojlović, V.: On conformally invariant extremal problems. Appl. Anal. Discrete Math. 3(1), 97–119 (2009)
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