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Abstract
In this paper, by means of p-adic Volkenborn integrals we introduce and study two
different degenerate versions of Bernoulli polynomials of the second kind, namely
partially and fully degenerate Bernoulli polynomials of the second kind, and also their
higher-order versions. We derive several explicit expressions of those polynomials and
various identities involving them.
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1 Introduction and preliminaries
In [1, 2], Carlitz studied degenerate versions of Bernoulli and Euler polynomials, namely
the degenerate Bernoulli and Euler polynomials, and obtained some interesting arithmetic
and combinatorial results. In recent years, various degenerate versions of many special
polynomials and numbers regained interest of some mathematicians, and quite a few re-
sults have been discovered. These include the degenerate Stirling numbers of the first
and second kinds, degenerate central factorial numbers of the second kind, degenerate
Bernoulli numbers of the second kind, degenerate Bernstein polynomials, degenerate Bell
numbers and polynomials, degenerate central Bell numbers and polynomials, degener-
ate complete Bell polynomials and numbers, degenerate Cauchy numbers, and so on (see
[3, 10, 13, 16, 18, 19] and the references therein). Here we would like to mention that the
study of degenerate versions can be done not only for polynomials but also for transcen-
dental functions like gamma functions. For this, we let the reader refer to the paper [14].

The aim of this paper is to study two degenerate versions of Bernoulli polynomials of
the second kind, namely the partially and fully degenerate Bernoulli polynomials of the
second kind, and their higher-order versions by using p-adic Volkenborn integrals. We
derive several explicit expressions for those polynomials and identities involving them and
some other special numbers and polynomials. The possible applications of our results are
discussed in the last section.
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The paper is organized as follows. In this section, we recall what is needed in the rest of
the paper, which includes the p-adic Volkenborn integrals, the ordinary and higher-order
Bernoulli polynomials, the Bernoulli polynomials of the second kind, the degenerate expo-
nential functions, the Daehee numbers, the Stirling numbers of both kinds, the degenerate
Stirling numbers of both kinds, and the degenerate Bernoulli polynomials. In Sect. 2, we
define the partially degenerate Bernoulli polynomials of the second kind and their higher-
order versions by using p-adic Volkenborn integrals. We derive several explicit expressions
for those polynomials. Further, we obtain identities involving those polynomials and some
other polynomials including the higher-order Bernoulli polynomials, the Daehee num-
bers, and the usual and degenerate Stirling numbers of both kinds. In Sect. 3, we define the
fully degenerate Bernoulli polynomials of the second kind and their higher-order versions
by using p-adic Volkenborn integrals. We deduce several explicit expressions for those
polynomials. Moreover, we obtain identities involving those polynomials and some other
special numbers and polynomials. Here we observe that, for x = 0, both partial degenerate
Bernoulli polynomials of the second kind and fully degenerate Bernoulli polynomials of
the second kind become the same degenerate Bernoulli numbers of the second kind.

Throughout this paper, Zp, Qp, and Cp denote the ring of p-adic integers, the field of
p-adic rational numbers, and the completion of an algebraic closure of Qp.

The p-adic norm | · |p is normalized as |p|p = 1
p . Let f be a Cp-valued uniformly differ-

entiable function on Zp. Then the p-adic invariant integral of f on Zp is defined by (see
[8, 23–25])

I0(f ) =
∫
Zp

f (x) dμ0(x) = lim
N→∞

pN –1∑
x=0

f (x)μ0
(
x + pN

Zp
)

= lim
N→∞

1
pN

pN –1∑
x=0

f (x). (1)

From (1), we note that (see [8, 9, 23, 25, 26])

I0(f1) – I0(f ) = f ′(0), (2)

where f1(x) = f (x + 1), f ′(0) = d
dx f (x)|x=0.

By (2), we get (see [8, 23, 26])

∞∑
n=0

∫
Zp

(x + y)n dμ0(y)
tn

n!
=

∫
Zp

e(x+y)t dμ0(y) =
t

et – 1
ext =

∞∑
n=0

Bn(x)
tn

n!
, (3)

where Bn(x) are the Bernoulli polynomials and Bn = Bn(0) are the Bernoulli numbers.
For r ∈N, we note that (see [8, 24])

∞∑
n=0

∫
Zp

· · ·
∫
Zp

(x1 + x2 + · · · + xr + x)n dμ0(x1) dμ0(x2) · · ·dμ0(xr)
tn

n!

=
∫
Zp

· · ·
∫
Zp

e(x1+x2+···+xr+x)t dμ0(x1) dμ0(x2) · · ·dμ0(xr)

=
(

t
et – 1

)r

ext =
∞∑

n=0

B(r)
n (x)

tn

n!
, (4)
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where B(r)
n (x) are the Bernoulli polynomials of order r, and B(r)

n = B(r)
n (0) are the Bernoulli

numbers of order r.
The Bernoulli polynomials of the second kind (also called the Cauchy polynomials) are

defined by (see [2, 7, 10, 11, 17, 22])

t
log(1 + t)

(1 + t)x =
∞∑

n=0

bn(x)
tn

n!
. (5)

More generally, for any r ∈N, the Bernoulli polynomials of the second kind of order r are
given by

(
t

log(1 + t)

)r

(1 + t)x =
∞∑

n=0

b(r)
n (x)

tn

n!
. (6)

It is well known that (see [8, 9, 21])

(
t

log(1 + t)

)r

(1 + t)x–1 =
∞∑

n=0

B(n–r+1)
n (x)

tn

n!
. (7)

From (5) and (7), we note that

bn = B(n)
n (1) (n ≥ 0).

The degenerate exponential function is defined by (see [12, 14, 16, 18–20])

ex
λ(t) = (1 + λt)

x
λ , eλ(t) = e1

λ(t) = (1 + λt)
1
λ . (8)

Note that limλ→0 ex
λ(t) = ext .

We note that (see [12, 14])

ex
λ(t) =

∞∑
n=0

(x)n,λ

n!
tn, (9)

where (x)0,λ = 1, (x)n,λ = x(x – λ) · · · (x – (n – 1)λ) (n ≥ 1).
As is known, the Daehee numbers are defined by (see [4, 5, 15])

∫
Zp

(1 + t)x dμ0(x) =
1
t

log(1 + t) =
∞∑

n=0

Dn
tn

n!
. (10)

The Stirling numbers of the first kind are defined as (see [3, 6, 10, 15, 25])

(x)n =
n∑

l=0

S1(n, l)xl (n ≥ 0), (11)

where (x)0 = 1, (x)n = x(x – 1) · · · (x – n + 1) (n ≥ 1).
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As an inversion formula of (11), the Stirling numbers of the second kind are defined by
(see [18, 21])

xn =
n∑

l=0

S2(n, l)(x)l. (12)

Recently, Kim considered the degenerate Stirling numbers of the second kind given by (see
[10])

(x)n,λ =
n∑

l=0

S2,λ(n, l)(x)l (n ≥ 0). (13)

In light of (11), the degenerate Stirling numbers of the first kind are defined as

(x)n =
n∑

l=0

S1,λ(n, l)(x)l,λ (n ≥ 0). (14)

In [1, 2], Carlitz considered the degenerate Bernoulli polynomials given by

t
eλ(t) – 1

ex
λ(t) =

t

(1 + λt)
1
λ – 1

(1 + λt)
x
λ =

∞∑
n=0

βn,λ(x)
tn

n!
. (15)

When x = 0, βn,λ = βn,λ(0) are called the degenerate Bernoulli numbers.

2 Partially degenerate Bernoulli polynomials of the second kind
In this and next section, we assume that 0 �= λ ∈ Zp and t ∈ Cp with |t|p < p– 1

p–1 . Let logλ t
be the compositional inverse of eλ(t) satisfying

logλ

(
eλ(t)

)
= eλ

(
logλ(t)

)
= t.

From (8), we note that

logλ(t) =
1
λ

(
tλ – 1

)
. (16)

By (16), we easily see that limλ→0 logλ(t) = log(t).
From (2) and (16), we can derive the following equation:

t
logλ(1 + t)

=
t

log(1 + t)

∫
Zp

(1 + t)λx dμ0(x). (17)

Let us define the partially degenerate Bernoulli polynomials of the second kind as follows:

t
logλ(1 + t)

(1 + t)x =
∞∑

n=0

bn,λ(x)
tn

n!
. (18)

Then, from (17), we see that

∞∑
n=0

bn,λ(x)
tn

n!
=

t
log(1 + t)

∫
Zp

(1 + t)λy+x dμ0(y). (19)



Jang et al. Advances in Difference Equations        (2020) 2020:278 Page 5 of 20

Note that limλ→0 bn,λ(x) = bn(x) (n ≥ 0). For x = 0, bn,λ = bn,λ(0) are called the degenerate
Bernoulli numbers of the second kind.

First, from (18) we note that

∞∑
n=0

bn,λ(x)
tn

n!
=

t
logλ(1 + t)

(1 + t)x

=
∞∑

m=0

bm,λ
tm

m!

∞∑
l=0

(x)l
tl

l!

=
∞∑

n=0

n∑
m=0

(
n
m

)
bm,λ(x)n–m

tn

n!
. (20)

Thus we get the next result by (20).

Theorem 1 For n ≥ 0, we have

bn,λ(x) =
n∑

m=0

(
n
m

)
bm,λ(x)n–m.

By (3), we get

t
log(1 + t)

∫
Zp

(1 + t)λy+x dμ0(y) =
t

log(1 + t)

∞∑
m=0

λm

m!
(
log(1 + t)

)m
∫
Zp

(
y +

x
λ

)m

dμ0(y)

=
∞∑
l=0

bl
tl

l!

∞∑
m=0

λmBm

(
x
λ

) ∞∑
k=m

S1(k, m)
tk

k!

=
∞∑
l=0

bl
tl

l!

∞∑
k=0

k∑
m=0

λmBm

(
x
λ

)
S1(k, m)

tk

k!

=
∞∑

n=0

( n∑
k=0

k∑
m=0

(
n
k

)
λmBm

(
x
λ

)
S1(k, m)bn–k

)
tn

n!
. (21)

Therefore, we obtain the following theorem.

Theorem 2 For n ≥ 0, we have

bn,λ(x) =
n∑

k=0

k∑
m=0

(
n
k

)
λmS1(k, m)bn–kBm

(
x
λ

)
.

In particular, we have

bn,λ =
n∑

k=0

k∑
m=0

(
n
k

)
λmS1(k, m)bn–kBm.
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From (9), we note that

1
t
(
eλ(t) – 1

)
ex
λ(t) =

∞∑
l=0

(1)l+1,λ

l + 1
tl

l!

∞∑
m=0

(x)m,λ
tm

m!

=
∞∑

n=0

( n∑
l=0

(
n
l

)
(1)l+1,λ

l + 1
(x)n–l,λ

)
tn

n!
. (22)

By (14), we get

1
k!

(
logλ(1 + t)

)k =
∞∑

n=k

S1,λ(n, k)
tn

n!
. (23)

Thus, by replacing t by logλ(1 + t) in (22), we get

t
logλ(1 + t)

(1 + t)x =
∞∑

m=0

m∑
l=0

(
m
l

)
(1)l+1,λ

l + 1
(x)m–l,λ

1
m!

(
logλ(1 + t)

)m

=
∞∑

m=0

m∑
l=0

(
m
l

)
(1)l+1,λ

l + 1
(x)m–l,λ

∞∑
n=m

S1,λ(n, m)
tn

n!

=
∞∑

n=0

( n∑
m=0

m∑
l=0

(
m
l

)
(1)l+1,λ

l + 1
(x)m–l,λS1,λ(n, m)

)
tn

n!
. (24)

Therefore, by (18) and (24), we obtain the following theorem.

Theorem 3 For n ≥ 0, we have

bn,λ(x) =
n∑

m=0

m∑
l=0

(
m
l

)
(1)l+1,λ

l + 1
(x)m–l,λS1,λ(n, m).

In particular, we have

bn,λ =
n∑

m=0

(1)m+1,λ

m + 1
S1,λ(n, m).

From (17), we note that

∫
Zp

(1 + t)λy+x dμ0(y) =
log(1 + t)

t
t

logλ(1 + t)
(1 + t)x =

∞∑
l=0

Dl

l!
tl

∞∑
m=0

bm,λ(x)
tm

m!

=
∞∑

n=0

( n∑
m=0

(
n
m

)
bm,λ(x)Dn–m

)
tn

n!
. (25)

On the other hand,

∫
Zp

(1 + t)λy+x dμ0(y) =
∞∑

n=0

∫
Zp

(
λy + x

n

)
dμ0(y)tn. (26)

Therefore, by (25) and (26), we obtain the following theorem.
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Theorem 4 For n ≥ 0, we have

∫
Zp

(
λy + x

n

)
dμ0(y) =

1
n!

n∑
m=0

(
n
m

)
bm,λ(x)Dn–m.

In particular, we have

∫
Zp

(
λy
n

)
dμ0(y) =

1
n!

n∑
m=0

(
n
m

)
bm,λDn–m.

By replacing t by eλ(t) – 1 in (18), we get

eλ(t) – 1
t

ex
λ(t) =

∞∑
m=0

bm,λ(x)
1

m!
(
eλ(t) – 1

)m =
∞∑

m=0

bm,λ(x)
∞∑

n=m
S2,λ(n, m)

tn

n!

=
∞∑

n=0

( n∑
m=0

S2,λ(n, m)bm,λ(x)

)
tn

n!
. (27)

On the other hand, by (22), we get

1
t
(
eλ(t) – 1

)
ex
λ(t) =

∞∑
n=0

( n∑
l=0

(
n
l

)
(1)l+1,λ

l + 1
(x)n–l,λ

)
tn

n!
. (28)

Therefore, by (27) and (28), we obtain the following theorem.

Theorem 5 For n ≥ 0, we have

n∑
m=0

S2,λ(n, m)bm,λ(x) =
n∑

l=0

(
n
l

)
(1)l+1,λ

l + 1
(x)n–l,λ.

In particular, we have

n∑
m=0

S2,λ(n, m)bm,λ =
1

n + 1
(1)n+1,λ.

By replacing t by logλ(1 + t) in (15), we get

logλ(1 + t)
t

(1 + t)x =
∞∑

m=0

βm,λ(x)
1

m!
(
logλ(1 + t)

)m

=
∞∑

n=0

( n∑
m=0

βm,λ(x)S1,λ(n, m)

)
tn

n!
. (29)

We observe that

logλ(1 + t)
t

=
1
λt

∞∑
m=1

λm 1
m!

(
log(1 + t)

)m =
1
λt

∞∑
m=1

λm
∞∑

n=m
S1(n, m)

tn

n!

=
1
λt

∞∑
n=1

( n∑
m=1

λmS1(n, m)

)
tn

n!
=

∞∑
n=0

1
n + 1

( n+1∑
m=1

λm–1S1(n + 1, m)

)
tn

n!
. (30)
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From (30), we obtain

logλ(1 + t)
t

(1 + t)x =
∞∑

m=0

1
m + 1

(m+1∑
k=1

λk–1S1(m + 1, k)

)
tm

m!

∞∑
l=0

(x)l
tl

l!

=
∞∑

n=0

n∑
m=0

1
m + 1

(
n
m

)(m+1∑
k=1

λk–1S1(m + 1, k)

)
(x)n–m

tn

n!
. (31)

Therefore, by (29) and (31), we obtain the following theorem.

Theorem 6 For n ≥ 0, we have

n∑
m=0

1
m + 1

(
n
m

) m+1∑
k=1

λk–1S1(m + 1, k)(x)n–m =
n∑

m=0

βm,λ(x)S1,λ(n, m).

In particular, we have

1
n + 1

n+1∑
k=1

λk–1S1(n + 1, k) =
n∑

m=0

βm,λS1,λ(n, m).

From (21), we note that

tk

k!
=

∞∑
m=k

S1,λ(m, k)
1

m!
(
eλ(t) – 1

)m

=
∞∑

m=k

S1,λ(m, k)
∞∑

n=m
S2,λ(n, m)

tn

n!

=
∞∑

n=k

( n∑
m=k

S1,λ(m, k)S2,λ(n, m)

)
tn

n!
(k ≥ 0). (32)

By comparing the coefficients on both sides of (32), we obtain the following theorem.

Theorem 7 For k ≥ 0, we have

n∑
m=k

S1,λ(m, k)S2,λ(n, m) =

{
1, if n = k,
0, if n > k.

For r ∈ N, we define the partially degenerate Bernoulli polynomials of the second kind
of order r by the following multiple p-adic integrals on Zp:

(
t

log(1 + t)

)r ∫
Zp

· · ·
∫
Zp

(1 + t)λ(x1+x2+···+xr)+x dμ0(x1) dμ0(x2) · · ·dμ0(xr)

=
(

t
logλ(1 + t)

)r

(1 + t)x =
∞∑

n=0

b(r)
n,λ(x)

tn

n!
. (33)

For x = 0, b(r)
n,λ = b(r)

n,λ(0) are called the degenerate Bernoulli numbers of the second kind of
order r.
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On the other hand, (33) is also equal to

(
t

log(1 + t)

)r ∫
Zp

· · ·
∫
Zp

(1 + t)λ(x1+x2+···+xr)+x dμ0(x1) dμ0(x2) · · ·dμ0(xr)

=
∞∑
l=0

B(l–r+1)
l (1)

tl

l!

∞∑
m=0

λmB(r)
m

(
x
λ

)
1

m!
(
log(1 + t)

)m

=
∞∑
l=0

B(l–r+1)
l (1)

tl

l!

∞∑
m=0

λmB(r)
m

(
x
λ

) ∞∑
k=m

S1(k, m)
tk

k!

=
∞∑
l=0

B(l–r+1)
l (1)

tl

l!

∞∑
k=0

k∑
m=0

λmB(r)
m

(
x
λ

)
S1(k, m)

tk

k!

=
∞∑

n=0

( n∑
k=0

k∑
m=0

(
n
k

)
λmB(r)

m

(
x
λ

)
S1(k, m)B(n–k–r+1)

n–k (1)

)
tn

n!
. (34)

Therefore, by (33) and (34), we obtain the following theorem.

Theorem 8 For n ≥ 0, we have

b(r)
n,λ(x) =

n∑
k=0

k∑
m=0

(
n
k

)
λmB(r)

m

(
x
λ

)
S1(k, m)B(n–k–r+1)

n–k (1).

In particular, we have

b(r)
n,λ =

n∑
k=0

k∑
m=0

(
n
k

)
λmB(r)

m S1(k, m)B(n–k–r+1)
n–k (1).

By replacing t by eλ(t) – 1 in (33), we get

∞∑
m=0

b(r)
m,λ(x)

1
m!

(
eλ(t) – 1

)m =
r!
tr

1
r!

(
eλ(t) – 1

)rex
λ(t)

=
r!
tr

∞∑
n=0

S2,λ(n + r, r)
tn+r

(n + r)!
ex
λ(t)

=
∞∑

m=0

S2,λ(m + r, r)(m+r
r

) tm

m!

∞∑
l=0

(x)l,λ
tl

l!

=
∞∑

n=0

n∑
m=0

(n
m
)

(m+r
r

)S2,λ(m + r, r)(x)n–m,λ
tn

n!
. (35)

On the other hand,

∞∑
m=0

b(r)
m,λ(x)

1
m!

(
eλ(t) – 1

)m =
∞∑

n=0

( n∑
m=0

b(r)
m,λ(x)S2,λ(n, m)

)
tn

n!
. (36)

From (35) and (36), we obtain the following theorem.
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Theorem 9 For n ≥ 0 and r ∈N, we have

n∑
m=0

(n
m
)

(m+r
r

)S2,λ(m + r, r)(x)n–m,λ =
n∑

m=0

b(r)
m,λ(x)S2,λ(n, m).

In particular, we have

S2,λ(n + r, r) =
(

n + r
r

) n∑
m=0

b(r)
m,λS2,λ(n, m).

From (13), we note that

1
k!

(
eλ(t) – 1

)k =
∞∑

n=k

S2,λ(n, k)
tn

n!
(k ≥ 0). (37)

Thus, by (35), we get

(eλ(t) – 1)r

tr ex
λ(t) =

∞∑
n=0

n∑
m=0

(n
m
)

(m+r
r

)S2,λ(m + r, r)(x)n–m,λ
tn

n!
. (38)

By replacing t by logλ(1 + t), we get

(
t

logλ(1 + t)

)r

(1 + t)x

=
∞∑

m=0

m∑
k=0

(m
k
)

(k+r
r

)S2,λ(k + r, r)(x)m–k,λ
1

m!
(
logλ(1 + t)

)m

=
∞∑

n=0

( n∑
m=0

m∑
k=0

(m
k
)

(k+r
r

)S2,λ(k + r, r)S1,λ(n, m)(x)m–k,λ

)
tn

n!
. (39)

Therefore, by (33) and (39), we obtain the following theorem.

Theorem 10 For n ≥ 0, we have

b(r)
n,λ(x) =

n∑
m=0

m∑
k=0

(m
k
)

(k+r
r

)S2,λ(k + r, r)S1,λ(n, m)(x)m–k,λ.

In particular, we have

b(r)
n,λ =

n∑
m=0

S2,λ(m + r, r)(m+r
r

) S1,λ(n, m).

By (14), we get

1
k!

(
logλ(1 + t)

)k =
∞∑

n=k

S1,λ(n, k)
tn

n!
(k ≥ 0). (40)
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Thus, by (40), we have

(
logλ(1 + t)

t

)r

(1 + t)x =
∞∑

m=0

S1,λ(m + r, r)(m+r
r

) tm

m!

∞∑
l=0

(x)l
tl

l!

=
∞∑

n=0

n∑
m=0

(n
m
)

(m+r
r

)S1,λ(m + r, r)(x)n–m,λ
tn

n!
. (41)

By replacing t by eλ(t) – 1 in (41), we get

(
t

eλ(t) – 1

)r

ex
λ(t) =

∞∑
m=0

m∑
k=0

(m
k
)

(k+r
r

)S1,λ(k + r, r)(x)m–k,λ
1

m!
(
eλ(t) – 1

)m

=
∞∑

n=0

( n∑
m=0

m∑
k=0

(m
k
)

(k+r
r

)S1,λ(k + r, r)S2,λ(n, m)(x)m–k,λ

)
tn

n!
. (42)

As is well known, the degenerate Bernoulli polynomials of order r are defined by

(
t

eλ(t) – 1

)r

ex
λ(t) =

∞∑
n=0

β
(r)
n,λ(x)

tn

n!
(see [1, 2]). (43)

Therefore, by (42) and (43), we obtain the following theorem.

Theorem 11 For n ≥ 0, we have

β
(r)
n,λ(x) =

n∑
m=0

m∑
k=0

(m
k
)

(k+r
r

)S1,λ(k + r, r)S2,λ(n, m)(x)m–k,λ.

In particular, we have

β
(r)
n,λ =

n∑
m=0

S1,λ(m + r, r)(m+r
r

) S2,λ(n, m).

From (33), we note that

∫
Zp

· · ·
∫
Zp

(1 + t)λ(x1+···+xr)+x dμ0(x1) · · ·dμ0(xr)

=
(

log(1 + t)
t

)r( t
logλ(1 + t)

)r

(1 + t)x =
∞∑
l=0

S1(l + r, r)(l+r
r
) tl

l!

∞∑
m=0

b(r)
m,λ(x)

tm

m!

=
∞∑

n=0

( n∑
l=0

(n
l
)

(l+r
r
)S1(l + r, r)b(r)

n–l,λ(x)

)
tn

n!
. (44)

Thus, by (44), we obtain the following theorem.

Theorem 12 For n ≥ 0, we have

∫
Zp

· · ·
∫
Zp

(
λ(x1 + · · · + xr) + x

n

)
dμ0(x1) · · ·dμ0(xr) =

1
n!

n∑
l=0

(n
l
)

(l+r
r
)S1(l + r, r)b(r)

n–l,λ(x).
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In particular, we have

∫
Zp

· · ·
∫
Zp

(
λ(x1 + · · · + xr)

n

)
dμ0(x1) · · ·dμ0(xr) =

1
n!

n∑
l=0

(n
l
)

(l+r
r
)S1(l + r, r)b(r)

n–l,λ.

Observe from (30) with λ = 1 that b(r)
n,1(x) = (x)n, b(r)

n,1 = δn,0.
Now, let us take λ = 1 in Theorem 12. Then we have, for n ≥ 0,

∫
Zp

· · ·
∫
Zp

(x1 + x2 + · · · + xr + x)n dμ0(x1) · · ·dμ0(xr) =
n∑

l=0

(n
l
)

(l+r
r
)S1(l + r, r)(x)n–l, (45)

∫
Zp

· · ·
∫
Zp

(x1 + x2 + · · · + xr)n dμ0(x1) · · ·dμ0(xr) =
S1(n + r, r)(n+r

r
) . (46)

On the other hand,

∫
Zp

· · ·
∫
Zp

(x1 + · · · + xr + x)n dμ0(x1) · · ·dμ0(xr)

=
n∑

l=0

S1(n, l)
∫
Zp

· · ·
∫
Zp

(x1 + · · · + xr + x)l dμ0(x) · · ·dμr(x)

=
n∑

l=0

S1(n, l)B(r)
l (x). (47)

Thus, by (45), (46), and (47), for n ≥ 0, we get

n∑
l=0

S1(n, l)B(r)
l (x) =

n∑
l=0

(n
l
)

(l+r
r
)S1(l + r, r)(x)n–l, (48)

n∑
l=0

S1(n, l)B(r)
l =

S1(n + r, r)(n+r
r

) . (49)

By replacing t by logλ(1 + t) in (43), we get

(
1
t

logλ(1 + t)
)r

(1 + t)x =
∞∑

m=0

β
(r)
m,λ(x)

1
m!

(
logλ(1 + t)

)m

=
∞∑

n=0

( n∑
m=0

β
(r)
m,λ(x)S1,λ(n, m)

)
tn

n!
. (50)

Therefore, by (41) and (50), we obtain the following theorem.

Theorem 13 For n ≥ 0, we have

n∑
m=0

(n
m
)

(m+r
r

)S1,λ(m + r, r)(x)n–m,λ =
n∑

m=0

β
(r)
m,λ(x)S1,λ(n, m).
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In particular, we have

S1,λ(n + r, r) =
(

n + r
r

) n∑
m=0

β
(r)
m,λS1,λ(n, m).

3 Fully degenerate Bernoulli polynomials of the second kind
Let us define the fully degenerate Bernoulli polynomials of the second kind as follows:

t
logλ(1 + t)

ex logλ(1+t) =
∞∑

n=0

bn,λ(x)
tn

n!
. (51)

Then, from (17), we see that

∞∑
n=0

bn,λ(x)
tn

n!
=

t
log(1 + t)

∫
Zp

(1 + t)λy dμ0(y)ex logλ(1+t). (52)

Note that limλ→0 bn,λ(x) = bn(x) (n ≥ 0). We note that bn,λ = bn,λ(0) are the degenerate
Bernoulli numbers of the second kind.

We note here that

ex logλ(1+t) =
∞∑

n=0

n∑
k=0

S1,λ(n, k)xk tn

n!
. (53)

Here, recalling (14), one should compare (53) with the following:

ex log(1+t) = (1 + t)x =
∞∑

n=0

(x)n
tn

n!

=
∞∑

n=0

n∑
k=0

S1,λ(n, k)(x)k,λ
tn

n!
. (54)

From (51) and (53), we note that

∞∑
n=0

bn,λ(x)
tn

n!
=

∞∑
l=0

bl,λ
tl

l!

∞∑
m=0

m∑
k=0

S1,λ(m, k)xk tm

m!

=
∞∑

n=0

n∑
m=0

m∑
k=0

(
n
m

)
bn–m,λS1,λ(m, k)xk tn

n!

=
∞∑

n=0

n∑
k=0

n∑
m=k

(
n
m

)
bn–m,λS1,λ(m, k)xk tn

n!
. (55)

Thus we get the next result by (55).

Theorem 14 For n ≥ 0, we have

bn,λ(x) =
n∑

k=0

n∑
m=k

(
n
m

)
bn–m,λS1,λ(m, k)xk .
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By Theorem 2 and (53), we get

t
logλ(1 + t)

ex logλ(1+t)

=
∞∑

m=0

( m∑
k=0

k∑
i=0

(
m
k

)
λiBiS1(k, i)bm–k

)
tm

m!

∞∑
l=0

( l∑
j=0

S1,λ(l, j)xj

)
tl

l!

=
∞∑

n=0

( n∑
m=0

m∑
k=0

k∑
i=0

n–m∑
j=0

(
n
m

)(
m
k

)
S1(k, i)S1,λ(n – m, j)λiBibm–kxj

)
tn

n!

=
∞∑

n=0

( n∑
j=0

n–j∑
m=0

m∑
k=0

k∑
i=0

(
n
m

)(
m
k

)
S1(k, i)S1,λ(n – m, j)λiBibm–kxj

)
tn

n!
. (56)

Therefore, we obtain the following theorem.

Theorem 15 For n ≥ 0, we have

bn,λ(x) =
n∑

j=0

( n–j∑
m=0

m∑
k=0

k∑
i=0

(
n
m

)(
m
k

)
S1(k, i)S1,λ(n – m, j)λiBibm–k

)
xj.

From (9), we note that

1
t
(
eλ(t) – 1

)
ext =

∞∑
l=0

(1)l+1,λ

l + 1
tl

l!

∞∑
m=0

xm tm

m!

=
∞∑

n=0

( n∑
l=0

(
n
l

)
(1)l+1,λ

l + 1
xn–l

)
tn

n!
. (57)

Thus, by replacing t by logλ(1 + t) in (57) and making use of (23), we get

t
logλ(1 + t)

ex logλ(1+t) =
∞∑

m=0

m∑
l=0

(
m
l

)
(1)l+1,λ

l + 1
xm–l 1

m!
(
logλ(1 + t)

)m

=
∞∑

m=0

m∑
l=0

(
m
l

)
(1)l+1,λ

l + 1
xm–l

∞∑
n=m

S1,λ(n, m)
tn

n!

=
∞∑

n=0

( n∑
m=0

m∑
l=0

(
m
l

)
(1)l+1,λ

l + 1
xm–lS1,λ(n, m)

)
tn

n!

=
∞∑

n=0

( n∑
l=0

n∑
m=l

(
m
l

)
(1)m–l+1,λ

m – l + 1
S1,λ(n, m)xl

)
tn

n!
. (58)

Therefore, by (51) and (58), we obtain the following theorem.

Theorem 16 For n ≥ 0, we have

bn,λ(x) =
n∑

l=0

n∑
m=l

(
m
l

)
(1)m–l+1,λ

m – l + 1
S1,λ(n, m)xl.
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From (17), we note that

∫
Zp

(1 + t)λy dμ0(y)ex logλ(1+t) =
log(1 + t)

t
t

logλ(1 + t)
ex logλ(1+t)

=
∞∑
l=0

Dl

l!
tl

∞∑
m=0

bm,λ(x)
tm

m!

=
∞∑

n=0

( n∑
m=0

(
n
m

)
bm,λ(x)Dn–m

)
tn

n!
. (59)

On the other hand, from (53) we have

∫
Zp

(1 + t)λy dμ0(y)ex logλ(1+t) =
∞∑

m=0

∫
Zp

(λy)m dμ0(y)
tm

m!

∞∑
l=0

l∑
k=0

S1,λ(l, k)xk tl

l!

=
∞∑

n=0

n∑
l=0

l∑
k=0

(
n
l

)
S1,λ(l, k)

∫
Zp

(λy)n–l dμ0(y)xk tn

n!

=
∞∑

n=0

n∑
k=0

n∑
l=k

(
n
l

)
S1,λ(l, k)

∫
Zp

(λy)n–l dμ0(y)xk tn

n!
. (60)

Therefore, by (59) and (60), we obtain the following theorem.

Theorem 17 For n ≥ 0, we have

n∑
m=0

(
n
m

)
bm,λ(x)Dn–m =

n∑
k=0

n∑
l=k

(
n
l

)
S1,λ(l, k)

∫
Zp

(λy)n–l dμ0(y)xk .

By replacing t by eλ(t) – 1 in (51), we get

eλ(t) – 1
t

ext =
∞∑

m=0

bm,λ(x)
1

m!
(
eλ(t) – 1

)m =
∞∑

n=0

( n∑
m=0

S2,λ(n, m)bm,λ(x)

)
tn

n!
. (61)

Therefore, by (57) and (61), we obtain the following theorem.

Theorem 18 For n ≥ 0, we have

n∑
m=0

S2,λ(n, m)bm,λ(x) =
n∑

l=0

(
n
l

)
(1)l+1,λ

l + 1
xn–l.

For r ∈ N, we define the fully degenerate Bernoulli polynomials of the second kind of
order r by the following multiple p-adic integrals on Zp:

(
t

log(1 + t)

)r ∫
Zp

· · ·
∫
Zp

(1 + t)λ(x1+x2+···+xr) dμ0(x1) dμ0(x2) · · ·dμ0(xr)ex logλ(1+t)

=
(

t
logλ(1 + t)

)r

ex logλ(1+t) =
∞∑

n=0

b(r)
n,λ(x)

tn

n!
. (62)
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Note here that b(r)
n,λ = b(r)

n,λ(0) are the degenerate Bernoulli numbers of the second of
order r.

On the other hand, we have

(
t

log(1 + t)

)r ∫
Zp

· · ·
∫
Zp

(1 + t)λ(x1+x2+···+xr) dμ0(x1) dμ0(x2) · · ·dμ0(xr)

=
∞∑
l=0

B(l–r+1)
l (1)

tl

l!

∞∑
m=0

λmB(r)
m

1
m!

(
log(1 + t)

)m

=
∞∑
l=0

B(l–r+1)
l (1)

tl

l!

∞∑
m=0

λmB(r)
m

∞∑
k=m

S1(k, m)
tk

k!

=
∞∑
l=0

B(l–r+1)
l (1)

tl

l!

∞∑
k=0

k∑
m=0

λmB(r)
m S1(k, m)

tk

k!

=
∞∑

n=0

( n∑
k=0

k∑
m=0

(
n
k

)
λmB(r)

m S1(k, m)B(n–k–r+1)
n–k (1)

)
tn

n!
. (63)

Therefore, by (53), (62), and (63), we obtain the following theorem.

Theorem 19 For n ≥ 0, we have

b(r)
n,λ(x) =

n∑
j=0

n–j∑
m=0

m∑
k=0

k∑
i=0

(
n
m

)(
m
k

)
S1(k, i)S1,λ(n – m, j)λiB(r)

i B(m–k–r+1)
m–k (1)xj.

By replacing t by eλ(t) – 1 in (62), we get

∞∑
m=0

b(r)
m,λ(x)

1
m!

(
eλ(t) – 1

)m =
r!
tr

1
r!

(
eλ(t) – 1

)rext

=
∞∑

m=0

S2,λ(m + r, r)(m+r
r

) tm

m!

∞∑
l=0

xl tl

l!

=
∞∑

n=0

n∑
m=0

(n
m
)

(m+r
r

)S2,λ(m + r, r)xn–m tn

n!
. (64)

On the other hand,

∞∑
m=0

b(r)
m,λ(x)

1
m!

(
eλ(t) – 1

)m =
∞∑

n=0

( n∑
m=0

b(r)
m,λ(x)S2,λ(n, m)

)
tn

n!
. (65)

From (64) and (65), we obtain the following theorem.

Theorem 20 For n ≥ 0 and r ∈ N, we have

n∑
m=0

(n
m
)

(m+r
r

)S2,λ(m + r, r)xn–m =
n∑

m=0

S2,λ(n, m)b(r)
m,λ(x).
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From (37), we recall here that

1
k!

(
eλ(t) – 1

)k =
∞∑

n=k

S2,λ(n, k)
tn

n!
(k ≥ 0). (66)

Thus, by (66), we get

(eλ(t) – 1)r

tr ext =
∞∑

n=0

n∑
m=0

(n
m
)

(m+r
r

)S2,λ(m + r, r)xn–m tn

n!
. (67)

By replacing t by logλ(1 + t), we get

(
t

logλ(1 + t)

)r

ex logλ(1+t) =
∞∑

m=0

m∑
k=0

(m
k
)

(k+r
r

)S2,λ(k + r, r)xm–k 1
m!

(
logλ(1 + t)

)m

=
∞∑

n=0

n∑
m=0

m∑
k=0

(m
k
)

(k+r
r

)S2,λ(k + r, r)S1,λ(n, m)xm–k tn

n!
.

=
∞∑

n=0

( n∑
k=0

n∑
m=k

(m
k
)

(m–k+r
r

)S2,λ(m – k + r, r)S1,λ(n, m)xk

)
tn

n!
. (68)

Therefore, by (62) and (68), we obtain the following theorem.

Theorem 21 For n ≥ 0, we have

b(r)
n,λ(x) =

n∑
k=0

n∑
m=k

(m
k
)

(m–k+r
r

)S2,λ(m – k + r, r)S1,λ(n, m)xk .

From (62), we note that
∫
Zp

· · ·
∫
Zp

(1 + t)λ(x1+···+xr) dμ0(x1) · · ·dμ0(xr)ex logλ(1+t)

=
(

log(1 + t)
t

)r( t
logλ(1 + t)

)r

ex logλ(1+t)

=
∞∑
l=0

S1(l + r, r)(l+r
r
) tl

l!

∞∑
m=0

b(r)
m,λ(x)

tm

m!

=
∞∑

n=0

( n∑
l=0

(n
l
)

(l+r
r
)S1(l + r, r)b(r)

n–l,λ(x)

)
tn

n!
. (69)

On the other hand, (69) is also equal to

∞∑
m=0

∫
Zp

· · ·
∫
Zp

(
λ(x1 + · · · + xr)

)
m dμ0(x1) · · ·dμ0(xr)

tm

m!

∞∑
l=0

l∑
k=0

S1,λ(l, k)xk tl

l!

=
∞∑

n=0

n∑
m=0

n–m∑
k=0

(
n
m

)
S1,λ(n – m, k)xk

×
∫
Zp

· · ·
∫
Zp

(
λ(x1 + · · · + xr)

)
m dμ0(x1) · · ·dμ0(xr)

tn

n!
. (70)
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Thus, by (69) and (70), we obtain the following theorem.

Theorem 22 For n ≥ 0, we have

n∑
l=0

(n
l
)

(l+r
r
)S1(l + r, r)b(r)

n–l,λ(x)

=
n∑

m=0

n–m∑
k=0

(
n
m

)
S1,λ(n – m, k)xk

∫
Zp

· · ·
∫
Zp

(
λ(x1 + · · · + xr)

)
m dμ0(x1) · · ·dμ0(xr).

Observe from (62) with λ = 1 that b(r)
n,1(x) = xn, b(r)

n,1 = b(r)
n,1(0) = δn,0.

Now, let us take λ = 1 in Theorem 22. Then we have, for n ≥ 0,

n∑
l=0

(n
l
)

(l+r
r
)S1(l + r, r)xn–l

=
n∑

m=0

n–m∑
k=0

(
n
m

)
S1,1(n – m, k)xk

∫
Zp

· · ·
∫
Zp

(x1 + · · · + xr)m dμ0(x1) · · ·dμ0(xr). (71)

In addition, we have
∫
Zp

· · ·
∫
Zp

(x1 + · · · + xr)m dμ0(x1) · · ·dμ0(xr)

=
m∑

l=0

S1(m, l)
∫
Zp

· · ·
∫
Zp

(x1 + · · · + xr)l dμ0(x) · · ·dμr(x)

=
m∑

l=0

S1(m, l)B(r)
l . (72)

Thus, by (71) and (72), for n ≥ 0, we get the following theorem.

Theorem 23

n∑
l=0

(n
l
)

(l+r
r
)S1(l + r, r)xn–l =

n∑
m=0

n–m∑
k=0

m∑
l=0

(
n
m

)
S1,1(n – m, k)S1(m, l)B(r)

l xk .

4 Conclusion
In this paper, we defined the partially and fully degenerate Bernoulli polynomials of the
second kind and their higher-order versions by means of Volkenborn p-adic integrals. We
derived several explicit expressions of those polynomials and identities involving them
and some other special numbers and polynomials.

Next, we would like to mention three possible applications of our results. The first one
is their possible application to probability theory. Indeed, in [18] we demonstrated that
both the degenerate Stirling polynomials of the second and the r-truncated degenerate
Stirling polynomials of the second kind appear in certain expressions of the probability
distributions of appropriate random variables. The second one is their possible applica-
tion to differential equations from which some useful identities follow. For example, in
[7] an infinite family of nonlinear differential equations, having the generating function
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of the degenerate Bernoulli numbers of the second kind as a solution, were derived. As a
result, it was possible to derive an identity involving the ordinary and higher-order degen-
erate Bernoulli numbers of the second kind and generalized harmonic numbers (see also
[4]). The third one is their possible application to identities of symmetry. For instance,
in [13] we obtained many symmetric identities in three variables related to degenerate
Euler polynomials and alternating generalized falling factorial sums. Each of these possi-
ble applications of the special polynomials considered in this paper requires considerable
amount of work and hence needs to appear in the form of separate papers.

Finally, as one of our future projects, we will continue to study various degenerate ver-
sions of special polynomials and numbers and investigate their possible applications to
physics, science, and engineering as well as to mathematics.
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