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Abstract
In the article, we describe the Grüss type inequality, provide some related inequalities
by use of suitable fractional integral operators, address several variants by utilizing the
generalized proportional Hadamard fractional (GPHF) integral operator. It is pointed
out that our introduced new integral operators with nonlocal kernel have diversified
applications. Our obtained results show the computed outcomes for an exceptional
choice to the GPHF integral operator with parameter and the proportionality index.
Additionally, we illustrate two examples that can numerically approximate these
operators.
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1 Introduction
A revolution inside the discipline of differentiation and integration has been witnessed:
classical differentiation has become extended by the use of nonlocal operators. The clas-
sical derivative was combined with a strength regulation sort of kernel and ultimately this
provided the upward thrust to new calculus referred to as the fractional calculus. The
newly proposed calculus permits one to depict progressively complex problems with var-
ious properties, for example, in thermal conduction where the heat is streaming inside a
medium with two distinct properties and a new mathematical model of heat conduction,
one considered isotropic generalized thermoelasticity, with a three-phase lag, this model
being considered in terms of the methodology of fractional calculus. Several significant
results have been obtained [1–10].

Fractional calculus in continuous and discrete operators has also been comprehensively
utilized in numerous fields [11–30]. But the concept has been propagated and imple-
mented in applied mathematics, physics and porous media as a mathematical model. Var-
ious recognized generalized fractional operators comprise the Hadamard operator, the
Erdélyi–Kober operator, the Saigo operator, the Gaussian hypergeometric operator, the
Marichev–Saigo–Maeda fractional integral operator and so on. Out of these operators,
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the Riemann–Liouville fractional integral operator has been broadly applied by scientists
in research just from an application viewpoint. For more details concerning fractional cal-
culus operators, one may also refer to the expositions by Miller and Ross [31], Mathai [32],
Kiryakova [33] and Baleanu et al. [34]. A captivating feature of this study is that there are
numerous fractional operators that have fertile utilities in numerous areas of pure and
applied mathematics. There are ideas with various qualities, and this grants the users an
opportunity to select the suitable operator for exhibiting the issue under consideration.
Moreover, as a consequence of its smoothness in the real world, experts have provided
much contemplation to currently resolve fractional operators without singular kernels
[35–40], and presently, a while later, various articles dealing with these sorts of fractional
operators have been published.

Recently, the generalized proportional fractional integral operator contemplated by
Jarad et al. [41] has potential application in statistical theory and also there have been en-
thralling presentations in the theory of fractional Schrödinger equations [42, 43]. These
kinds of speculations elevate future studies to establish novel ideas to modify the frac-
tional operators and help us to attain integral inequalities via such generalized fractional
operators. Integral inequalities and their utilities perform- a crucial job in the theory of
differential and difference equations. An assortment of distinct kinds of classical variants
and their modifications have been built up by employing the classical fractional integral,
derivative operators and their speculative ideas in the matter [44–46]. Recently, the Gron-
wall and the Minkowski inequalities concerning to the generalized proportional fractional
derivative and fractional integral were explored by Alzabut et al. [3] and Rahman et al. [43].
Approving this predilection, we present an adjusted form for many recognized Grüss type
inequalities [47] in the sense of the generalized proportional Hadamard fractional inte-
gral that could be more proficient and much more pertinent than the current ones. The
well-known Grüss inequality can be stated as follows.

Let F ,G : [ν1,ν2] → (0,∞) be two positive real-valued functions such that m ≤ F (l) ≤
M and n ≤ G(l) ≤N for all l ∈ [ν1,ν2]. Then the inequality

∣
∣
∣
∣

1
ν2 – ν1

∫ ν2

ν1

F (l)G(l) dl –
1

(ν2 – ν1)2

∫ ν2

ν1

F (l) dl
∫ ν2

ν1

G(l) dl
∣
∣
∣
∣

≤ 1
4

(M – m)(N – n) (1.1)

holds with the best possible constant 1/4.
Inequality (1.1) is a marvelous instrument for exploring various systematic areas of sci-

ence comprising chaos, porous media, biotechnology, heat transfer, time scale analysis and
so on. There has been a continuous growth of eagerness for such a field of research to ad-
dress the problems of various usages of these generalizations. Such discoveries had been
analyzed by various investigators who in this way used assorted techniques for exploring
and proposing these variations [48–53].

In this paper a new concept of integration that takes into account the fractional operator
and also several generalizations will be introduced. Another important problem that could
be handled by the new operators is the Grüss type and several other generalizations. We
present, in general, three numerical schemes (Young, weighted arithmetic and geometric
mean) that can be used to find solutions via the generalized proportional Hadamard frac-
tional integral. Interestingly, several existing results recaptured by the results presented
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are Hadamard fractional integral inequalities. Therefore, the concept is rather novel and
appears to make it possible to explore new directions of research as regards distinct sci-
entific areas in pure and applied mathematics. We observe that the GPHF integral is able
to show some kind of self-similarities.

2 Prelude
Now, we demonstrate concisely some essential preliminaries on fractional calculus for the
convenience of the reader. The basic information is given in the monograph [37].

The left and right sides generalized proportional integral operators were introduced by
Jarad et al. [41], they are defined by

(

J
γ ,ρ
ν1,lF

)

(l) =
1

ργ Γ (γ )

∫ l

ν1

exp[ ρ–1
ρ

(l – ϑ)]
(l – ϑ)1–γ

F (ϑ) dϑ (ν1 < l) (2.1)

and

(

J
γ ,ρ
ν2,lF

)

(l) =
1

ργ Γ (γ )

∫ ν2

l

exp[ ρ–1
ρ

(ϑ – l)]
(ϑ – l)1–γ

F (ϑ) dϑ (l < ν2), (2.2)

where the proportionality index ρ ∈ (0, 1], γ ∈ C with R(γ ) > 0, and Γ (l) =
∫ ∞

0 ϑ l–1e–ϑ dϑ

is the Euler gamma function [54–56].

Remark 2.1 Letting ρ = 1. Then (2.1) and (2.2) reduce to the following left and right side
Riemann–Liouville fractional integral operators:

(

J
γ

ν1,lF
)

(l) =
1

Γ (γ )

∫ l

ν1

F (ϑ)
(l – ϑ)1–γ

dϑ (ν1 < l) (2.3)

and

(

J
γ

ν2,lF
)

(l) =
1

Γ (γ )

∫ ν2

l

F (ϑ)
(ϑ – l)1–γ

dϑ (l < ν2). (2.4)

Next, we recall the concept of GPHF integral operator, which was introduced by Rahman
et al. in [49]

Definition 2.2 ([49]) Let γ > 0 and the proportionality index ρ ∈ (0, 1]. Then the left and
right side GPHF integrals are defined by

(

J
γ ,ρ
ν1,lF

)

(l) =
1

ργ Γ (γ )

∫ l

ν1

exp[ ρ–1
ρ

(ln l
ϑ

)]

(ln l
ϑ

)1–γ

F (ϑ)
ϑ

dϑ (ν1 < l) (2.5)

and

(

J
γ ,ρ
ν2,lF

)

(l) =
1

ργ Γ (γ )

∫ ν2

l

exp[ ρ–1
ρ

(ln ϑ
l )]

(ln ϑ
l )1–γ

F (ϑ)
ϑ

dϑ (l < ν2). (2.6)
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Definition 2.3 Let γ > 0 and the proportionality index ρ ∈ (0, 1]. Then the one-sided
GPHF integral is defined as

(

J
γ ,ρ
1–,lF

)

(l) =
1

ργ Γ (γ )

∫ l

1

exp[ ρ–1
ρ

(ln( l
ϑ

)]

(ln l
ϑ

)1–γ

F (ϑ)
ϑ

dϑ (ϑ > 1). (2.7)

Remark 2.4 Letting ρ = 1. Then (2.5)–(2.7) become the Hadamard fractional integrals

(

J
γ ,ρ
ν1,lF

)

(l) =
1

ργ Γ (γ )

∫ l

ν1

F (ϑ)
ϑ(ln l – lnϑ)1–γ

dϑ (ν1 < l), (2.8)

(

J
γ ,ρ
ν2,lF

)

(l) =
1

ργ Γ (γ )

∫ ν2

l

F (ϑ)
ϑ(ln l – lnϑ)1–γ

dϑ (l < ν2), (2.9)

and

(

J
γ ,ρ
1–,lF

)

(l) =
1

ργ Γ (γ )

∫ l

1

F (ϑ)
ϑ(lnϑ – ln l)1–γ

dϑ (ϑ > 1). (2.10)

For convenience, we give the semigroup property

(

J
γ ,ρ
1–,lF

)

(l)
(

J
�,ρ
1–,lF

)

(l) =
(

J
γ +�,ρ
1–,l F

)

(l), (2.11)

which implies the commutative property,

(

J
γ ,ρ
1–,lF

)

(l)
(

J
�,ρ
1–,lF

)

(l) =
(

J
�,ρ
1–,lF

)

(l)
(

J
γ ,ρ
1–,lF

)

(l). (2.12)

Remark 2.5 If we choose ρ = 1, then (2.11) becomes the result of [32].

3 Main results
In the section, we will provide the refinements for some classical variants by utilizing the
GPHF integral operator defined in (2.7).

Theorem 3.1 Let ρ ∈ (0, 1], γ > 0, and F be a positive real-valued function defined on
[1,∞). Assume that

(I) There exist two integrable functions ϕ1 and ϕ2 defined on [1,∞) such that

ϕ1(l) ≤F (l) ≤ ϕ2(l) (3.1)

for all l ∈ [1,∞).
Then one has

(

J
γ ,ρ
1–,lϕ2

)

(l)
(

J
�,ρ
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)

(l) +
(

J
γ ,ρ
1–,lF

)

(l)
(

J
�,ρ
1–,lϕ1

)

(l)

≥ (

J
γ ,ρ
1–,lϕ2

)

(l)
(

J
�,ρ
1–,lϕ1

)

(l) +
(

J
γ ,ρ
1–,lF

)

(l)
(

J
�,ρ
1–,lF

)

(l), (3.2)

for all l > 1, γ > 0 and � ∈ (0, 1].
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Proof Let θ ≥ 1 and ς ≥ 1. Then from (I) we have

(

ϕ2(θ ) – F (θ )
)(

F (ς ) – ϕ1(ς )
) ≥ 0. (3.3)

Therefore,

ϕ2(θ )F (ς ) + ϕ1(ς )F (θ ) ≥ ϕ1(ς )ϕ2(θ ) + F (θ )F (ς ). (3.4)

Multiplying both sides of (3.4) by 1
ργ Γ (γ )

exp[ ρ–1
ρ ln( l

θ
)](ln( l

θ
))γ –1

θ
and integrating the obtained

inequality from 1 to l, we get

F (ς )
1

ργ Γ (γ )

∫ l

1
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ρ

ln( l
θ

)](ln( l
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θ
ϕ2(θ ) dθ
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1

ργ Γ (γ )
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1
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θ
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θ
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F (θ ) dθ
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1

ργ Γ (γ )

∫ l

1

exp[ ρ–1
ρ

ln( l
θ

)](ln( l
θ

))γ –1

θ
ϕ2(θ ) dθ

+ F (ς )
1

ργ Γ (γ )

∫ l

1

exp[ ρ–1
ρ

ln( l
θ

)](ln( l
θ

))γ –1

θ
F (θ ) dθ , (3.5)

that is,

F (ς )
(

J
γ ,ρ
1–,lϕ2

)

(l) + ϕ1(ς )
(

J
γ ,ρ
1–,lF

)

(l) ≥ ϕ1(ς )
(

J
γ ,ρ
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)

(l) + F (ς )
(

J
γ ,ρ
1–,lF

)

(l). (3.6)

Multiplying both sides of (3.6) by 1
ρ�Γ (�)

exp[ ρ–1
ρ ln( l

ς )](ln( l
ς ))�–1

ς
and integrating the obtained

results from 1 to l, we have

(

J
γ ,ρ
1–,lϕ2

)

(l)
1

ρ�Γ (�)

∫ l

1
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ρ

ln( l
ς

)](ln( l
ς

))�–1

ς
F (ς ) dς

+
(

J
γ ,ρ
1–,lF

)

(l)
1
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∫ l

1

exp[ ρ–1
ρ

ln( l
ς

)](ln( l
ς

))�–1

ς
ϕ1(ς ) dς

≥ (

J
γ ,ρ
1–,lϕ2

)

(l)
1

ρ�Γ (�)

∫ l

1

exp[ ρ–1
ρ

ln( l
ς

)](ln( l
ς

))�–1

ς
ϕ1(ς ) dς

+
(

J
γ ,ρ
1–,lF

)

(l)
1

ρ�Γ (�)

∫ l

1

exp[ ρ–1
ρ

ln( l
ς

)](ln( l
ς

))�–1

ς
F (ς ) dς . (3.7)

From (3.7) we immediately get the desired inequality (3.2). �

Corollary 3.2 is a special case of Theorem 3.1.

Corollary 3.2 Letting ρ = 1. Then Theorem 3.1 leads to the Hadamard fractional integrals
inequality

(

J
γ

1–,lϕ2
)
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J
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)

(l) +
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J
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1–,lF
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J
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≥ (

J
γ

1–,lϕ2
)

(l)
(

J
�

1–,lϕ1
)

(l) +
(

J
γ

1–,lF
)

(l)
(

J
�

1–,lF
)

(l),

which was proved by Sudsutad et al. in [48].

Theorem 3.3 Let ρ ∈ (0, 1], γ ,� > 0, and F and G be two positive real-valued functions
defined on [1,∞) such that condition (I) given in Theorem 3.1 and condition (II) hold.

(II) There exist two integrable functions ω1 and ω2 defined on [1,∞) such that

ω1(l) ≤ G(l) ≤ ω2(l) (3.8)

for all l ∈ [1,∞).
Then, for all x,γ ,� > 0, we have the following inequalities:

(N1)
(

J
γ ,ρ
1–,lϕ2

)

(l)
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J
�,ρ
1–,lG

)

(l) +
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)

(l)
(

J
�,ρ
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J
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J
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J
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)
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γ ,ρ
1–,lω2

)

(l) +
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)
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J
�,ρ
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)

(l)

≥ (

J
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)

(l)
(

J
�,ρ
1–,lG

)

(l) +
(

J
γ ,ρ
1–,lF

)

(l)
(

J
�,ρ
1–,lω2

)

(l),

(N4)
(

J
γ ,ρ
1–,lϕ1

)

(l)
(

J
�,ρ
1–,lω1

)

(l) +
(

J
γ ,ρ
1–,lF

)

(l)
(

J
�,ρ
1–,lG

)

(l)

≥ (

J
γ ,ρ
1–,lϕ1

)
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J
�,ρ
1–,lG

)

(l) +
(

J
�,ρ
1–,lω1

)
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(

J
γ ,ρ
1–,lF

)

(l).

(3.9)

Proof We first prove (N1). Let l ∈ [1,∞). Then it follows from (I) and (II) that

(

ϕ2(θ ) – F (θ )
)(

G(ς ) – ω1(ς )
) ≥ 0, (3.10)

that is,

ϕ2(θ )G(ς ) + ω1(ς )F (θ ) ≥ ω1(ς )ϕ2(θ ) + G(ς )F (θ ). (3.11)

Multiplying both sides of (3.11) by 1
ργ Γ (γ )

exp[ ρ–1
ρ ln( l

θ
)](ln( l

θ
))γ –1

θ
and integrating the obtained

inequality from 1 to l lead to

G(ς )
1

ργ Γ (γ )

∫ l

1

exp[ ρ–1
ρ

ln( l
θ

)](ln( l
θ

))γ –1

θ
ϕ2(θ ) dθ

+ ω1(ς )
1

ργ Γ (γ )

∫ l

1

exp[ ρ–1
ρ

ln( l
θ

)](ln( l
θ

))γ –1

θ
F (θ ) dθ

≥ ω1(ς )
1

ργ Γ (γ )

∫ l

1

exp[ ρ–1
ρ

ln( l
θ

)](ln( l
θ

))γ –1

θ
ϕ2(θ ) dθ

+ G(ς )
1

ργ Γ (γ )

∫ l

1

exp[ ρ–1
ρ

ln( l
θ

)](ln( l
θ

))γ –1

θ
F (θ ) dθ . (3.12)
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Inequality (3.12) can be rewritten as

G(ς )
(

J
γ ,ρ
1–,lϕ2

)

(l) + ω1(ς )
(

J
γ ,ρ
1–,lF

)

(l) ≥ ω1(ς )
(

J
γ ,ρ
1–,lϕ2

)

(l) + G(ς )
(

J
γ ,ρ
1–,lF

)

(l). (3.13)

Multiplying both sides of (3.13) by 1
ρ�Γ (�)

exp[ ρ–1
ρ ln( l

ς )](ln( l
ς ))�–1

ς
and integrating the ob-

tained inequality from 1 to l we get

(

J
γ ,ρ
1–,lϕ2

)

(l)
1

ρ�Γ (�)

∫ l

1

exp[ ρ–1
ρ

ln( l
ς

)](ln( l
ς

))�–1

ς
G(ς ) dς

+
(

J
γ ,ρ
1–,lF

)

(l)
1

ρ�Γ (�)

∫ l

1

exp[ ρ–1
ρ

ln( l
ς

)](ln( l
ς

))�–1

ς
ω1(ς ) dς

≥ (

J
γ ,ρ
1–,lϕ2

)

(l)
1

ρ�Γ (�)

∫ l

1

exp[ ρ–1
ρ

ln( l
ς

)](ln( l
ς

))�–1

ς
ω1(ς ) dς

+
(

J
γ ,ρ
1–,lF

)

(l)
1

ρ�Γ (�)

∫ l

1

exp[ ρ–1
ρ

ln( l
ς

)](ln( l
ς

))�–1

ς
G(ς ) dς ,

which leads to the desired inequality (N1)

(

J
γ ,ρ
1–,lϕ2

)

(l)
(

J
�,ρ
1–,lG

)

(l) +
(

J
γ ,ρ
1–,lF

)

(l)
(

J
�,ρ
1–,lω1

)

(l)

≥ (

J
γ ,ρ
1–,lϕ2

)

(l)
(

J
�,ρ
1–,lω1

)

(l) +
(

J
γ ,ρ
1–,lF

)

(l)
(

J
�,ρ
1–,lG

)

(l).

Inequalities (N2)–(N4) can be proved by using the similar arguments as in the proof of
inequality (N1) and the facts that

(

ω2(θ ) – G(θ )
)(

F (ς ) – ϕ1(ς )
) ≥ 0,

(

ϕ2(θ ) – F (θ )
)(

G(ς ) – ω2(ς )
) ≤ 0,

(

ϕ1(θ ) – F (θ )
)(

G(ς ) – ω1(ς )
) ≤ 0. �

As a special case of Theorem 3.3, we have Corollary 3.4.

Corollary 3.4 If ρ = 1, then Theorem 3.3 leads to the Hadamard fractional integrals in-
equalities [48]

(N5)
(

J
γ

1–,lϕ2
)

(l)
(

J
�

1–,lG
)

(l) +
(

J
γ

1–,lF
)

(l)
(

J
�

1–,lω1
)

(l)

≥ (

J
γ

1–,lϕ2
)

(l)
(

J
�

1–,lω1
)

(l) +
(

J
γ

1–,lF
)

(l)
(

J
�

1–,lG
)

(l),

(N6)
(

J
�

1–,lϕ1
)

(l)
(

J
γ

1–,lG
)

(l) +
(

J
�

1–,lω2
)

(l)
(

J
�

1–,lF
)

(l)

≥ (

J
�

1–,lϕ1
)

(l)
(

J
γ

1–,lω2
)

(l) +
(

J
�

1–,lF
)

(l)
(

J
γ

1–,lG
)

(l),
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(

J
�

1–,lω2
)

(l)
(

J
γ

1–,lϕ2
)

(l) +
(

J
γ

1–,lF
)

(l)
(

J
�

1–,lG
)

(l)

≥ (

J
γ

1–,lϕ2
)

(l)
(

J
�

1–,lG
)

(l) +
(

J
γ

1–,lF
)

(l)
(

J
�

1–,lω2
)
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(N8)
(

J
γ

1–,lϕ1
)

(l)
(

J
�

1–,lω1
)

(l) +
(

J
γ

1–,lF
)

(l)
(

J
�

1–,lG
)

(l)

≥ (

J
γ

1–,lϕ1
)

(l)
(

J
�

1–,lG
)

(l) +
(

J
�

1–,lω1
)

(l)
(

J
γ

1–,lF
)

(l).
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Theorem 3.5 Let ρ ∈ (0, 1], γ ,� > 0, p, q > 0 with 1/p + 1/q = 1, and F and G be two
positive real-valued functions defined on [1,∞). Then the following inequalities hold for
l > 1:

(N9)
1
p
(

J
γ ,ρ
1–,lFp)(l)

(

J
�,ρ
1–,lGp)(l) +

1
q
(

J
γ ,ρ
1–,lGq)(l)

(

J
�,ρ
1–,lFq)(l)

≥ (

J
γ ,ρ
1–,lFG

)

(l)
(

J
�,ρ
1–,lGF

)

(l),

(N10)
1
p
(

J
�,ρ
1–,lGq)(l)

(

J
γ ,ρ
1–,lFp)(l) +

1
q
(

J
�,ρ
1–,lFp)(l)

(

J
γ ,ρ
1–,lGq)(l)

≥ (

J
�,ρ
1–,lGq–1Fp–1)(l)

(

J
γ ,ρ
1–,lFG

)

(l),

(N11)
1
p
(

J
�,ρ
1–,lG2)(l)

(

J
γ ,ρ
1–,lFp)(l) +

1
q
(

J
�,ρ
1–,lF2)(l)

(

J
γ ,ρ
1–,lGq)(l)

≥ (

J
�,ρ
1–,lF

2
q G

2
p
)

(l)
(

J
γ ,ρ
1–,lFG

)

(l),

(N12)
1
p
(

J
�,ρ
1–,lGq)(l)

(

J
γ ,ρ
1–,lF2)(l) +

1
q
(

J
�,ρ
1–,lFp)(l)

(

J
γ ,ρ
1–,lG2)(l)

≥ (

J
�,ρ
1–,lFp–1Gq–1)(l)

(

J
γ ,ρ
1–,lF

2
p G

2
q
)

(l).

(3.14)

Proof It follows from the Young inequality [38] that

1
p
μp +

1
q
νq ≥ μν (3.15)

for all μ,ν ≥ 0.
Let θ ,ς > 1, μ = F (θ )G(ς ) and ν = F (ς )G(θ ). Then inequality (3.15) becomes

1
p
(

F (θ )G(ς )
)p +

1
q
(

F (ς )G(θ )
)q ≥ (

F (θ )G(ς )
)(

F (ς )G(θ )
)

. (3.16)

Multiplying both sides of inequality (3.16) by
exp[ ρ–1

ρ (ln( l
θ

)](ln( l
θ

))γ –1

θργ Γ (γ ) and integrating the ob-
tained inequality from 1 to l give

Gp(ς )
pργ Γ (γ )

∫ l

1

exp[ ρ–1
ρ

(ln( l
θ

)](ln( l
θ

))γ –1

θ
Fp(θ ) dθ

+
Fq(ς )

qργ Γ (γ )

∫ l

1

exp[ ρ–1
ρ

(ln( l
θ

)](ln( l
θ

))γ –1

θ
Gq(θ ) dθ

≥ G(ς )F (ς )
ργ Γ (γ )

∫ l

1

exp[ ρ–1
ρ

(ln( l
θ

)](ln( l
θ

))γ –1

θ
F (θ )G(θ ) dθ . (3.17)

Inequality (3.17) can be rewritten as

Gp(ς )
p

(

J
γ ,ρ
1–,lFp)(l) +

Fq(ς )
q

(

J
γ ,ρ
1–,lGq)(l) ≥ G(ς )F (ς )

(

J
γ ,ρ
1–,lFG

)

(l). (3.18)
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Multiplying both sides of inequality (3.18) by
exp[ ρ–1

ρ (ln( l
ς )](ln( l

ς ))�–1

ςρ�Γ (�) and integrating the ob-
tained result from 1 to l, one has

1
p
(

J
γ ,ρ
1–,lFp)(l)

1
ρ�Γ (�)

∫ l

1

exp[ ρ–1
ρ

(ln( l
ς

)](ln( l
ς

))�–1

ς
Gp(ς ) dς

+
1
q
(

J
γ ,ρ
1–,lGq)(l)

1
ρ�Γ (�)

∫ l

1

exp[ ρ–1
ρ

(ln( l
ς

)](ln( l
ς

))�–1

ς
Fq(ς ) dς

≥ (

J
γ ,ρ
1–,lFG

)

(l)
∫ l

1

exp[ ρ–1
ρ

(ln( l
ς

)](ln( l
ς

))�–1

ς
G(ς )F (ς ) dς . (3.19)

Inequality (3.19) leads to the conclusion that

1
p
(

J
γ ,ρ
1–,lFp)(l)

(

J
�,ρ
1–,lGp)(l) +

1
q
(

J
γ ,ρ
1–,lGq)(l)

(

J
�,ρ
1–,lFq)(l)

≥ (

J
γ ,ρ
1–,lFG

)

(l)
(

J
�,ρ
1–,lGF

)

(l), (3.20)

which completes the proof of inequality (N9).
Let

μ =
F (θ )
F (ς )

, ν =
G(θ )
G(ς )

(

F (ς ), G(ς ) �= 0
)

,

μ = F (θ )G
2
p (ς ), ν = F

2
q (ς )G(θ ),

and

μ = F
2
p (θ )F (ς ), ν = G

2
q (θ )G(ς )

(

F (ς ),G(ς ) �= 0
)

,

in the Young inequality, respectively. Then inequalities (N10)–(N12) can be proved by use
of similar arguments to the proof of inequality (N9). �

Corollary 3.6 Let ρ = 1. Then Theorem 3.5 leads to the Hadamard fractional integrals
inequalities

(N13)
1
p
(

J
γ

1–,lFp)(l)
(

J
�

1–,lGp)(l) +
1
q
(

J
γ

1–,lGq)(l)
(

J
�

1–,lFq)(l)

≥ (

J
γ

1–,lFG
)

(l)
(

J
�

1–,lGF
)

(l),

(N14)
1
p
(

J
�

1–,lGq)(l)
(

J
γ

1–,lFp)(l) +
1
q
(

J
�

1–,lFp)(l)
(

J
γ

1–,lGq)(l)

≥ (

J
�

1–,lGq–1Fp–1)(l)
(

J
γ

1–,lFG
)

(l),

(N15)
1
p
(

J
�

1–,lG2)(l)
(

J
γ

1–,lFp)(l) +
1
q
(

J
�

1–,lF2)(l)
(

J
γ

1–,lGq)(l)

≥ (

J
�

1–,lF
2
q G

2
p
)

(l)
(

J
γ

1–,lFG
)

(l),

(N16)
1
p
(

J
�

1–,lGq)(l)
(

J
γ

1–,lF2)(l) +
1
q
(

J
�

1–,lFp)(l)
(

J
γ

1–,lG2)(l)

≥ (

J
�

1–,lFp–1Gq–1)(l)
(

J
γ

1–,lF
2
p G

2
q
)

(l).
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Theorem 3.7 Let ρ ∈ (0, 1], γ ,� > 0, p, q > 1 with 1/p + 1/q = 1, and F and G be two
integrable functions defined on [1,∞). Then the inequalities

(N17) p
(

J
γ ,ρ
1–,lF

)

(l)
(

J
�,ρ
1–,lG

)

(l) + q
(

J
�,ρ
1–,lF

)

(l)
(

J
γ ,ρ
1–,lG

)

(l)

≥ (

J
γ ,ρ
1–,lFpGq)(l)

(

J
�,ρ
1–,lFqGp)(l),

(N18) p
(

J
γ ,ρ
1–,lFp–1)(l)

(

J
�,ρ
1–,lFGq)(l) + q

(

J
�,ρ
1–,lGq–1)(l)

(

J
γ ,ρ
1–,lFqG

)

(l)

≥ (

J
γ ,ρ
1–,lGq)(l)

(

J
�,ρ
1–,lFp)(l),

(N19) p
(

J
γ ,ρ
1–,lF

)

(l)
(

J
�,ρ
1–,lG

2
p
)

(l) + q
(

J
γ ,ρ
1–,lG

)

(l)
(

J
�,ρ
1–,lF

2
q
)

(l)

≥ (

J
γ ,ρ
1–,lFpG

)

(l)
(

J
�,ρ
1–,lGqF2)(l),

(N20) p
(

J
γ ,ρ
1–,lF

2
p Gq)(l)

(

J
�,ρ
1–,lGp–1)(l) + q

(

J
γ ,ρ
1–,lGq–1)(l)

(

J
�,ρ
1–,lF

2
q Gp)(l)

≥ (

J
γ ,ρ
1–,lF2)(l)

(

J
�,ρ
1–,lG2)(l),

(3.21)

hold for l > 1.

Proof It follows from the well-known weighted arithmetic–geometric mean inequality
that

pμ + qν ≥ μpνq (3.22)

for μ,ν ≥ 0.
Let ς , θ > 1, μ = F (θ )G(ς ) and ν = F (ς )G(θ ). Then inequality (3.22) leads to

pF (θ )G(ς ) + qF (ς )G(θ ) ≥ (

F (θ )G(ς )
)p(F (ς )G(θ )

)q. (3.23)

Multiplying both sides of inequality (3.23) by

exp[ ρ–1
ρ

(ln( l
θ

)](ln( l
θ

))γ –1 exp[ ρ–1
ρ

(ln( l
ς

)](ln( l
ς

))�–1

θργ Γ (γ )ςρ�Γ (�)

and integrating the obtained inequality from 1 to l, we have

p
ργ Γ (γ )ρ�Γ (�)

×
∫ l

1

∫ l

1

exp[ ρ–1
ρ

(ln( l
θ

)](ln( l
θ

))γ –1 exp[ ρ–1
ρ

(ln( l
ς

)](ln( l
ς

))�–1

θς
F (θ )G(ς ) dθ dς

+
q

ργ Γ (γ )ρ�Γ (�)

×
∫ l

1

∫ l

1

exp[ ρ–1
ρ

(ln( l
θ

)](ln( l
θ

))γ –1 exp[ ρ–1
ρ

(ln( l
ς

)](ln( l
ς

))�–1

θς
F (ς )G(θ ) dθ dς

≥ 1
ργ Γ (γ )ρ�Γ (�)

∫ l

1

∫ l

1

exp[ ρ–1
ρ

(ln( l
θ

)](ln( l
θ

))γ –1 exp[ ρ–1
ρ

(ln( l
ς

)](ln( l
ς

))�–1

θς

× (

F (θ )G(ς )
)p(F (ς )G(θ )

)q dςdθ . (3.24)



Zhou et al. Advances in Difference Equations        (2020) 2020:275 Page 11 of 15

Inequality (3.24) can be rewritten as

p
(

J
γ ,ρ
1–,lF

)

(l)
(

J
�,ρ
1–,lG

)

(l) + q
(

J
�,ρ
1–,lF

)

(l)
(

J
γ ,ρ
1–,lG

)

(l)

≥ (

J
γ ,ρ
1–,lFpGq)(l)

(

J
�,ρ
1–,lFqGp)(l), (3.25)

which completes the proof of inequality (N17).
Let

μ =
F (ς )
F (θ )

, ν =
G(θ )
G(ς )

(

F (θ ),G(ς ) �= 0
)

,

μ = F (θ )G
2
p (ς ), ν = F

2
q (ς )G(θ ),

μ =
F

2
p (θ )

G(ς )
, ν =

F
2
q (ς )

G(θ )
(

G(θ ),G(θ ) �= 0
)

,

in the arithmetic–geometric mean inequality, respectively. Then inequalities (N18)–(N20)
can be proved by using the similar arguments as in the proof of inequality (N17). �

Corollary 3.8 Let ρ = 1. Then Theorem 3.7 leads to the Hadamard fractional integrals
inequalities

(N21) p
(

J
γ

1–,lF
)

(l)
(

J
�

1–,lG
)

(l) + q
(

J
�

1–,lF
)

(l)
(

J
γ

1–,lG
)

(l)

≥ (

J
γ

1–,lFpGq)(l)
(

J
�

1–,lFqGp)(l),

(N22) p
(

J
γ

1–,lFp–1)(l)
(

J
�

1–,lFGq)(l) + q
(

J
�

1–,lGq–1)(l)
(

J
γ

1–,lFqG
)

(l)

≥ (

J
γ

1–,lGq)(l)
(

J
�

1–,lFp)(l),

(N23) p
(

J
γ

1–,lF
)

(l)
(

J
�

1–,lG
2
p
)

(l) + q
(

J
γ

1–,lG
)

(l)
(

J
�

1–,lF
2
q
)

(l)

≥ (

J
γ

1–,lFpG
)

(l)
(

J
�

1–,lGqF2)(l),

(N24) p
(

J
γ

1–,lF
2
p Gq)(l)

(

J
�

1–,lGp–1)(l) + q
(

J
γ

1–,lGq–1)(l)
(

J
�

1–,lF
2
q Gp)(l)

≥ (

J
γ

1–,lF2)(l)
(

J
�

1–,lG2)(l).

Example 3.9 Let l > 1, γ ,� > 0, F and G be two integrable functions defined on [1,∞),
and

� = min
0≤θ≤l

F (θ )
G(θ )

, H = max
0≤θ≤l

F (θ )
G(θ )

. (3.26)

Then we have the following three inequalities:

(1) 0 ≤ (

J
γ ,ρ
1–,lF2)(l)

(

J
γ ,ρ
1–,lG2)(l) ≤ � + H

4�H
((

J
γ ,ρ
1–,lFG

)

(l)
)2,

(2) 0 ≤
√

(

J
γ ,ρ
1–,lF2

)

(l)
(

J
γ ,ρ
1–,lG2

)

(l) –
(

J
γ ,ρ
1–,lFG

)

(l) ≤
√
H –

√
�

2
√
�H

(

J
γ ,ρ
1–,lFG

)

(l),

(3) 0 ≤ (

J
γ ,ρ
1–,lF2)(l)

(

J
γ ,ρ
1–,lG2)(l) –

((

J
γ ,ρ
1–,lFG

)

(l)
)2 ≤ H – �

4�H
((

J
γ ,ρ
1–,lFG

)

(l)
)2.
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Proof It follows from (3.26) that

(F (θ )
G(θ )

– �

)(

H –
F (θ )
G(θ )

)

G2(θ ) ≥ 0. (3.27)

Inequality (3.27) can be rewritten as

F2(θ ) + �HG2(θ ) ≤ (� + H)F (θ )G(θ ). (3.28)

Multiplying both sides of inequality (3.28) by

exp[ ρ–1
ρ

(ln( l
θ

)](ln( l
θ

))γ –1

θργ Γ (γ )

and integrating the obtained inequality from 1 to l lead to

1
ργ Γ (γ )

∫ l

1

exp[ ρ–1
ρ

(ln( l
θ

)](ln( l
θ

))γ –1

θ
F2(θ ) dθ

+ �H 1
ργ Γ (γ )

∫ l

1

exp[ ρ–1
ρ

(ln( l
θ

)](ln( l
θ

))γ –1

θ
G2(θ ) dθ

≤ (� + H)
1

ργ Γ (γ )

∫ l

1

exp[ ρ–1
ρ

(ln( l
θ

)](ln( l
θ

))γ –1

θ
F (θ )G(θ ) dθ . (3.29)

Inequality (3.29) implies that

(

J
γ ,ρ
1–,lF2)(l) + �H

(

J
γ ,ρ
1–,lG2)(l) ≤ (� + H)

(

J
γ ,ρ
1–,lFG

)

(l). (3.30)

Alternately, it follows from �H > 0 and

(√
(

J
γ ,ρ
1–,lF2

)

(l) –
√

�H
(

J
γ ,ρ
1–,lG2

)

(l)
)2 ≥ 0 (3.31)

that

2
√

(

J
γ ,ρ
1–,lF2

)

(l)
√

�H
(

J
γ ,ρ
1–,lG2

)

(l) ≤
√

(

J
γ ,ρ
1–,lF2

)

(l) +
√

�H
(

J
γ ,ρ
1–,lG2

)

(l). (3.32)

Therefore inequality (1) follows easily from inequalities (3.30) and (3.32). Similarly, we
also can prove inequalities (2) and (3). �

Example 3.10 Let l > 1, γ ,� > 0, p, q > 1 with 1/p + 1/q = 1, F be an integrable function de-
fined on [1,∞), and J

γ ,ρ
1–,lF be the generalized proportional Hadamard fractional integral

operator. Then we have

∣
∣
(

J
γ ,ρ
1–,lF

)

(l)
∣
∣ ≤ Ω

∥
∥F (θ )

∥
∥

L1(1,l),

where

Ω =
1

ργ Γ (γ )

(
ρx1–p

[(p + ρ) – 2ρp]

) 1
p
Θ

1
p
(

(γ – 1)p + 1, (p + ρ – 2ρp) ln l
)
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and

Θ(γ , l) =
∫ l

0
e–θ θγ –1 dθ

is the incomplete gamma function [57–60].

Proof It follows from Definition 2.3 and the modulus property that

∣
∣
(

J
γ ,ρ
1–,lF

)

(l)
∣
∣ ≤ 1

ργ Γ (γ )

∫ l

1

exp[ ρ–1
ρ

(ln( l
ϑ

)]

(ln l
ϑ

)1–γ

|F (ϑ)|
ϑ

dϑ

for ϑ > 1.
Making use of the well-known Hölder inequality, we obtain

∣
∣
(

J
γ ,ρ
1–,lF

)

(l)
∣
∣ ≤ 1

ργ Γ (γ )

(∫ l

1

exp p[ ρ–1
ρ

(ln( l
ϑ

))]

ϑp(ln( l
ϑ

))(1–γ )p
dϑ

) 1
p ∥
∥F (ϑ)

∥
∥

L1(1,l).

Let v = ln( l
ϑ

). Then elaborated computations lead to

∣
∣
(

J
γ ,ρ
1–,lF

)

(l)
∣
∣ ≤ 1

ργ Γ (γ )

(
ρx1–p

[(p + ρ) – 2ρp]

) 1
p

× Θ
1
p
(

(γ – 1)p + 1, (p + ρ – 2ρp) ln l
)∥
∥F (ϑ)

∥
∥

L1(1,l). �

4 Conclusion
In this paper, we have derived numerous inequalities in the framework of a novel proposed
GPHF integral operator with proportionality index ρ . Our obtained results are refine-
ments of the Grüss inequality. In the special case of ρ = 1, it is worth mentioning that this
allows for recapturing some existing operators from the GPHF integral operator, therefore,
the GPHF integral operator is superior to many existing operators. In addition, our new
approach recaptures the Grüss type inequalities and their variants proposed by Sudsutad
et al. [48]. Our ideas may lead to a lot of follow-up research.
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integrals. Adv. Differ. Equ. 2020, Article ID 125 (2020)

29. Awan, M.U., Talib, S., Chu, Y.-M., Noor, M.A., Noor, K.I.: Some new refinements of Hermite–Hadamard-type inequalities
involving Ψk -Riemann–Liouville fractional integrals and applications. Math. Probl. Eng. 2020, Article ID 3051920
(2020)

30. Chu, Y.-M., Adil Khan, M., Ali, T., Dragomir, S.S.: Inequalities for α-fractional differentiable functions. J. Inequal. Appl.
2017, Article ID 93 (2017)

31. Miller, K.S., Ross, B.: An Introduction to the Fractional Calculus and Fractional Differential Equations. Wiley, New York
(1993)

https://doi.org/10.1016/j.aej.2019.12.022
https://doi.org/10.1002/mma.6297
https://doi.org/10.1016/j.aej.2019.12.046


Zhou et al. Advances in Difference Equations        (2020) 2020:275 Page 15 of 15

32. Mathai, A.M.: A pathway to matrix-variate gamma and normal densities. Linear Algebra Appl. 396, 317–328 (2005)
33. Kiryakova, V.: Generalized Fractional Calculus and Applications. Longman, Harlow (1994)
34. Baleanu, D., Diethelm, K., Scalas, E., Trujillo, J.J.: Fractional Calculus: Models and Numerical Methods. World Scientific,

Hackensack (2012)
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