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Abstract
We propose and study a Lotka–Volterra predator–prey system incorporating both
Michaelis–Menten-type prey harvesting and fear effect. By qualitative analysis of the
eigenvalues of the Jacobian matrix we study the stability of equilibrium states. By
applying the differential inequality theory we obtain sufficient conditions that ensure
the global attractivity of the trivial equilibrium. By applying Dulac criterion we obtain
sufficient conditions that ensure the global asymptotic stability of the positive
equilibrium. Our study indicates that the catchability coefficient plays a crucial role on
the dynamic behavior of the system; for example, the catchability coefficient is the
Hopf bifurcation parameter. Furthermore, for our model in which harvesting is of
Michaelis–Menten type, the catchability coefficient is within a certain range;
increasing the capture rate does not change the final number of prey population, but
reduces the predator population. Meanwhile, the fear effect of the prey species has no
influence on the dynamic behavior of the system, but it can affect the time when the
number of prey species reaches stability. Numeric simulations support our findings.

Keywords: Lotka–Volterra predator–prey model; Michaelis–Menten-type harvesting;
Stability; Fear effect

1 Introduction
The aim of this paper is investigating the dynamic behavior of the following Lotka–
Volterra predato–prey system incorporating both Michaelis–Menten-type harvesting and
fear effect of the prey:

du
dt

=
r0u

1 + kv
– du – au2 – puv –

qEu
m1E + m2u

,

dv
dt

= cpuv – mv,
(1.1)

where u and v are the density of the prey and predator species at time t, respectively.
r0 and d are the birth and death rates of the prey species, respectively, a is the density-
dependent coefficient, m is the death rate of the predator species, p denotes the strength
of interspecific between prey and predator, c is the conversion efficiency of ingested prey
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into new predators, k is the level of fear, which is due to antipredator behavior of the prey,
E is the fishing effort used to harvest, q is the catchability coefficient, and m1 and m2 are
suitable constants.

The predator–prey relationship has been highly valued by scholars because of its
widespread existence [1–39]. Such topics as the influence of the stage structure [6–8, 11–
15], the influence of refuge [17, 18, 20, 21], the influence of mutual interferences [10], the
fear effect of the prey species [1–5], the influence of cannibalism [16], and the influence
of the Allee effect [19] are extensively studied by scholars.

Wang, Zanette, and Zou [1] argued that in the predator–prey relationship, the predators
cannot only directly kill the prey, but also affect the behavior of the prey, and the latter
is more lethal than the former. To describe this phenomenon, we propose the following
Lotka–Volterra predator–prey system incorporating the fear effect of the prey:

du
dt

= r0uf (k, v) – du – au2 – puv,

dv
dt

= cpuv – mv.
(1.2)

The system admits three nonnegative equilibria, E0(0, 0), E1( r0–d
a , 0), and E2(u, v), where

u = m
cp , and v satisfies

r0f (k, v) – d – au – pv = 0. (1.3)

Concerned with the dynamic behavior of system (1.3), the authors obtained the following
result.

Theorem A If r0 < d, then E0 is globally asymptotically stable. The boundary equilibrium
E1 is globally asymptotically stable if r0 ∈ (d, d + am

cp ), and the unique positive equilibrium
E2 is globally asymptotically stable if r0 > d + am

cp .

Previously, the authors did not consider the influence of human harvesting. The study
of resource management including fisheries, forestry, and wildlife management has great
importance. It is important to control the harvesting so that both ecological sustainability
and conservation of the species can be implemented in a long run. There are also many
scholars [22–36] who investigated the influence of harvesting.

In the past decade, two kinds of harvesting were considered by scholars. The first one
is the linear harvesting [23, 30–34], and the second one is the Michaelis–Menten-type
harvesting ([10, 22, 24–26, 36]).

Generally speaking, the dynamic behavior of a system with linear harvesting is com-
paratively simple. For example, Lin [33] investigated the dynamic behavior of the follow-
ing two-species commensal symbiosis model with nonmonotonic functional response and
nonselective harvesting in a partial closure:

dx
dt

= x
(

a1 – b1x +
c1y

d1 + y2

)
– q1Emx,

dy
dt

= y(a2 – b2y) – q2Emy.
(1.4)
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The author showed that if the system admits a unique positive equilibrium, then it is glob-
ally asymptotically stable. Xiao and Lei [31] investigated the dynamic behavior of the fol-
lowing single-species stage structure system incorporating partial closure for the popula-
tions and nonselective harvesting:

dx1

dt
= αx2 – βx1 – δ1x1 – q1Emx1,

dx2

dt
= βx1 – δ2x2 – γ x2

2 – q2Emx2.
(1.5)

The authors showed that the system may have a globally asymptotically stable boundary
equilibrium or the globally asymptotically stable positive equilibrium. Their results indi-
cated that the system cannot have the bifurcation phenomenon.

On the other hand, the dynamic behavior of the system with Michaelis–Menten-type
harvesting becomes complicated. Chen [26] studied the following Lotka–Volterra com-
mensal symbiosis model of two populations with Michaelis–Menten-type harvesting for
the first species:

dx
dt

= r1x
(

1 –
x

K1
+ α

y
K1

)
–

qEx
m1E + m2x

,

dy
dt

= r2y
(

1 –
y

K2

)
.

(1.6)

For the limited harvesting case, the author showed that the system admits a unique globally
stable positive equilibrium. For the overharvesting case, if the cooperate intensity of both
species and the capacity of the second species are large enough, then the two species can
coexist in a stable state; otherwise, the first species will be driven to extinction. Gupta,
Chandra, and Banerjee [10] incorporated the Michaelis–Menten-type harvesting to the
predator–prey model, which has led to the following model:

dx
dt

= r0x
(

1 –
x
r1

)
– axy,

dy
dt

= maxy – dy –
qEy

m1E + m2y
.

(1.7)

They showed that the system has at most two interior equilibria and can have saddle-node,
transcritical, Hopf–Andronov, and Bogdanov–Takens bifurcations. Furthermore, system
(1.7) has an origin, which is always a saddle point, and undergoes a transcritical bifur-
cation around the semitrivial equilibrium. Finally, they gave the maximum threshold for
continuous harvesting without the extinction risk of predator population and concluded
that harvesting has no any impact on the prey species. Besides, Hu and Cao [36] studied
the influence of Michaelis–Menten-type harvesting to a predator–prey system and found
that the dynamic behavior of the system is very complicate.

To the best of our knowledge, to this day, still no scholars investigated the dynamic be-
havior of the predator–prey system incorporating both fear effect and Michaelis–Menten-
type harvesting, which motivated us to propose system (1.1).

The aim of this paper is to give a detail analysis of the dynamic behavior of system (1.1)
and to find out the influence of Michaelis–Menten-type harvesting.
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The rest of the paper is arranged as follows. In next section, we investigate the existence
and local stability of the equilibria of system (1.1). In Sect. 3, we discuss the global stability
of the trivial equilibrium by using the differential inequality theory and discuss the global
asymptotic stability of the positive equilibrium by applying the Dulac criterion. In Sect. 4,
we analyze and verify the condition of Hopf-bifurcation around the positive equilibrium.
Numeric simulations are presented in Sect. 5 to show the feasibility of the main results. We
end this paper with a brief discussion, including the impact of the Michaelis–Menten-type
harvesting and fear effect on system (1.1).

2 The existence and local stability of the equilibria of system (1.1)
2.1 The existence of equilibria of system (1.1)
The equilibria of system (1.1) satisfy the equation system

r0u
1 + kv

– du – au2 – puv –
qEu

m1E + m2u
= 0,

cpuv – mv = 0.
(2.1)

From the second equation of (2.1) we have v = 0 or u = m
cp .

(1) Substituting v = 0 into the first equation of (2.1) leads to

r0u – du – au2 –
qEu

m1E + m2u
= 0, (2.2)

which is equivalent to

u
[
am2u2 + (Eam1 + dm2 – m2r0)u + (Edm1 – Em1r0 + Eq)

]
= 0, (2.3)

so equation (2.3) has the solution u1 = 0. Hence, system (1.1) admits the boundary equi-
librium E0(0, 0).

Other positive solutions of (2.3) can be expressed as

u =
–B2 +

√
B2

2 – 4B1B3

2B1
, (2.4)

where

B1 = am2,

B2 = Eam1 + dm2 – m2r0,

B3 = Edm1 – Em1r0 + Eq.

(2.5)

(i) If B2 > 0 and B3 < 0, then (2.3) has a unique positive solution

u1 =
–B2 +

√
B2

2 – 4B1B3

2B1
. (2.6)

(ii) If B2 = 0 and B3 < 0, then (2.3) has a unique positive solution

u2 =
√

B2
2 – 4B1B3

2B1
. (2.7)
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(iii) For B2 < 0,
(a) when B3 > 0, if B2

2 – 4B1B3 > 0, then (2.3) has two positive solutions

u3 =
–B2 –

√
B2

2 – 4B1B3

2B1
, (2.8)

u4 =
–B2 +

√
B2

2 – 4B1B3

2B1
, (2.9)

if B2
2 – 4B1B3 = 0, then (2.3) has a unique positive solution

u5 =
–B2

2B1
, (2.10)

and if B2
2 – 4B1B3 < 0, then (2.3) has no positive solution;

(b) for B3 = 0, (2.3) has a unique positive solution

u6 =
–B2

2B1
; (2.11)

(c) for B3 < 0, (2.3) has a unique positive solution

u7 =
–B2 +

√
B2

2 – 4B1B3

2B1
. (2.12)

Consequently, system (1.1) has the boundary equilibria Ei(ui, 0).
(2) Next, substituting u = m

cp into the first equation of (2.5) leads to

r0

1 + kv
– d –

am
cp

– pv –
qE

m1E + mm2
cp

= 0. (2.13)

Set

F(v) =
r0

1 + kv
– d –

am
cp

– pv –
qE

m1E + mm2
cp

. (2.14)

Then from (2.2) we have

F(0) = r0 – d –
am
cp

–
qE

m1E + m2m
cp

> r0 – d –
am
cp

–
q

m1
> 0, (2.15)

F(+∞) = lim
v→+∞

(
r0 – d –

am
cp

– pv –
qE

m1E + mm2
cp

)
= –∞. (2.16)

Hence, by the zero point theorem of continuous function, F(v) = 0 has at least one positive
solution on the interval (0, +∞). Also,

dF
dv

= –
r0k

(1 + kv)2 – p < 0 (2.17)
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implies that F is a strictly decreasing function of v, and hence F has at most one positive
solution on the interval (0, +∞). This analysis shows that under the assumption r0 > d +
am
cp + qE

m1E+ mm2
cp

, (2.13) admits a unique positive solution v∗, and, consequently, system (1.1)

admits a unique positive equilibrium E∗(u∗, v∗).

2.2 The local stability of the equilibria of system (1.1)
Consider the Jacobian matrix of system (1.1)

J =

(
J11 J12

J21 J22

)
, (2.18)

where

J11 =
r0

kv + 1
– d – 2au – pv –

qE
m1E + m2u

+
qEum2

(m1E + m2u)2 ,

J12 = –
r0uk

(kv + 1)2 – pu,

J21 = cpv,

J22 = cpu – m.

We have the following results.

Theorem 2.1 The trivial equilibrium E0(0, 0) is a stable node if

q > m1(r0 – d) (2.19)

or

q = m1(r0 – d) and E =
(r0 – d)m2

am1
; (2.20)

E0(0, 0) is a saddle if

q < m1(r0 – d); (2.21)

E0(0, 0) is a saddle-node if

q = m1(r0 – d) and E �= (r0 – d)m2

am1
. (2.22)

Proof The Jacobian matrix of system (1.1) about the equilibrium E0(0, 0) is

J
(
E0(0, 0)

)
=

(
r0 – d – q

m1
0

0 –m

)
. (2.23)

The eigenvalues of J(E0) are λ1 = r0 –d– q
m1

and λ2 = –m < 0. Thus, if (2.19) holds, then λ1 <
0, and, consequently, E0(0, 0) is a stable node; if (2.21) holds, then λ1 > 0, and, consequently
E0(0, 0) is a saddle; if q = m1(r0 – d), then λ1 = 0. So, when λ1 = 0 and λ2 = –m < 0, that is,
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q = m1(r0 – d), we introduce the time transformation dt = dτ
–m and expand system (1.1) in

power series up to the third order around E0(0, 0) to consider the stability of E0(0, 0). Then
system (1.1) can be changed into

du
dτ

=
r0k + p

m
uv +

1
m

(
a –

(r0 – d)m2

m1E

)
u2 –

r0k2

m
uv2

+
(r0 – d)m2

2

mm12E2 u3 + P1(u, v),

dv
dτ

= v –
cp
m

uv,

(2.24)

where P1(u, v) is a power series in (u, v) with terms uivj satisfying i + j ≥ 4.
From equation (2.24) and Theorem 7.1 in Chap. 2 of [40] we know that if (2.22) holds,

then E0(0, 0) is a saddle-node; if (2.20) holds, then because of (r0–d)m22

mm12E2 �= 0, we have that
E0(0, 0) is a stable node. �

Theorem 2.2 The semitrivial equilibriaum Ei(ui, 0) is a stable node if

J11(Ei) < 0 and J22(Ei) < 0; (2.25)

Ei(ui, 0) is a saddle if

J11(Ei)J22(Ei) < 0. (2.26)

Proof It follows from (2.6) that the Jacobian matrix of system (1.1) about the equilibrium
Ei(ui, 0) is

J(Ei) =

(
J11(Ei) J12(Ei)
J21(Ei) J22(Ei)

)
, (2.27)

where

J11(Ei) = r0 – d – 2aui –
qE

m1E + m2ui
+

qEuim2

(m1E + m2ui)2 ,

J12(Ei) = r0uik – pui < 0,

J21(Ei) = 0,

J22(Ei) = cpui – m.

Consequently, if (2.25) holds, then Ei is a stable node; if (2.26) holds, then Ei is a saddle. �

Theorem 2.3 The interior equilibrium E∗(u∗, v∗) is a stable node if

r0 > d +
am
cp

+
qE

m1E + mm2
cp

(2.28)

and

q <
a(m1E + m2

m
cp )2

m2E
. (2.29)
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Proof Noting that v∗ satisfies equation (2.13), we get that the Jacobian matrix of system
(1.1) about the equilibrium E∗(u∗, v∗) is

J
(
E∗(u∗, v∗))

=

(
J11(E∗(u∗, v∗)) – r0u∗k

(kv∗+1)2 – pu∗

cpv∗ cpu∗ – m

)

=

(
–au∗ + qEu∗m2

(m1E+m2u∗)2 – r0u∗k
(kv∗+1)2 – pu∗

cpv∗ 0

)
, (2.30)

where

J11
(
E∗(u∗, v∗)) =

r0

kv∗ + 1
– d – 2au∗ – pv∗ –

qE
m1E + m2u∗ +

qEu∗m2

(m1E + m2u∗)2 .

Then we have

Det J
(
E∗(u∗, v∗)) = –cpv∗

(
–

r0u∗k
(kv∗ + 1)2 – pu∗

)
> 0, (2.31)

and from (2.29) we also have

Tr J
(
E∗(u∗, v∗)) = –au∗ +

qEu∗m2

(m1E + m2u∗)2

= –
am
cp

+
qEmm2

cp(m1E + m2m
cp )2 < 0, (2.32)

so that both eigenvalues of J(E∗(u∗, v∗)) have negative real parts, and E∗(u∗, v∗) is a stable
node.

This ends the proof of Theorem 2.3. �

Remark 2.1 As was pointed out by Wang, Zanette, and Zou [1], for system (1.2), the posi-
tive equilibrium is locally asymptotically stable as long as it exists (see Theorem 3.1 in [1]).
Compared with the system without harvesting, we found that the conditions that ensure
the local stability of the positive equilibrium and boundary equilibrium of system (1.1)
become complicated.

Remark 2.2 If r0 > d, then the boundary equilibrium E0(0, 0) in system (1.3) is unstable,
whereas depending on the range of r0, the boundary equilibrium E1 or the positive equi-
librium E2 maybe locally asymptotically stable. That is, under the assumption r0 > d, at
least one of the species in system (1.3) survives. However, if the catchability coefficient q
is large enough so that inequality (2.19) or (2.20) holds, then E0(0, 0) in system (1.1) be-
comes locally asymptotically stable, which means the extinction of both predator and prey
species. Hence harvesting plays an important role on changing the dynamic behavior of
the system, and overharvesting may lead to the extinction of the species.

3 Global stability
The aim of this section is investigating the global stability property of the equilibria of
system (1.1).
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As a direct corollary of Lemma 2.2 of Chen [38], we have the following:

Lemma 3.1 If a > 0, b > 0, and ẋ ≥ x(b – ax), then for t ≥ 0 and x(0) > 0, we have

lim inf
t→+∞ x(t) ≥ b

a
.

If a > 0, b > 0, and ẋ ≤ x(b – ax), then for t ≥ 0 and x(0) > 0, we have

lim sup
t→+∞

x(t) ≤ b
a

.

Concerned with the global stability property of the equilibria of system (1.1), we have
the following result.

Theorem 3.1
(1) Assume that (2.19) or (2.20) holds. Then

lim
t→+∞ u(t) = 0, lim

t→+∞ v(t) = 0, (3.1)

that is, the trivial equilibrium E0(0, 0) is globally attractive.
(2) The positive equilibrium E∗(u∗, v∗) is globally asymptotically stable if

r0 > d +
am
cp

+
qE

m1E + mm2
cp

(3.2)

and

q <
am1

2E
m2

. (3.3)

Proof (1) From the first equation of system (1.1) we have

du
dt

=
r0u

1 + kv
– du – au2 – puv –

qEu
m1E + m2u

< r0u – du – au2 –
qEu
m1E

≤
(

r0 – d –
q

m1

)
u, (3.4)

and hence, because of (2.19) or (2.20),

u(t) ≤ u(0) exp

{(
r0 – d –

q
m1

)
t
}

→ 0 as t → +∞,

that is,

lim
t→+∞ u(t) = 0. (3.5)
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For ε > 0 satisfying ε < m
2cp , from (3.5) it follows that there exists T1 > 0 such that

u(t) < ε as t ≥ T1. (3.6)

Hence from the second equation of system (1.1) and (3.6), for t ≥ T1, we have

dv
dt

= cpuv – mv ≤ cpεv – mv ≤ –
1
2

mv, (3.7)

so that

v(t) ≤ v(T1) exp

{
–

m
2

(t – T1)
}

→ 0 as t → +∞, (3.8)

that is,

lim
t→+∞ v(t) = 0. (3.9)

The limits (3.5) and (3.9) show that E0(0, 0) is globally attractive if inequality (2.19) or (2.20)
holds.

(2) Note that the inequality

q <
am1

2E
m2

(3.10)

implies that

q <
a(m1E + m2u∗)2

m2E
. (3.11)

Hence (2.25) and (3.10) imply that E∗(u∗, v∗) is locally asymptotically stable. To show that
E∗(u∗, v∗) is globally asymptotically stable, it suffices to show that the system admits no
limit cycle in the first quadrant. Let u consider the Dulac function B(u, v) = 1

uv . Then from
(3.3) it follows that

∂(PB)
∂u

+
∂(QB)

∂v

=
1

uv

(
r0

kv + 1
– d – 2au – pv –

qE
m1E + m2u

+
qEum2

(m1E + m2u)2

)

–
1

u2v

(
r0u

kv + 1
– du – au2 – puv –

qEu
m1E + m2u

)

+
cpu – m

uv
–

cpuv – mv
uv2

= –
E2am1

2 + 2Eam1m2u + am2
2u2 – Em2q

v(m1E + m2u)2

< 0, (3.12)
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where

P(u, v) =
r0u

1 + kv
– du – au2 – puv –

qEu
m1E + m2u

,

Q(u, v) = cpuv – mv.
(3.13)

By the Dulac theorem [37] there is no closed orbit in the first quadrant. Consequently,
E∗(u∗, v∗) is globally asymptotically stable.

The proof of Theorem 3.1 is finished. �

Remark 3.1 Theorem A shows that for system (1.2), the positive equilibrium is globally
asymptotically stable as long as it exists. However, for the system with harvesting, the sit-
uation becomes complicated. To ensure the positive equilibrium to be globally asymptot-
ically stable, we need some additional requirement on the coefficients; see (3.3) for more
detail. If the species in a system without harvesting can coexist in a stable state, then The-
orem 3.1(2) shows that for small enough catching ability q, the system can still coexist in
a stable state.

4 Hopf bifurcation
In the previous section, we have presented the conditions required for local asymptotic
stability of E∗, and under these conditions, the other equilibrium is a saddle. In addition, we
can conclude that the equilibrium E∗ may lose its stability through Hopf bifurcation under
certain parameter circumstances. Considering q as the bifurcation parameter, the Hopf
bifurcation threshold is a positive root of Tr(J(E∗)) = 0, denoted q = qH = a

m2E (m1E + mm2
cp )2,

which satisfies Det(J(E∗))|q=qH > 0. When q passes through the critical magnitude q = qH ,
the stability property of E∗ changes. So we can obtain the following theorem.

Theorem 4.1 Assume that the system parameters satisfy the conditions for existence of a
positive equilibrium E∗ given in condition (2.28). Then the positive equilibrium E∗ changes
its stability through the Hopf bifurcation threshold q = qH .

Proof The characteristic equation of matrix J(E∗) is

λ2 – Tr
(
J
(
E∗))λ + Det

(
J
(
E∗)) = 0,

and the Hopf bifurcation occurs if and only if q = qH satisfies
(i) [Tr(J(E∗))]|q=qH = 0;

(ii) [Det(J(E∗))]|q=qH > 0, which means the characteristic equation

λ2 + Det
(
J
(
E∗))∣∣

q=qH
= 0,

whose roots are purely imaginary;
(iii) d

dq [Tr(J(E∗))]|q=qH = mm2E
cp(m1E+ mm2

cp )2 �= 0.

To discuss the stability (or direction) of a limit cycle, we compute the first Lyapunov num-
ber l1 at the interior equilibrium E∗ of system (1.1).

Firstly, we transfer the equilibrium E∗ of system (1.1) to the origin by using the transfor-
mation u = U + u∗ and v = V + v∗. Hence system (1.1) in a neighborhood of the origin can
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be rewritten as

dU
dt

= α10U + α01V + α20U2 + α11UV + α02V 2 + α30U3

+ α21U2V + α12UV 2 + α03V 3 + P2(U , V ),

dY
dt

= β10U + β01V + β11UV ,

(4.1)

where α10, α01, β10, and β01 are the elements of Jacobian matrix calculated at the equilib-
rium E∗. Because the system undergoes the Hopf bifurcation, we have α10 = 0, β01 = 0, and

 = α10β01 – α01β10 = –α01β10 > 0. The coefficients αij and βij are determined by

α01 = –
[

r0ku∗

(1 + kv∗)2 + pu∗
]

, α20 = –
am1E

m1E + m2u∗ , α11 = –
[

r0k
(1 + kv∗)2 + p

]
,

α02 =
r0k2u∗

(1 + kv∗)3 , α30 = –
am1m2E

(m1E + m2u∗)2 , α21 = 0, α12 =
r0k2

(1 + kv∗)3 ,

α03 = –
r0k3u∗

(1 + kv∗)4 , β10 = cpv∗, β11 = cp, β20 = β02 = β21 = β12 = β03 = 0,

and P2(U , V ) is a power series in (U , V ) with terms UiV j satisfying i + j ≥ 4.
The first Lyapunov number l1 identifying the stability of a limit cycle for a planar system

is given by the formula

l1 =
–3π

2α01
3/2

{[
α10β01

(
α2

11 + α11β02 + α02β11
)

+ α10α01
(
β2

11 + α20β11 + α11β02
)

+ β2
10(α11α02 + 2α02β02) – 2α10β01

(
β2

02 – α20α02
)

– 2α10α01
(
α2

20 – β20β02
)

– α2
01(2α20β20 + β11β20) +

(
α01β10 – 2α2

10
)
(β11β02 – α11α20)

]
–

(
α2

10 + α01β01
)[

3(β10β03 – α01α30) + 2α01(α21 + β12) + (β01α12 – α01β21)
]}

= –
3π

2α01
3/2

{
–α01α11α20β10 + α02α11β

2
10 – α01β10(–3α01α30 + α12β10)

}

=
3π

2
H√

[ r0ku∗
(1+kv∗)2 + pu∗]3cpv∗

,

where

H =
[

am1E
m1E + m2u∗

(
r0k

(1 + kv∗)2 + p
)(

3m2u∗

m1E + m2u∗ – 1
)

+
cr0kpv∗

1 + kv∗ (1 – k)
]

.

If l1 > 0, then the equilibrium E∗ is destabilized through a subcritical Hopf bifurcation.
However, if l1 < 0, then the Hopf bifurcation is supercritical (see Figs. 1, 2, 3). �
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Figure 1 Dynamic behavior of system (1.1) with r0 = 4, k = 1, d = 1, a = 0.51234, p = 2, E = 1,m1 = 1,m2 = 2,
c = 0.5, q = 2 < 2.30553 = qH , E∗ is stable

Figure 2 Dynamic behavior of system (1.1) with r0 = 4, k = 1, d = 1, a = 0.51234, p = 2, E = 1,m1 = 1,m2 = 2,
c = 0.5, q = 2.30553 = qH , stable periodic orbits bifurcate through Hopf bifurcation around E∗

Figure 3 Dynamic behavior of system (1.1) with r0 = 4, k = 1, d = 1, a = 0.51234, p = 2, E = 1,m1 = 1,m2 = 2,
c = 0.5, q = 3.1 > 2.30553 = qH , E∗ is unstable

5 Numeric simulations
Example 5.1 Now let us consider the following model:

du
dt

=
4u

1 + v
– u – u2 – 2uv –

qEu
E + 0.1u

,

dv
dt

= uv – v.
(5.1)
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Figure 4 Dynamic behavior of system (5.1) with r0 = 4, d = 1, k = a =m = 1, c = 0.5, p = 2,m1 = 1,m2 = 0.1,
q = 4, and E = 1

In the corresponding to system (1.1), we take r0 = 4, d = 1, k = a = m = 1, c = 0.5, p = 2,
m1 = 1, m2 = 0.1.

(1) Take q = 4 and E = 1. Then

q = 4 > 3 = m1(r0 – d). (5.2)

Hence it follows from Theorem 2.1 and 3.1(i) that the system admits a trivial equilibrium,
which is a stable node. Furthermore, E0 is globally asymptotically stable. Figure 4 supports
this statement.

(2) Take q = 3 and E = 0.3. Then

q = 3 = m1(r0 – d) (5.3)

and

E = 0.3 =
(r0 – d)m2

am1
, (5.4)

and from Theorem 2.1 and 3.1(i) it follows that E0(0, 0) is globally attractive. Figure 5 sup-
ports this statement.

(3) Take q = 2.5 and E = 1. Then

q = 2.5 < 3 = m1(r0 – d), (5.5)

and from Theorem 2.1 it follows that E0(0, 0) is a saddle. Figure 6 supports this statement.
(4) Take q = 3 and E = 1. Then

q = 3 = m1(r0 – d) (5.6)
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Figure 5 Dynamic behavior of system (5.1) with r0 = 4, d = 1, k = a =m = 1, c = 0.5, p = 2,m1 = 1,m2 = 0.1,
q = 3, and E = 0.3

Figure 6 Dynamic behavior of system (5.1) with r0 = 4, d = 1, k = a =m = 1, c = 0.5, p = 2,m1 = 1,m2 = 0.1,
q = 2.5, and E = 1

Figure 7 Dynamic behavior of system (5.1) with r0 = 4, d = 1, k = a =m = 1, c = 0.5, p = 2,m1 = 1,m2 = 0.1,
q = 3, and E = 1

and

E = 1 �= 0.3 =
(r0 – d)m2

am1
, (5.7)

and from Theorem 2.1 it follows that E0(0, 0) is a saddle-node. Figure 7 supports this state-
ment.



Lai et al. Advances in Difference Equations        (2020) 2020:320 Page 16 of 22

Figure 8 Dynamic behavior of system (5.2) with r0 = 4, d = 1, k = a =m = 1, c = 0.5, p = 2, E = 1,m1 = 1,
m2 = 0.1, and q = 1.1

Figure 9 Dynamic behavior of system (1.1) with r0 = 4, d = 1, a = 1, p = 2, E = 1,m1 = 1,m2 = 0.1, c = 0.5,
k = 1, and q = 0

Example 5.2 Now let us consider the following model:

du
dt

=
4u

1 + v
– u – u2 – 2uv –

qu
1 + 0.1u

,

dv
dt

= uv – v.
(5.8)

Here in the corresponding system (1.1), we take r0 = 4, d = 1, k = a = m = 1, c = 0.5, p = 2,
E = 1, m1 = 1, m2 = 0.1.

Then for q = 1.1, we have

q = 1.1 < 0.5 =
am1

2E
m2

(5.9)

and

r0 = 4 > 1.0333 ≈ d +
am
cp

+
qE

m1E + mm2
cp

, (5.10)
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Figure 10 Dynamic behavior of system (1.1) with r0 = 4, d = 1, a = 1, p = 2, E = 1,m1 = 1,m2 = 0.1, c = 0.5,
k = 1, and q = 1.1

Figure 11 Dynamic behavior of system (1.1) with r0 = 4, d = 1, a = 1, p = 2, E = 1,m1 = 1,m2 = 0.1, c = 0.5,
k = 1, and q = 11

and from Theorem 2.1 it follows that the system also admits a unique positive equilibrium
E∗(u∗, v∗), which is globally asymptotically stable. Figure 8 supports this statement.

6 Conclusion and discussions
In this paper, we have discussed the dynamics of a prey–predator system where the prey is
provided with fear effect and harvesting at Michaelis–Menten-type rate. Firstly, we com-
pare our system (1.1) with system (1.7) without the fear effect in the prey, which was ex-
tensively studied in [10]. For system (1.7) without the fear effect, we obtained that the
trivial equilibrium was always a saddle, the axial equilibrium was unique, and the number
of the interior equilibria depended on the expression η+αε –ε, where α = d

amr1
, η = qE

mm2rr1
,

and ε = am1E
rm2

. However, if we incorporate the fear effect in the prey species, that is, sys-
tem (1.1), then we can see that the trivial equilibrium may be a stable node, a saddle, or
a saddle-node, even globally attractive. The number of the axial equilibria depends on
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Figure 12 Dynamic behavior of system (1.1) with r0 = 4, d = 1, a = 1, p = 2, E = 1,m1 = 1,m2 = 0.1, c = 0.5,
k = 1, and q = 18

Figure 13 Dynamic behavior of system (1.1) with r0 = 4, d = 1, a = 1, p = 2, E = 1,m1 = 1,m2 = 0.1, c = 0.5,
k = 1, and q = 23

the expression (2.4). Under condition (2.28), system (1.1) admits a unique positive equi-
librium, and in other cases, it has no positive equilibrium. Then we compare our system
(1.1) with system (1.2) without Michaelis–Menten-type prey harvesting term. Wang et
al. [1] showed the existence of a unique positive equilibrium, which was globally asymp-
totically. stable However, for system (1.1) with rate of harvesting in the prey, the unique
positive equilibrium, when it exists, is globally asymptotically stable, and q satisfies certain
conditions.

Moreover, system (1.7) with Michaelis–Menten-type predator harvesting term can ex-
hibit many types of bifurcation; for example, system (1.7) undergoes a Bogdanov–Takens
bifurcation around the interior equilibrium and a transcritical bifurcation around the axial
equilibrium, respectively. In [10], it is shown that the rate of harvesting was independent
of Hopf bifurcation. However, for system (1.2) with fear effect in the prey, it has no any bi-
furcation. System (1.1) where prey is provided with harvesting at Michaelis–Menten-type
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Figure 14 Dynamic behavior of system (1.1) with r0 = 4, d = 1, a = 1, p = 2, E = 1,m1 = 1,m2 = 0.1, c = 0.5,
q = 1.1, and k = 0

Figure 15 Dynamic behavior of system (1.1) with r0 = 4, d = 1, a = 1, p = 2, E = 1,m1 = 1,m2 = 0.1, c = 0.5,
q = 1.1, and k = 1

rate and fear effect can exhibit only Hopf bifurcation around the interior equilibrium. We
find that the rate of harvesting does not only affect the existence of Hopf bifurcation, but
also changes the stability (direction) of Hopf bifurcation. So, these facts differ from the
results of [1] and [10].

Finally, in the case of fixed fear effect value, via mathematical analysis, we conclude that
harvesting has no any negative effect on prey species. However, the study also shows that
the rate of harvesting may affect the survival of the predator population. When the rate
of harvesting is too heavy, the number of prey population at the positive equilibrium also
decreases (see Figs. 9, 10, 11, 12, 13). For system (1.1) with Michaelis–Menten-type prey
harvesting and system (1.7) with Michaelis–Menten-type predator harvesting, the above
results are the same. On the other hand, in the case of the fixed value of the rate of har-
vesting, we can find that fear effect does not change the dynamical behavior of the system.
The conclusion is the same as in [1]. Furthermore, as the value of fear effect increases,
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Figure 16 Dynamic behavior of system (1.1) with r0 = 4, d = 1, a = 1, p = 2, E = 1,m1 = 1,m2 = 0.1, c = 0.5,
q = 1.1, and k = 5

Figure 17 Dynamic behavior of system (1.1) with r0 = 4, d = 1, a = 1, p = 2, E = 1,m1 = 1,m2 = 0.1, c = 0.5,
q = 1.1, and k = 30

the more time it takes for the number of prey population to stabilize to a constant, the
greater the maximum value of prey population, and the smaller the number of predator
population (see Figs. 14, 15, 16, 17).
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