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Abstract

The celebrated Hermite—Hadamard and Ostrowski type inequalities have been
studied extensively since they have been established. We find novel versions of the
Hermite—Hadamard and Ostrowski type inequalities for the n-polynomial s-type
convex functions in the frame of fractional calculus. Taking into account the new
concept, we derive some generalizations that capture novel results under
investigation. We present two different general techniques, for the functions whose
first and second derivatives in absolute value at certain powers are n-polynomial
s-type convex functions by employing KC-fractional integral operators have yielded
intriguing results. Applications and motivations of presented results are briefly
discussed that generate novel variants related to quadrature rules that will be helpful
for in-depth investigation in fractal theory, optimization and machine learning.
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1 Introduction and preliminaries

A few decades ago, the classical calculus has been revolutionized by tremendous inno-
vations. The researchers are concurring with the extraordinary excellence and truthful-
ness in outcomes by the fractional-order equations. If we observed the historical back-
ground of fractional calculus, the notion has been instigated from a letter of L'Hospital to
Leibniz for the meaning of dr/dr" for n = 1/2. In response, Leibniz saw this is “An obvi-
ous conundrum, from which one day valuable outcomes will be shown”. Also, presently
one witnesses the utilization of fractional calculus in various areas, for example, chaos,
simulation, and modeling. Numerous useful definitions and operators show the beauty
of the fractional calculus, for instance, the Riemann, Caputo, Hadamard, Katugampola,
Erdelyi—Kober, Atangana—Baleanu, Weyl types and many others with potential applica-
tions in mathematics and physics [1-11]. For a feature depiction of the origin of fractional
calculus, improvements, and applications, we refer the reader to the notable monographs
[12, 13] and the interesting articles [14—25].
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Convexity has played a crucial role in the advancement of pure and applied mathemat-
ics [26—35]. Due to its robustness, convex functions and convex sets have been general-
ized and extended in many mathematics branches, in particular, many inequalities can
be found in the literature [36—48] via convexity theory. To the best of our knowledge,
the Hermite—Hadamard inequality is a well-known, paramount and extensively useful in-
equality in the applied literature of mathematical inequalities [49—60]. This inequality is of
pivotal significance because of other classical inequalities such as the Hardy, Opial, Lyn-
ger, Ostrowski, Minkowski, Holder, Ky—Fan, Beckenbach—Dresher, Levinson, arithmetic—
geometric, Young, Olsen and Gagliardo—Nirenberg inequalities, which are closely related
to the classical Hermite—Hadamard inequality [61]. It can be stated as follows: the double
inequality

N1+ 1 2 P(n1) + P(n2)
P( B )Snz_m/,;l P(r)drff (11)

holds if P is a convex function on the interval [57, 1,].

Recently, the Hermite—Hadamard inequality (1.1) and its generalizations, refinements,
extensions and variants have attracted the attention of many researchers. It has been
proved that the function P : I — R is convex if and only if inequality (1.1) holds for all
n1, M2 € 1 with 0y # n.

Let Z C Rand P :Z — R be a differentiable mapping on Z° (the interior of Z) such that
n1, N2 € Z° with 11 < ny. Then the well-known Ostrowski inequality [62] states that

_m+m

1 (z— mxmy2
< [1 R W}(nz M (12)

1 n2
‘P(z) - / P(z)dz
n—-m N

for all z € [y, no] if [P'(¢)] < M for all ¢ € [y, 2]

Ostrowski type inequalities have significant contributions in the numerical analysis as
they provide the error estimates of many quadrature rules. In recent years, they have been
extended and generalized in many fields.

The uses of variants in applied sciences are generally studied and now it is a profoundly
appealing research-oriented area where the researchers also investigate the existence and
uniqueness of the solutions of fractional differential equations. Khan et al. [63] derived the
Hermite—Hadamard inequality for s-convex functions. In [64], the authors derived several
generalizations for the Ostrowski type inequality involving the generalized K-fractional
integrals.

In the article, we propose an novel class of functional variants for convex functions and
several other new and effectively applicable generalizations for convexity theory and frac-
tional operators. The novel technique is useful to generate the Mandelbrot and Julia sets
for quadratic and cubic polynomials with s-convexity [65-67].

Now, we discuss some connections between the class of convex functions and s-convex
functions.

Definition 1.1 Lets € [0, 1]. Then the real-valued function P : 7 — R is said to be s-type
convex on Z if the inequality

Pgx+(1-0)y) <[1-s(1-¢)]Px) + (1 -s¢)P(y) (1.3)

holds for all v,y € Z and ¢ € [0, 1].
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Remark 1.2 From Definition 1.1 we clearly see that:
(1) If we choose s = 1, then we get the classical convex function.
(2) If we choose s = 0, then we get the definition of P-function in [68].
(3) If P is s-type convex on Z, then the range of the function P is [0, 00).
Indeed, let x € Z. Then by the s-type convexity of P we have

Pem+ (1 -¢)x) <[1-s(1-2)]Pm) + (1 -s¢)P(x)

forall n; e Zand ¢ € [0, 1].
If ¢ = 1, then we clearly see that

P(m) < P(m) + (1 -s)Px),
which leads to the conclusion that P(x) > 0.

Proposition 1.3 Every nonegative convex function is also an s-type convex function.

Proof Proposition 1.3 follows easily from the facts that
s1-¢)=(1-¢), ¢=s¢,
forall ¢ € [0,1] and s € [0, 1]. (I
Next, we introduce the definition of n-polynomial s-type convex function.

Definition 1.4 Let s € [0,1] and # € N. Then the real-valued function P : Z — R is said

to be a n-polynomial s-type convex function if the inequality

n n

Plex+(1-th) = 3 [1- (1 -0) [P@) + - Y [1- (60)]P0) (1.4)

i=1 i=1
holds for x,y € Z and ¢ € [0, 1].

Remark 1.5 From Definition 1.4 we clearly see that the following statements are true:
(1) If we choose s = 0, then we get the P-functions in [68].
(2) If we choose s = 1, then we get Definition 2 in [69].
(3) If we choose n = s = 1, then we get Definition 1.1.
(4) If P is a n-polynomial s-type convex function, then the range of the function P is
[0, 00).

Remark 1.6 Every nonnegative n-polynomial convex function is also a #-polynomial s-

type convex function due to

%i[l ~(a-0)] =2 > [1-s -0
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and

n n

)= i3 -]

i=1 i=1
forall¢ € [0,1], e Nand s € [0,1].

We now demonstrate some essential ideas associated with the fractional integral which
is mainly due to Mubeen et al. [70].
Let o, K >0, 1 < 12 and P € L1([n1,12]). Then the K-fractional integrals of order o are

defined by
TP = — /(r—x)'C Pdy (> x) (L5)
n ’CF ( ) .
and
TP = g | 0P <0 (1.6

where I («) is the K-Gamma function [71] defined by

00 K
(o) = / e dg.
0

Note that
Ic(a + K) =alc(x)

and the K-fractional integrals reduce to the RL-fractional integrals if X = 1.
Next, we recall the definitions of the Beta function B and the Gaussian hypergeometric
function ,Fi:

B = T [ iy ag
and
2f1(ﬂ,b;C;Z) m/ é-b 1(1 é-)c b— 1(1 z;“) adé‘,

where I' (x fo t*"le7'dt is the Euler gamma function [72, 73].

The principal purpose of this article is to derive several novel integral inequalities in-
cluding the Hermite—Hadamard and Ostrowski type inequalities by using #-polynomial
s-type convexity and K-fractional integral operator. By use of the fractional operators, we
obtained new estimates for the functions whose first and second derivatives in absolute
value at certain powers are n-polynomial s-type convex functions. Interestingly, the spe-
cial cases of the presented results are RL-fractional integral inequalities and quadrature
rules. Our work’s consequences are useful in the generation of fractals using iterative pro-
cedures, which is an interesting field of research and has utilities in the improvement of
machine learning algorithms.
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2 Hermite-Hadamard type inequalities for n-polynomial s-type convex
function

The aim of this section is to find some inequalities of Hermite—Hadamard type for n-

polynomial s-type convex functions. In what follows, we denote by L;([n1,n2]) the space

of (Lebesgue) integrable functions on the interval [11, 12].

Theorem 2.1 Lets€ [0,1], ¢ € (0,1, K>0,ne N, ny>n1and P:1 =[n,n] > Rbea
n-polynomial s-type convex function such that P € L1([n1,n2]). Then one has

( n(2 -s)2" )P(m+nz)
2"(2n —s(n + 1)) + s"*+1 2

< Lere) [T P ) + T P )]
(m—m)x = 1
[P(n1) + P)] | e[ (2 -5) + 2K as’ [« .
= PRl [ e ()] 2

Proof Let z1,2z; € Z. Then it follows from the n-polynomial s-type convexity of P on Z
that

Z[l - (%)} [P(z1) + P(z)]. 2.2)

Letz; =¢ny+ (1 —¢)n and z5 = £y + (1 — £)ny. Then (2.2) leads to

P(%) < %Z[l- (%) ][P(m F(1-0m)+PEm+1-0On)]. (23)

i=1

Multiplying on both sides of (2.3) by ¢ x©~1and integrating the obtained inequality with

respect to ¢ from O to 1, we get

K n(2-s)2" p(Mmtm
E<2”(2n—s(n+1))+s"+1> < 2 >

1 1
s[/ §%‘1P(§nz+(1—§)m)di+/ E%‘IP(MH(I—{)m)dC]
0 0

o

2 _ -1 12 _ -1
<1 [/ (” ’“)'C P(u)du+/ ('72 ”)K P(u)du:|
(me—n)k LSy \Mm—m m \72—11

Klic(e) ok oK
< P [\7,]? P(m) + T, P(m)],

that is,

n(2 —s)2" m+n2 Ie(K+a) ok o,k
(2n(2n_s(n o +Sn+1)73< : ) < L P + TP ]

which gives the proof of the first inequality of (2.1).
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Next, we prove the second inequality of (2.1). Let ¢ € [0,1]. Then from the fact that P

is a n-polynomial s-type convex function, we get

n n

1 , 1 ;
P(em+1-om) =~ ;[1 = (O TP + ;[1 ~(s1-2))TP(2)
and
1 ' 1 )
P(em+1-0)m) < P ;[1 —s¢'[P(m) + P ;[1 = (s(@=2))']P(m).

Adding the above inequalities gives
P(En+ @ =¢)m)+P(em + 1 -n)

< [P(m) + Pln)] [% Sl -sel o [ (st ;))i]}. (2.4)

i=1 i=1

Multiplying on both sides of (2.4) by ¢ K1, integrating the obtained inequality with re-
spect to ¢ from O to 1 and then making the change of the variable, we have

1 1
/ g%‘lp(g‘n2+(1—§)n1)d§+/ cKTVP(em + (1= O)mp) de
0 0

1 n n .
< [P(n) +P(m)] fo gk [1 > [1-Ge)]+ % D=~ ;))’]] dt,

L i=1
which leads to the conclusion that

Iic(K + a)
(7}2—7)1)%

P) +P)] | e[ (2-5) +2iK as’ (o .
=T [Z[ TS ‘ﬂ(z'”l)”

i=1

[T Pn2) + T P(n)]

m

The proof is completed. g
Lets=1ands=1= K. Then Theorem 2.1 leads to Corollaries 2.2 and 2.3 immediately.

Corollary 2.2 Under the assumption of Theorem 2.1, we have a new result for KC-fractional
integral operator:

n2" N1+ 12
<2n(n—1>+1>P< 2 >

F]C(’C + (X) a,KC a,)C
R [T Pna) + T~ Pn)]

[Pn) + PO)] | [ (@ +2iK)  a (o
=T [Zl[ (@ +iK) _EB(E””)”'
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Corollary 2.3 Under the assumption of Theorem 2.1, we have the following new result for

RL-fractional integral operator:

(P (57)
2"(n—-1)+1 2

Fe+1) -, a
=< m [jﬂp(ﬁz) + J;ip(ﬂl)]
[P(m) + P(n)] N[ @ +2i .
< ! n 2 Z[(a+i)—a183(a,l+1):|.

i=1

Remark 2.4 1f s = K = a = 1, then Theorem 2.1 becomes Theorem 4 of [69].

3 Ostrowski type inequalities for first-order differentiable functions

The aim of this section is to find new estimates that refine the Ostrowski type inequality for
the function whose first derivative in absolute value at a certain power is a #-polynomial s-
convex function. It is remarkable that Farid and Usman [74] adopted some ideas to derive

the Ostrowski type inequalities involving IC-fractional integrals.

Lemma 3.1 (See [74]) Leta € (0,1], K >0, ny > ny and P : Z = [n1,1n2] — R be a differen-
tiable function on I° such that P’ € Li[n1,n2]. Then

om0 2 iy R gepn + 2P0
n2—Mm M2—M

_(E-m)iE!
n—m
(2 —2z)K*

n—m

1
/0 (RP(¢z+(1=¢)m)de

1
| ¥ czra-om)ac. 6.
0

Using Lemma 3.1, we can prove Theorem 3.2.

Theorem 3.2 Let o, >0,5s€[0,1],n €N, ny >0y and P : T = [n1,1n2] = R be a differen-
tiable function on I° such that P’ € Li[n1,n2] and |P'(z)| is a n-polynomial s-type convex
Sfunction on T with |P'(z)| < M for all z € [n1,n2]. Then we have

=) +m=ak | e+ K)
M2—Mm M2—Mm
(Z—m)’%“+(nz—2)'%“}
N2—Mm
1 [Tl -si)+ K3 +1—si) K o a ‘
) EZH (@ +K)e+ i+ DK) }* [am _SB<E Phis 1>H (32

i=1

[T25P @) + Z"i”CP(ﬂz)]‘

]

Page 7 of 20
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Proof From Lemma 3.1 and the fact that |P’| is a n-polynomial s-type convex function on

T we clearly see that

=)t +m=a% | T+ K)
Mn2—m Mm2—m

[T&5Pm) + TP ()]

_ T+l
- (z—m)

1
/ ¢K|P (cz+ (1 -¢)m)|de
0

N2—mn
(n-2)%* (1 o
- - d
' N2 —m /OCK}P@ZHI £)a)| dg
E-m)* el o I .
< W/o C’C[; ;[1—(55)]|7’(m)|+;;[1_(s(1_;))]|p(z)|]d;

(15 — )%H 1 o1 n ; ,
+L/O CK[ZZ[I—(SC)HP(UZM

Mn2—Mm 1

+ % ip — (s(1- ;))i]|77’(z)|:| d¢

i=1

- [(Z— )X+ (n —2)7%”]
- m—-m

y %;U;;%[l_@;y]d; +/01;%[1_(s(1_;))f]d;]

- [(z— n) K+ (12 —z)fé“]
B n2—M

M K[Tal—si)+ K@+ 1 -si) K ; o
X72[[(a+/c>((a+(i+1)/c>)]+[a+/c_SB</C+1"+1)H’

i=1

where we have used the facts that

Loy i, o —si)+ K@i+1-si)
/0 CR[1=60]de = e s e D)

and

/1 K [1- (s ))i]d K SB( L +1,i+1
o ¢ ¢ £= a+K K 7 '
This completes the proof. O

Let £ =1 and K =« = 1. Then Theorem 3.2 leads to Corollaries 3.3 and 3.4.

Corollary 3.3 Let o >0,s€ [0,1], n € N, ny > n1 and P : L = [n1,1n2] = R be a differen-
tiable function on L° such that P’ € L1[n1, 2] and |P'(2)| is a n-polynomial s-type convex
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function on L with |P'(z)| < M for all z € [n1,n2]. Then one has

(z—m)" + (2 —2)* o +1)

Pl2) - [T2P(m) + jf”’(’lz)]‘
N2—m N2—m
- M |: (z =) + (2 — Z)‘“l:|
- N2 — M1

n

1 a(l—si)+ (i+1-si) 1 i ’
: ZZ{[ (o +1)(e + (i +1)) i|+|:a+1_SB(a+1,l+1)i|}‘

i=1

Corollary 3.4 Let s € [0,1], n € N, 5y > 01 and P : I = [n1,72] = R be a differentiable
function on I° such that P’ € L1[n1, 2] and |P'(2)| is a n-polynomial s-type convex func-
tion on I with |P'(2)| < M for all z € [n:1,12]. Then

1 n2
‘”P(z) - / P(z)dz
n—-—m n1

- M((z—m)Z +(n2—z)2> i(4+9i+3i2—4si2—6si>'
T on n2—M — 2+ 1)(i+2)

Remark 3.5 Let L =« =1 and n =s = 1. Then Corollary 3.4 leads to inequality (1.2).

Theorem 3.6 Let o, >0,s€[0,1],neN,g>1,n>n1,Z=[n,n),and P:Z — R be
a differentiable function on I° such that P’ € L1[n1,n2], [P (2)|? is a n-polynomial s-type
convex function on T and |P'(z)| < M for all z € [n1,n2]. Then we have

=)t +m-a% | e+ K)
Mn2—m M2—m

< K )1-2[<z—m)%+1+<nz—z>fé+1]
a+ K M2—m

ﬂiqa(l-smn(nl—si)}
1w L\ | @)@+ i+ DK)

i=1

K o ) i
+[a+IC_SE<E+1’H1>:|>:| . (3.3)

Proof It follows from Lemma 3.1 and |P’|7 is a n-polynomial s-type convex function to-

[T&5Pm) + TP ()]

<

gether with the power mean inequality that

(z=m)K + (2 —2)K P(z) - fica + 1) [TEXPn) + TE P (2)]
M2 —M 2=
—p)k*t oo,
s%/ CR[P(sz+ (L= 0)m) | dg
n-m Jo
—gkt oo,
+M/ §K|7D’(§z+(1—§)’72)|d§
MN2—m 0

R I =2/, .
s(znil)q ﬁd() q(f ;fl?”(zm(l—c)m)lqdz)q
Mm—-—m 0 0

Page 9 of 20
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_ Rl g :
+M<f cfcd¢> ,,(/ ;KIP’(cu(l—;)nz)lqd;)q
N2—Mm 0 0
’C 171 Z an + d 7) q
< IC
_<oz+lC> . Z/{ ~ (s¢)"]d¢|P' ()|

A3 [ ke o actrial)
n =« 0

1

-2%" (15~ (1 Ndz|P'
By

1 n 1 « ; , 4 q
+;;/0 ;“K[l—(s(l—g))]d§|73(z)|> :|
<< K )1_‘11[&—771)%“+(n2—2)1%+1}
“\a+K M2 —Mm
Mi a(l—si)+ K@+ 1-si) K i @ ) i
X[7;([(“/6)((“(”1)@)}+[a+ic_SB(E+1”+1)]>} ‘

Remark 3.7 If we choose g = 1, then Theorem 3.6 reduces to Theorem 3.2.

O

Theorem 3.8 Let o, K >0,5s€[0,1],ne N, r,qg>1with1/r+1/q=1,ny>n1,Z = [n1,m2],
and P : L — R be a differentiable function on I° such that P’ € Li[n1,n2], |P'(2)|7 is a

n-polynomial s-type convex function on I and |P'(z)| < M for all z € [n1,n3]. Then one
has

(z—m)K + (1 -2)K Tic(a + K)
Pl(z) -
N2—m N2—m

_ K g (z—m)%"l+(ng—z)%Jr1 EXH: 2MI(i+1 —s) i
“\ra+K Ny —m n i+1 ’

i=

[J?KPWJ+JﬁKPmﬁ”

Proof Making use of Lemma 3.1 and |P’|? is a n-polynomial s-type convex function on Z
together with the Holder inequality we get

—nk + -2 | Melat K
(z=m)E + (12— 2) Pl) - i (o0 + )[ZﬁvKP(n1)+u7;;°i”<P(nz)]‘
T2 —1h n—m
gkt oo,
< E b g - om) g
Mm—-m
_ )CH
+(7727/ é‘IC §Z+ 1—()772)|d§
N2—m

(Z_nl)KJrl ! ra 7 ! / q %

SW(/(; CICd{> (/0 |73(§z+(1—§);71)| d;)
2=2E (Y e N Y
+ﬂ</(; @cd;) (/0 |P'(¢z+(1-¢)n)| d§>

Page 10 of 20
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K z—n)k"! a
S<1’01+1C> |: n2—-M ( Z./ - (se)]de [P

1= -0)] dclmzwﬂ

- K ; (z—nl)%+1+(n2—z)%+1 1 oM +1-5) i
“\ra+K Ny —Mm n i+1 ’ 0

i=1

4 New Ostrowski type inequalities for twice differentiable functions
We first establish a fractional integral identity which is the extension of the result estab-
lished by Park [75].

Lemma 4.1 Let o, K >0, 0y > m, Z = [n1,n2], and P : T — R be a twice differentiable
function on L° such that P" € L1[n1,n2]. Then the identity

a _k)[(ﬂz—z)’% —(z-n)k ]P,(z) . (1 ‘e _k>[(z— )k +(m—2)K }m)

n2—M N2—Mm
A[<z—m)fémm)+<nz—z)fé7:(nz)]
N2—Mm
Iy K
- M[‘ja ’CP(U ) + P(ﬂz)]
M2—Mm

=k 1 .
‘W/o (=g F)P" (g2 + (1= ¢)m) dg

(772—{)%+2 ! LN

R /Of(A—C’C)P (¢z+ Q=)o) de (4.1)

holds for z € [n1,n3] and X € [0, 1].

Proof Letv=¢,z+(1-¢)n and v =z + (1 — £)n,, respectively. Then (1.5) and (1.6) lead

to
/ (P (cz 4 (L— o) de = @) Fukp s (4.2)
(z—-m)x
and
K
f CEP(ez+ (1 O de = <) gukpi ) (4.3)
(Z m)k

Page 11 of 20



Rashid et al. Advances in Difference Equations (2020) 2020:264

Integrating by parts, using (4.2) and (4.3), and changing the variables, for z # n; we can
write
1 o
| ct-ctypriezr a-om) e
0

P'(z) o P(z)
Z—Mm * (1+ K _)\> (z—m)?

=(h-1) K

P(m)  Ixlo+2K)

o, kC
(z—m)? - (z— 171)%’r2 Iz Pm). (4.4)

Similarly, for z # n, we get

1
_/0§()»—§%)7)//(CZ+(1—§)772)61§

~ P'(2) o P(z)
- (l_k)nz—z ’ (1 "K _k> (n2 - 2)?

Plma)  Tile+2K) _,x
- 7 T P(na). (4.5)
(m-2?% (g-z)k*? " ° 1
Multiplying both sides of (4.4) and (4.5) by &K anq =2 K™ tively, th
ultiplying both sides of (4.4) and (4.5) by moo— and Z2=m—, respectively, then
adding the obtained identities, we obtain the desired identity (4.1). d

In order to simplicity the notation, in what follows we denote

|Q73(}\.,O[,K; N1, 7721Z)|

(n—2)K = (z—m)%
N2—Mm

. (1 L2 _k)[(z—m)% + (- 2)K ]P(z)
K N2—Mm

[(z— MK P(n) + (12 —z)%P(rm}
+ A
N2—m

“a _x)[ ]P/(z)

ch(ot + ZIC)

- [TZ5Pn) + TP )] (4.6)

Theorem 4.2 Let o, >0,s€[0,1],n €N, ny >n1,Z = [n1,n2], and P : T — R be a twice
differentiable function on I° such that P" € Ly[ny, ny] and |P"(2)| is a n-polynomial s-type

convex function on L. Then the inequality

|.Qp(k,a,/C;U1,nz,Z)|

1 n _ %+2 _ %+2
< [— > A K i,s)[%wy’(mn + M{P”(nz)q
ni Mn2—m M2—Mm

(z-n)K*2 4 (g, —2) K+ i
Ao (o, IC; 5, 8) | P
' n(n2 = 1) ; 2o 6|72
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holds for all z € [n1,12), where

1
Ay (o, K3y 5) = /0 ¢(A—¢cR)[(1-(s¢))] e

[ra-2K(1-3)  ha—K@+2)(1-2) @)
‘[ 2a + 2K) _S(i+2)(a+IC(i+2))] '
and
1 o X
Az(a,lC;i,s)zfo ¢(h = E)[1= (s -0))']de
~ ra =21 -2) A F(g+2)ri+1) 48
_[ 2a + 2K) _S[(i+2)(i+1)_ [(&+i+3) ]] (48)

Proof Making use of Lemma 4.1, the property of the modulus and the n-polynomial s-type
convexity of |P”| on Z, we have

‘(1 -)\)[("2 —9k ek ]P/(z) + (1 L2 _x)[(z"“)’% + =) ]P(z)
N2—m K N2—m

[(z— MK P(n) + (1 —z)f“cp(rm}
+ A
N2—m

Tc(a +2K)
N2—m
_ %+2
- (z—m)
N2—m

_ %Jrl 1 o
N M/ ((A=¢R)|[P"(¢z+ Q- 0)m2)|de
N2—Mm 0

(z—m)k*? [l o | I ¢ N
57/0‘ ((A—KK)[ZZ@—(SC))WD (m)|

[T P () + TEEP )]

1
foE(A—é%)lp”(ﬁu(l—c)m)wé

N2 —M -

n

- (s c))"]lp’wzﬂ d

i=1

Nn—m

(nz_z)%JrZ 1 o 1 n i ,
+7/0 c(k—c’c)[;;(l—(sc))lP ()|

3= c))"]lmz)q d

i=1

_ Q4o n
B % Z[a‘h(a,lC; i,s)|P” P@)]
+(Z(2;7_2ﬁ2 Ai(at, K34,8) [P (2)] + As (e, @]

[ ZAl(aKzs)[wW( D[+ ?Z);|77”(772)|:|

(Z M)+ (1y - 2) K2
n(ny —n1)

P (2) |:| . .
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Theorem 4.3 Let o, >0,s€[0,1],g>1,neN,ny>n,L=[n,n],andP:Z — Rbea
twice differentiable function on L° such that P” € Li[n1,n2] and |P"(2)|1 is a n-polynomial

s-type convex function on I. Then the inequality

’QP()‘!‘X! IC; ) 7727Z)’

17%1 (Z_nl)%Jrz - . " q . PRNLY
< A; “(a,K, 1) mZ(Al(a,lﬁz,s)‘P m)|" + Ao, K3,8) [P (2)|7) 2
i=1
o \Et2 n

holds for all z € (n1, 1), where

A3(a)IC1)")
1
- [ - cky)ac
o K(+q) +a K(g+1)
:7[1*(1+q)F<7q)2]:1(1,1+q,2+q+L,l)
o o (07
+B(1+q,_W)_B(L“q,_M>], (4.9)

and Ay, IC; i, 8) and Ay (a, IKC; i, s) are given in (4.7) and (4.8), respectively.

Proof Using Lemma 4.1, the power mean inequality and the #-polynomial s-type convex-

ity, we have

‘(1 _)\)|:(772 —9)k —(z-n)k ]P,(Z) . (1 Lo _/\)[(Z—m)’% + (i —2)k ]P(z)
N2 —1M K N2 —M

[<z— m)EP(n) + (12 —z)févv(m)}
+ A
N2—Mm

_ Tic(@+2K) [Zﬁ»ﬁp(nl) + jz""’CP(nz)]‘
N2 —M

)
<(Z n)

2 1
fIc(k—w)llP”(cw(1—¢)m)|d¢
m—m 0

_g)kt gl o
+M/ [E( = ¢R)[|P"(¢2+ (A~ ¢)m) | dt
N2 - 0

! o \g 1_% (2—771)%+2
5(/ ¢1(h—¢x) dc) —
0 MN2—m

n

x (fo ¢(n —f%)[% > (@ =) [P )|

i=1

3l o) |«)

i=1
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( - )%+2 1 a 1 - i /
T

n2—m P

Aynoea-n) ]lP”(z)l‘f} dc) q

i=1

(Z_nl)%+2 - 7 " q . " q
WZ(AI(Q’K”’MP )"+ Asler, K313, 8)| P (2)| )

i=1

-

1-1
=A; “(a,IC,1)

(n2 - 2) . g , %
+ mz Al(Ol IC l,S)|P (772)| +A2 o, K: l S)|P (Z)| ) :|. (4'1(3

Theorem 4.4 Let o, K >0,s€[0,1],q,r>1withl/g+1/r=1,neN, ny >n1, L = [n1, 2],
and P : T — R be a twice differentiable function on I° such that P" € Li[n1,12] and
|P"(2)|1 is a n-polynomial s-type convex function on I. Then the inequality

|QP()\.,O[,IC; N1, 7]2,Z)|

1

1 _ &L 4+2 n . ] q
Al (a,K,A)[m <1 <”,1 s )[|7>”(z)|" + |7>”<m>|"])
1

(n2—m) \n4 i+1

i=

o NEt2 n . ol %
-

1

holds for all z € (n1,n2), where Ay («, IC; i, 5), Az (e, IC; i, s) and As(, KC; 1) are given in (4.7),
(4.8) and (4.9), respectively.

Proof Using Lemma 4.1 and the Holder inequality together with the n-polynomial s-type
convexity, we have

I(l—/\)[("z_z)’% —(Z—m)’%]P,(Z) . (1+ o _)\)[(Z—m)'aC + -2k ]P(z)
M2 =M K m—=Mm

A[(z— MK P(n) + (1 —z)f“cp(rm}
n2—m

FK(C\!+2IC)
N2—m
_ £ +2
< (z-m)K
N2—m
(- )k
+ —
N2—m

([l w) ([ -
_ +2
“’;EL’T ([te-etrae) ([ 1Pesso-omac)

n

1 _ =12
gAi(a,/c;x)[mUO [%Z — (s¢))[P" ()]

N2—Mm )

[T55P ) + TP ()]

1
fo\c(x—;%)HP”(cu(1—§)m)!d¢

1
fo|¢(A—<‘;%)H7>”(¢z+(1—;)nz)\dg“

1
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- (s(l—e*))”]!?”(z)\"} d@)
L 1 n .
: M(f [%Zu—(sc)l)w”malq

N2—1M P}

1 Xn:[l —(s(1-0)) ]|7)//(Z)|q} dC)ﬂ

i=1

T (z—m)K*?
_A3(a’lc’)‘)[ (2 —m) (

; Z(l‘:izs )[’P//(Z)r[ : ’P//(nl)’q])

i=1

L2 n : _ %
T

i=1

5 Applications
In this section, we provide some applications to the estimations of C-fractional integrals,
and the midpoint, trapezoidal and Simpson type inequalities for twice differentiable n-
polynomial s-type convex functions by use of our results.

Leti=0andz= 12 A =1landz="13"2,} = 3 andz— LR ) = andz A2 Then

Theorem 4.2 leads to Corollaries 5.1-5.4 immechately.

Corollary 5.1 Let o, >0,s€[0,1],n €N, 3 >0y, and P : T = [n1,1n2] — R be a twice
differentiable function on Z° such that P" € Li[n1, 2] and |P"(2)| is a n-polynomial s-type

convex function on I°. Then we have

N +n
’Q'P(O,@,’C;Th,ﬂz, D) )‘

< <M) |:ZA1(04 Ksi,)[|P" ()] +[P"(2)|]

2)C+1
+ 12
P = ,
(™52

where Ay (o, KC;i,s) and Ay («, K i, s) are given in (4.7) and (4.8), respectively.

+Z.A201/Cls)

i=1

Corollary 5.2 Let o,k >0,s€[0,1], n €N, 0y > n1, and P : T = [n1,1n2] — R be a twice
differentiable function on I° such that P" € Ly[n1, ny] and |P"(2)| is a n-polynomial s-type

convex function on I°. Then one has

N+ 12
‘973(1»0!”@711; N2, 9 )‘

<<(nz—m 1){2[ sf< 1 _F(%+2)F(i+1))]
2kt ~[ 2( +2K) (i+1)(i+2) I(%+i+3)
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Vi ny+1n2
P —=
(52

n

(o4 Sla 4 4
’ Z(Z(a 12K)  (+2)@+KG+ 2)))(|P Or)| + [P (”Z)D}‘

i=1

Corollary 5.3 Let o,k >0,5€[0,1], n €N, 3 > 11, and P : Z = [n1,n2] — R be a twice
differentiable function on Z° such that P" € Li[n1, 2] and |P"(2)| is a n-polynomial s-type
convex function on I°. Then

1 m+n2
Q _;aylc; ) )
73(2 1> 72 )

(2 =) B[ [ @ -2K  sla - K(i+2)] y ,
- <W) [;[% +2K) 20 +2)(« +K(i+2))]UP ()] + [P (na)]]
g M+ 12
P (52)])

+X”: a-2K i( 1 F(%+2)F(z‘+1))
_s p—
4(a +2K) 20+ 1)(i+2) F(%+i+3)
Corollary 5.4 Let o,k >0,5€[0,1], n €N, 3 > n1, and P : L = [n1,n2] — R be a twice

i1
differentiable function on Z° such that P" € Li[n1, 1] and |P"(2)| is a n-polynomial s-type

convex function on I°. Then we get

1 M+ 12
*Q —,a,’C; ) )
73<3 M1, M2 5

(2~ ) K\ [ [ -4k sila — 2K(i + 2)] , ,
= (W) |:;|:6(a 12K) 3(i+2)(« +IC(i+2))](|P ()] +[P"(na)])
7)//(771 +772)‘
— )|

[ a-4K 1 F(E+2)ri+1)
> —si e -
6(x +2K) 3i+1)(E+2) I'(g+i+3)
In this paper, we have introduced a new class of n-polynomial s-type convex functions,

i=1

6 Conclusion

derived several new versions of the Hermite—Hadamard and Ostrowski type inequalities
using the class of n-polynomial s-type convex functions, provided two integral identities
for the first and second order differentiable functions, and obtained some refinements of
the Ostrowski type inequality. We have also discussed some special cases for the obtained
results which showed that the results obtained are quite unifying one. The outcomes ac-
quired by the future plan are all the more invigorating as contrasted with results accessible
in the literature. Finally, our work’s consequences have a potential connection with fractal
theory and machine learning [65-67].
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