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1 Introduction
Integral inequalities have an extraordinarily advantageous position in strengthening the
traditional differential and integral equations hypotheses. Gronwall [10] discussed the in-
tegral inequality

y(v) ≤ c +
∫ v

a
f (τ )y(τ ) dτ , v ∈ [a, b],

for some c ≥ 0. Ou-Iang inequalities and their subsequent developments have demon-
strated to be valuable devices in the concept of stability, oscillation, and boundedness and
in different fields of differential and integral equations. Like Gronwall’s inequality, Ou-
Iang’s inequality is additionally utilized to obtain an explicit bound of unknown functions.
An introduction to continuous and discrete OuIang inequalities can be found in [26, 27],
and in [1, 7, 8, 13, 14, 24] one finds generalizations to numerous integrals. Pachpatte [19]
introduced the following integral inequality:

y2(v) ≤ c2 + 2
∫ v

0

[
f (τ )y2(τ ) + g(τ )y(τ )

]
dτ ,

c is a nonnegative constant and v ∈ R+.
It is noteworthy that the dynamic inequalities assume the role of a necessary key in

the improvement of the subjective concept of dynamic equations on time scales. Hilger
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[12] started the advancement of analysis of time scales. The general impression is to show
an equation for a dynamic equation or a dynamic inequality where the domain of the
unknown function is supposed to be a time scale T. The motivation behind the hypothesis
of time scales is to unify continuous and discrete investigation. In the course of recent
years, many authors completed an exhaustive examination of the properties and usage of
various sorts of these types of inequalities on time scale; see [2, 3, 5, 9, 16–18, 23, 25] and
the references therein. Bohner et al. [4] inspected the integral inequality on time scales of
the kind

y(v) ≤ a(v) + p(v)
∫ v

v0

[
b(τ )y(τ ) + q(τ )

]
�τ .

Consequently in 2010, Li [15] tested the subsequent nonlinear integral inequality of one
independent variable associated with time scales

yγ (v) ≤ a(v) + c(v)
∫ v

v0

[
f (τ )y

(
ρ(τ )

)
+ n(τ )

]
�τ ,

for v ∈ v0 with initial conditions y(v) = Ω(v), v ∈ [β , v0] ∩ T, Υ (ρ(v)) ≤ (a(v))
1
γ for v ∈ v0,

ρ(v) ≤ v0, where γ ≥ 1 is a constant, ρ(v) ≤ v, –∞ < β = inf{ρ(v), v ∈ T0} ≤ v0 and Ω(v) ∈
Crd([β , v0] ∩T,R+). Meanwhile, Pachpatte [20] stepped forward to discover the extension
of the integral inequality of the form

y(v) ≤ a(v) +
∫ v

v0

f (τ )
[

y(τ ) +
∫ τ

v0

m(τ ,σ )y(σ )�σ

]
�τ ,

such that m(τ ,σ ) ≥ 0, m�(τ ,σ ) ≥ 0 for v,σ ∈ T and σ ≤ v. Later, Haidong [11] proposed
the generalization of the nonlinear integral inequality as follows:

y(v) ≤ a(v) + b(v)
∫ α(v)

α(v0)

[
f1(s)y(s) + f2(s)

∫ s

α(v0)
g(τ )y(τ )�τ

]
�s

+ λb(T)
∫ α(T)

α(v0)

[
f1(s)y(s) + f2(s)

∫ s

α(v0)
g(τ )y(τ )�τ

]
�s,

where λ ≥ 0. Despite the fact that diamond-α derivatives cannot be identified as a standard
derivative due to the absence of an antiderivative [21], its powerful distinct-alike pattern
allows for accessibility in computational situations. Although there has been done much
work on the integral inequalities related to the delta derivative or the nabla derivative, yet
we do not carry out any significant research of integral inequalities based on diamond-α
derivatives on time scales. In view of the work listed above and utilizing a similar setting to
Gronwall–Bellman type inequalities, in this paper, we generalize and sum up the accompa-
nying nonlinear integral inequalities of one variable by virtue of diamond alpha derivatives
on time scales. The obtained results are useful to investigate the qualitative properties of
different issues of certain classes of integral equations and evolution equations.

2 Basics on diamond-α derivatives and integrals
In what follows, denote R+ = [0,∞). A time scale T is a nonempty closed subset of
the real line R. For v ∈ T, the forward and backward jump operators � ,ς : T → T are
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defined by � (v) = inf(v,∞)T, and ς (v) = sup(–∞, v)T simultaneously, whereas the for-
ward and backward graininess functions �,χ : T → [0,∞) are defined by �(v) = � (v) – v
and χ (v) = v – ς (v), respectively. We have the set Tk = T/(ς (supT),T] and the set Tk =
T/[infT,� (infT)). A function p : T → R is called regressive and � defines the set of
all regressive and rd-continuous functions if 1 + �(v)p(v) 	= 0 for v ∈ T

k . Also a function
q : T → R is known as v-regressive provided 1 – χ (v)q(v) 	= 0 for v ∈ Tk and �v are the
set of all v-regressive and ld-continuous functions. The delta derivative of the function
j : T→R, denoted by j�(t) is

∣∣j(� (v)
)

– j(n) – j�(v)
(
� (v) – n

)∣∣ ≤ ε
∣∣� (v) – n

∣∣, ∀ε > 0,

for v ∈ T
k with n ∈ ℵ where ℵ is a neighborhood of v and the nabla derivative of j, defined

by j∇ (v) is

∣∣j(n) – j
(
ς (v)

)
– j∇ (v)

(
n – ς (v)

)∣∣ ≤ ε
∣∣n – ς (v)

∣∣, ∀ε > 0,

for v ∈ Tk such that n ∈ Λ and Λ is a neighborhood of v. Similarly we have the 
α-
derivative of n at v ∈ T

k
k , denoted by n
α (v) for all ε > 0, and there is a neighborhood ℵ ⊂ T,

for any n ∈ ℵ,

∣∣α[
j
(
� (v)

)
– j(n)

][
ς (v) – n

]
+ (1 + α)

[
j
(
ς (v)

)
– j(n)

][
� (v) – n

]

– n
α (v)
[
ς (v) – n

][
� (v) – n

]∣∣
≤ ε

∣∣ς (v) – n
∣∣∣∣� (v) – n

∣∣.

The function ep(v, v0) = exp(
∫ v

v0
ξ�(τ )(p(τ ))�τ ) stands for the �-exponential function

where p ∈ � and the cylinder transformation is εh(z) = 1
h log(1 + zh), log is the princi-

pal logarithm function. Analogously, the ∇-exponential function is defined by e∧
p (v, v0) =

exp(
∫ v

v0
ξ∧
χ (τ )(p(τ ))∇τ ), p ∈ �v and the v-cylinder transformation is ε∧

h (z) = – 1
h log(1 – zh).

In addition, αep(v0, v) = exp(α
∫ v

v0
ξ�(τ )(p(τ ))�τ + (1 – α)

∫ v
v0

ξ∧
χ (τ )(p(τ ))∇τ ), which is a

combination of the � and ∇ exponential functions. Crd(T,R) denotes the class of real
rd-continuous functions defined on a time scale T. If j ∈ Crd(T,R) is rd-continuous, i.e.
it is continuous at right-dense points and left-sided limits exist at left-dense points in
T, then there exists a function J(v) such that J�(v) = j(v). The delta integral is defined
by

∫ b
a j(v)�v = J(b) – J(a). A function m : T → R is ld-continuous if it is continuous

at left-dense points and right-sided limits exist at right-dense points in T; the class of
real ld-continuous functions on a time scale T is denoted by Cld(T,R). If m ∈ Cld(T,R),
then there exists a function M(v) such that M∇ (v) = m(v). The nabla integral is denoted∫ b

a m(v)∇v = M(b) – M(a). For the general primary ideas and background of time scale
analysis, we refer to a book by Bohner et al. [6].

Presently, on time scales, we declare the essential lemmas that will be used later in the
verifications of the paper.

Lemma 2.1 ([22]) Let r, v ∈ T. If the left-sided limits of j : T →R exist at left-dense points
and the right-sided limits of the function exist at right-dense points in T, then

∫ v
a j(τ ) 
α (τ )
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is 
α-differentiable on T, and

(∫ v

r
j(τ ) 
α (τ )

)
α

=
(
1 – 2α + 2α2)j(v) +

(
α – α2)j

(
� (v)

)
+

(
α – α2)j

(
ς (v)

)
.

3 Results and discussion
The statements of our main results are as follows.

Lemma 3.1 Let r, q ∈ T where T be a regulated time scale subject to � (r) = r. Further,
k ∈ Cl([r, q]T,R) with k�(v), k∇(v) ≥ 0 and b ∈ C(R+,R+) is a positive and non-decreasing
function so that H(u) =

∫ u
u0

dΩ
b(Ω) < ∞, u0 > 0, u ≥ 0, and if H(u) =

∫ u
0

dΩ
b(Ω) = ∞ then

(H ◦ k)(v) ≤ 2(H ◦ k)(r) + 2
∫ v

r

k
α (Ω)
b(k(ς (Ω)))

, v ∈ [r, q]T.

Proof Clearly

1
b(k(ς (v)) + hz(v)k∇ (v))

≤ 1
b(k(ς (v)))

and

1
b(k(v) + h�(v)k�(v))

≤ 1
b(k(v))

;

for α ∈ (0, 1), we get

αk�(v)
∫ 1

0

dh
b(k(v) + h�(v)k�(v))

+ (1 – α)k∇(v))
∫ 1

0

dh
b(k(ς (v)) + hz(v)k∇ (v))

≤ α
k�(v)

b(k(v))
+ (1 – α)

k∇ (v)
b(k(ς (v)))

and

(H ◦ K)
α (v) ≤ k
α (v)
b(k(ς (v)))

;

by [3, 22], and the assumption of r, we have

1
2

(H ◦ k)(v) ≤ (H ◦ k)(r) +
∫ v

r

k
α (Ω)
b(k(ς (Ω)))

. �

Theorem 3.2 Assume that the function y(v) ∈ C([r, q]T,R+) for all v ∈ [r, q]T. T is regu-
lated with � (r) = r. Moreover, let b, d, s ∈ C([r, q]T,R+) be nonnegative functions and the
relation

y2(v) ≤ j2 + 2
∫ v

r
b(τ )

[
y2(τ ) +

∫ τ

r
d(ϑ)y2(ϑ) 
α ϑ

]

α τ + 2

∫ v

r
s(τ )y(τ ) 
α τ , (1)

be satisfied for some j > 0. Then there exist fixed constants l, n such that

y(v) ≤ 4j + 2l
∫ v0

r

[(
1 – 2α + 2α2)s(τ ) +

(
α – α2)s

(
ς (τ )

)
+

(
α – α2)s

(
� (v)

)] 
α τ
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+ 2
∫ v

r

[[
2l

(
1 – 2α + 2α2)2 + 4l

(
α – α2)2]b(τ )

+ 4l
(
1 – 2α + 2α2)(α – α2)b

(
ς (τ )

)

+ 4l
(
1 – 2α + 2α2)(α – α2)b

(
� (τ )

)
+ 2l

(
α – α2)b

(
� 2(v)

)

+ 2l
(
α – α2)b

(
ς2(τ )

)]

×
[

2j + l
∫ τ0

r

[(
1 – 2α + 2α2)s(ϑ) +

(
α – α2)s

(
ς (ϑ)

)

+
(
α – α2)s

(
� (ϑ)

)] 
α ϑ

]2

αeΛ(v, r) 
α τ , (2)

where

Λ(v) = 2
[[

2nl
(
1 – 2α + 2α2)2 + 4nl

(
α – α2)2]b

(
� 2(v)

)

+ 4nl
(
1 – 2α + 2α2)(α – α2)b

(
� (v)

)
+ 4nl

(
1 – 2α + 2α2)(α – α2)b

(
� 3(v)

)

+ 2nl
(
α – α2)b

(
� 4(v)

)
+ 2nl

(
α – α2)b(v)

+ n
(
1 – 2α + 2α2)d

(
� 2(v)

)
+ n

(
α – α2)d

(
� (v)

)
+ n

(
α – α2)d

(
� 3(v)

)]
. (3)

Proof Let v0 ∈ [r, q] and define a non-decreasing function z(v) in [r, v0] by

z(v) = j2 + 2
∫ v

r
b(τ )

[
y2(τ ) +

∫ τ

r
d(ϑ)y2(ϑ) 
α ϑ

]

α τ + 2

∫ v

r
s(τ )y(τ ) 
α τ , (4)

for v ∈ [r, v0]T, then (1) can be modified as

y2(v) ≤ z(v) ⇒ y(v) ≤ √
z(v); (5)

since z�(v), z∇ (v) ≥ 0, from (5) and Lemma 2.1, we deduce

0 ≤ z
α (v)

= 2
(
1 – 2α + 2α2)b(v)

[
y2(v) +

∫ v

r
d(τ )y2(τ ) 
α τ

]
+ 2

(
1 – 2α + 2α2)s(v)y(v)

+ 2
(
α – α2)b

(
ς (v)

)[
y2(ς (v)

)
+

∫ ς (v)

r
d(τ )y2(τ ) 
α τ

]
+ 2

(
α – α2)s

(
ς (v)

)
y
(
ς (v)

)

+ 2
(
α – α2)b

(
� (v)

)[
y2(� (v)

)
+

∫ � (v)

r
d(τ )z(τ ) 
α τ

]

+ 2
(
α – α2)s

(
� (v)

)
y
(
� (v)

)
,

≤ 2
(
1 – 2α + 2α2)b(v)

[
z(v) +

∫ v

r
d(τ )z(τ ) 
α τ

]
+ 2

(
1 – 2α + 2α2)s(v)

√
z(v)

+ 2
(
α – α2)b

(
ς (v)

)[
z
(
ς (v)

)
+

∫ ς (v)

r
d(τ )z(τ ) 
α τ

]
+ 2

(
α – α2)s

(
ς (v)

)√
z
(
ς (v)

)

+ 2
(
α – α2)b

(
� (v)

)[
z
(
� (v)

)
+

∫ � (v)

r
d(τ )z(τ ) 
α τ

]
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+ 2
(
α – α2)s

(
� (v)

)√
z
(
� (v)

)
,

z(v) is non-decreasing, therefore the above inequality by using z(ς (v)) ≥ z(v) ≥ z(� (v))
implies that

z
α (v)
2
√

z(� (v))

≤ (
1 – 2α + 2α2)b(v)

[√
z(v) +

∫ v

r
d(τ )

√
z(τ ) 
α τ

]
+

(
1 – 2α + 2α2)s(v)

+
(
α – α2)b

(
ς (v)

)[√
z
(
ς (v)

)
+

∫ ς (v)

r
d(τ )

√
z(τ ) 
α τ

]
+

(
α – α2)s

(
ς (v)

)

+
(
α – α2)b

(
� (v)

)[√
z
(
� (v)

)
+

∫ � (v)

r
d(τ )

√
z(τ ) 
α τ

]
+

(
α – α2)s

(
� (v)

)
, (6)

z(v) is bounded as it is regulated in [r, q]T and composed of C([r, q]T,R+) and never will
be zero. For a constant l = maxv∈[r,v0]T

√
z(� (v))√
z(ς (v))

, we multiply (6) by l, hence

z
α (v)
2
√

z(� (v))

≤ l
(
1 – 2α + 2α2)b(v)

[√
z(v) +

∫ v

r
d(τ )

√
z(τ ) 
α τ

]
+ l

(
1 – 2α + 2α2)s(v)

+ l
(
α – α2)b

(
ς (v)

)[√
z
(
ς (v)

)
+

∫ ς (v)

r
d(τ )

√
z(τ ) 
α τ

]
+ l

(
α – α2)s

(
ς (v)

)

+ l
(
α – α2)b

(
� (v)

)[√
z
(
� (v)

)
+

∫ � (v)

r
d(τ )

√
z(τ ) 
α τ

]
+ l

(
α – α2)s

(
� (v)

)
,

which by integrating from r to v, using Lemma 3.1 and z(r) = j2, leads to

√
z(v) ≤ 2j + l

∫ v0

r

[(
1 – 2α + 2α2)s(τ ) +

(
α – α2)s

(
ς (τ )

)
+

(
α – α2)s

(
� (v)

)] 
α τ

+ 2l
(
1 – 2α + 2α2)∫ v

r
b(τ )

[√
z(τ ) +

∫ τ

r
d(ϑ)

√
z(ϑ) 
α ϑ

]

α τ

+ 2l
(
α – α2)∫ v

r
b
(
ς (τ )

)[√
z
(
ς (τ )

)
+

∫ ς (τ )

r
d(ϑ)

√
z(ϑ) 
α ϑ

]

α τ

+ 2l
(
α – α2)∫ v

r
b
(
� (τ )

)[√
z
(
� (τ )

)
+

∫ � (τ )

r
d(ϑ)

√
z(ϑ) 
α ϑ

]

α τ . (7)

Take the right hand side of (7) as G(v), then
√

z(v) ≤ G(v),

G(r) = 2j + l
∫ v0

r

[(
1 – 2α + 2α2)s(τ ) +

(
α – α2)s

(
ς (τ )

)
+

(
α – α2)s

(
� (v)

)] 
α τ (8)

and

G
α (v) ≤ [
2l

(
1 – 2α + 2α2)2 + 4l

(
α – α2)2][b(v)

(
G(v) +

∫ v

r
d(τ )G(τ ) 
α τ

)]
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+ 4l
(
1 – 2α + 2α2)(α – α2)b

(
ς (v)

)(
G

(
ς (v)

)
+

∫ ς (v)

r
d(τ )G(τ ) 
α τ

)

+ 4l
(
1 – 2α + 2α2)(α – α2)b

(
� (v)

)(
G

(
� (v)

)
+

∫ � (v)

r
d(τ )G(τ ) 
α τ

)

+ 2l
(
α – α2)b

(
ς2(v)

)(
G

(
ς2(v)

)
+

∫ ς2(v)

r
d(τ )G(τ ) 
α τ

)

+ 2l
(
α – α2)b

(
� 2(v)

)(
G

(
� 2(v)

)
+

∫ � 2(v)

r
d(τ )G(τ ) 
α τ

)
, (9)

here G
α (v) ≥ 0 and by the delta and nabla derivative, i.e G�(v), G∇ (v) ≥ 0, we observe that
G(� 2(v)) ≥ G(� (v)) ≥ G(v) ≥ G(ς (v)) ≥ G(ς2(v)). Therefore (9) yields

G
α (v) ≤ [[
2l

(
1 – 2α + 2α2)2 + 4l

(
α – α2)2]b(v) + 4l

(
1 – 2α + 2α2)(α – α2)b

(
ς (v)

)

+ 4l
(
1 – 2α + 2α2)(α – α2)b

(
� (v)

)

+ 2l
(
α – α2)b

(
� 2(v)

)
+ 2l

(
α – α2)b

(
ς2(v)

)]

×
[

G
(
� 2(v)

)
+

∫ � 2(v)

r
d(τ )G(τ ) 
α τ

]
. (10)

Put Π (v) = G(� 2(v)) +
∫ � 2(v)

r d(τ )G(τ ) 
α τ . By the definition of Π (v) and from (10), we
obtain

Π
α (v) ≤ [[
2l

(
1 – 2α + 2α2)2 + 4l

(
α – α2)2]b

(
� 2(v)

)

+ 4l
(
1 – 2α + 2α2)(α – α2)b

(
� (v)

)
+ 4l

(
1 – 2α + 2α2)(α – α2)b

(
� 3(v)

)

+ 2l
(
α – α2)b

(
� 4(v)

)
+ 2l

(
α – α2)b(v)

]
Π (v)

+
(
1 – 2α + 2α2)d

(
� 2(v)

)
G

(
� 2(v)

)
+

(
α – α2)d

(
� (v)

)
G

(
� (v)

)

+
(
α – α2)d

(
� 3(v)

)
G

(
� 3(v)

)
, (11)

Π
α (v) ≥ 0, Π�(v),Π∇ (v) ≥ 0, obviously G(� 2(v)) ≤ Π (v), also Π (� (v)) ≥ Π (v) ≥
Π (ς (v)) and Π (� (v)) ≥ G(� 3(v)). Therefore, from (11), we get

Π
α (v)
Π (� (v))

≤ [
2l

(
1 – 2α + 2α2)2 + 4l

(
α – α2)2]b

(
� 2(v)

)

+ 4l
(
1 – 2α + 2α2)(α – α2)b

(
� (v)

)
+ 4l

(
1 – 2α + 2α2)(α – α2)b

(
� 3(v)

)

+ 2l
(
α – α2)b

(
� 4(v)

)
+ 2l

(
α – α2)b(v)

+
(
1 – 2α + 2α2)d

(
� 2(v)

)
+

(
α – α2)d

(
� (v)

)
+

(
α – α2)d

(
� 3(v)

)
,

there exists a fixed constant n = maxv∈[r,v0]T
Π (� (v))
Π (ς (v)) , multiplying the last inequality by n, we

have

Π
α (v)
Π (� (v))

≤ [
2nl

(
1 – 2α + 2α2)2 + 4nl

(
α – α2)2]b

(
� 2(v)

)

+ 4nl
(
1 – 2α + 2α2)(α – α2)b

(
� (v)

)
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+ 4nl
(
1 – 2α + 2α2)(α – α2)b

(
� 3(v)

)
+ 2nl

(
α – α2)b

(
� 4(v)

)

+ 2nl
(
α – α2)b(v) + n

(
1 – 2α + 2α2)d

(
� 2(v)

)
+ n

(
α – α2)d

(
� (v)

)

+ n
(
α – α2)d

(
� 3(v)

)
,

which by using (8) gives the estimate

Π (v) ≤
[

2j + l
∫ v0

r

[(
1 – 2α + 2α2)s(τ ) +

(
α – α2)s

(
ς (τ )

)

+
(
α – α2)s

(
� (τ )

)] 
α τ

]2

αeΛ(v, r), (12)

where Λ(v) is defined in (3). From (10) and (12), we obtain

G
α (v) ≤ [[
2l

(
1 – 2α + 2α2)2 + 4l

(
α – α2)2]b(v) + 4l

(
1 – 2α + 2α2)(α – α2)b

(
ς (v)

)

+ 4l
(
1 – 2α + 2α2)(α – α2)b

(
� (v)

)
+ 2l

(
α – α2)b

(
� 2(v)

)

+ 2l
(
α – α2)b

(
ς2(v)

)]

×
[

2j + l
∫ v0

r

[(
1 – 2α + 2α2)s(τ ) +

(
α – α2)s

(
ς (τ )

)

+
(
α – α2)s

(
� (v)

)] 
α τ

]2

αeΛ(v, r),

or equivalently

1
2

G(v)

≤ 2j + l
∫ v0

r

[(
1 – 2α + 2α2)s(τ ) +

(
α – α2)s

(
ς (τ )

)
+

(
α – α2)s

(
� (v)

)] 
α τ

+
∫ v

r

[[
2l

(
1 – 2α + 2α2)2 + 4l

(
α – α2)2]b(τ ) + 4l

(
1 – 2α + 2α2)(α – α2)b

(
ς (τ )

)

+ 4l
(
1 – 2α + 2α2)(α – α2)b

(
� (τ )

)
+ 2l

(
α – α2)b

(
� 2(v)

)
+ 2l

(
α – α2)b

(
ς2(τ )

)]

×
[

2j + l
∫ τ0

r

[(
1 – 2α + 2α2)s(ϑ) +

(
α – α2)s

(
ς (ϑ)

)

+
(
α – α2)s

(
� (ϑ)

)] 
α ϑ

]2

αeΛ(v, r) 
α τ .

The conclusion in (2) can be obtained by substituting the last inequality in
√

z(v) ≤ G(v)
and (5). �

The following theorem is useful.

Theorem 3.3 Suppose that y(v), b, d, � , r, q are as mentioned in Theorem 3.2 and ψ(v) ∈
C(R+,R+) is non-decreasing. If

y2(v) ≤ j2 + 2
∫ v

r
b(τ )y2(τ ) 
α τ + 2

∫ v

r
b(τ )

(∫ τ

r
d(ϑ)y(ϑ)ψ

(
y(ϑ)

) 
α ϑ

)

α τ , (13)
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where j > 0, then for fixed constants l1, n1 > 0 we have

y(v) ≤ 4j + 2
∫ v

r

[([
2l1

(
1 – 2α + 2α2)2 + 4l1

(
α – α2)2]b(τ )

+ 4l1
(
1 – 2α + 2α2)(α – α2)b

(
ς (τ )

)

+ 4l1
(
1 – 2α + 2α2)(α – α2)b

(
� (τ )

)
+ 2l1

(
α – α2)2b

(
ς2(τ )

)

+ 2l1
(
α – α2)2b

(
� 2(τ )

))

×
(

Υ –1
[

2Υ (2j) +
∫ τ

r

([
4n1l1

(
1 – 2α + 2α2)2 + 8n1l1

(
α – α2)2]b

(
� 2(ϑ)

)

+ 8n1l1
(
1 – 2α + 2α2)(α – α2)b

(
� (ϑ)

)

+ 8n1l1
(
1 – 2α + 2α2)(α – α2)b

(
� 3(ϑ)

)

+ 4n1l1
(
α – α2)2b

(
� 4(ϑ)

)
+ 4n1l1

(
α – α2)2b

(
� (ϑ)

)

+ 2n1
(
1 – 2α + 2α2)d

(
� 2(ϑ)

)

+ 2n1
(
α – α2)d

(
� (ϑ)

)
+ +2n1

(
α – α2)d

(
� 3(ϑ)

)) 
α ϑ

])]

α τ , (14)

where Υ (u) =
∫ u

1
dp

p+ψ(p) , u > 0.

Proof Let v1 ∈ [r, q] and a non-decreasing function z1(v) be defined by

z1(v) = j2 + 2
∫ v

r
b(τ )y2(τ ) 
α τ + 2

∫ v

r
b(τ )

(∫ τ

r
d(ϑ)y(ϑ)ψ

(
y(ϑ)

) 
α ϑ

)

α τ , (15)

(13) can be restated as

y2(v) ≤ z1(v) ⇒ y(v) ≤ √
z1(v); (16)

as z�
1 (v), z∇

1 (v) ≥ 0, it is noticed from Lemma 2.1 that

z
α
1 (v) = 2

(
1 – 2α + 2α2)b(v)y2(v) + 2

(
1 – 2α + 2α2)b(v)

[∫ v

r
d(τ )y(τ )ψ

(
y(τ )

) 
α τ

]

+ 2
(
α – α2)b

(
ς (v)

)
y2(ς (v)

)
+ 2

(
α – α2)b

(
ς (v)

)[∫ ς (τ )

r
d(τ )y(τ )ψ

(
y(τ )

) 
α τ

]

+ 2
(
α – α2)b

(
� (v)

)
y2(� (v)

)

+ 2
(
α – α2)b

(
� (v)

)[∫ � (τ )

r
d(τ )y(τ )ψ

(
y(τ )

) 
α τ

]
,

z1(v) ≥ 0, z1(ς (v)) ≥ z1(v) ≥ z1(� (v)). Further, z1(v) is bounded and regulated in [r, q]T
and belong to C([r, q]T,R+) which does not tend to zero. Consider a constant l1 =
maxv∈[r,v1]T

√
z1(� (v))√
z1(ς (v))

, multiplying the previous inequality by l1,

z
α
1 (v)

2
√

z1(� (v))
≤ l1

(
1 – 2α + 2α2)b(v)

[√
z1(v) +

∫ v

r
d(τ )ψ

(√
z1(τ )

) 
α τ

]
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+ l1
(
α – α2)b

(
ς (v)

)[√
z1

(
ς (v)

)
+

∫ ς (v)

r
d(τ )ψ

(√
z1(τ )

) 
α τ

]

+ l1
(
α – α2)b

(
� (v)

)[√
z1

(
� (v)

)
+

∫ � (v)

r
d(τ )ψ

(√
z1(τ )

) 
α τ

]
, (17)

integrating (17) from r to v, using Lemma 3.1 and z1(r) = j2, we have

√
z(v) ≤ 2j + 2l1

(
1 – 2α + 2α2)∫ v

r
b(τ )

[√
z(τ ) +

∫ τ

r
d(ϑ)ψ

(√
z(ϑ)

) 
α ϑ

]

α τ

+ 2l1
(
α – α2)∫ v

r
b
(
ς (τ )

)[√
z
(
ς (τ )

)
+ l

∫ ς (τ )

r
d(ϑ)ψ

(√
z(ϑ)

) 
α ϑ

]

α τ

+ 2l1
(
α – α2)∫ v

r
b
(
� (τ )

)[√
z
(
� (τ )

)
+

∫ � (τ )

r
d(ϑ)ψ

(√
z(ϑ)

) 
α ϑ

]

α τ

≤ G1(v), (18)

where

G1(v) = 2j + 2l1
(
1 – 2α + 2α2)∫ v

r
b(τ )

[√
z(τ ) +

∫ τ

r
d(ϑ)ψ

(√
z(ϑ)

) 
α ϑ

]

α τ

+ 2l1
(
α – α2)∫ v

r
b
(
ς (τ )

)[√
z
(
ς (τ )

)
+ l

∫ ς (τ )

r
d(ϑ)ψ

(√
z(ϑ)

) 
α ϑ

]

α τ

+ 2l1
(
α – α2)∫ v

r
b
(
� (τ )

)[√
z
(
� (τ )

)

+
∫ � (τ )

r
d(ϑ)ψ

(√
z(ϑ)

) 
α ϑ

]

α τ . (19)

By following the same steps from (8)–(10) to (19) with some alterations, we conclude

G
α
1 (v) ≤ [[

2l1
(
1 – 2α + 2α2)2 + 4l1

(
α – α2)2]b(v) + 4l1

(
1 – 2α + 2α2)(α – α2)b

(
ς (v)

)

+ 4l1
(
1 – 2α + 2α2)(α – α2)b

(
� (v)

)
+ 2l1

(
α – α2)b

(
� 2(v)

)

+ 2l1
(
α – α2)b

(
ς2(v)

)]
Π1(v), (20)

where Π1(v) = G1(� 2(v)) +
∫ � 2(v)

r d(τ )ψ(G1(τ )) 
α τ and G1(� 2(v)) ≤ Π1(v). In view
of Π1(v) ≥ 0, Π�

1 (v),Π∇
1 (v) ≥ 0, apparently Π1(� (v)) ≥ Π1(v) ≥ Π1(ς (v)), Π1(� (v)) ≥

G1(� 3(v)). Thus from (20), we acquire

Π

α
1 (v)

Π1(v) + Π1(� (v))

≤ [
2l1

(
1 – 2α + 2α2)2 + 4l1

(
α – α2)2]b

(
� 2(v)

)

+ 4l1
(
1 – 2α + 2α2)(α – α2)b

(
� (v)

)

+ 4l1
(
1 – 2α + 2α2)(α – α2)b

(
� 3(v)

)
+ 2l1

(
α – α2)b

(
� 4(v)

)
+ 2l1

(
α – α2)b(v)

+
(
1 – 2α + 2α2)d

(
� 2(v)

)
+

(
α – α2)d

(
� (v)

)
+

(
α – α2)d

(
� 3(v)

)
. (21)
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Multiply (21) by a fixed constant n1 so that n1 = maxv∈[r,v0]T
Π1(� (v))

Π1(v)+Π1(ς (v)) , then, by using the
definition of Υ and the fact that Υ (Π1(r) = 2j, we have

Π1(v) ≤ Υ –1
[

2Υ (2j) +
∫ v

r

([
4n1l1

(
1 – 2α + 2α2)2 + 8n1l1

(
α – α2)2]b

(
� 2(τ )

)

+ 8n1l1
(
1 – 2α + 2α2)(α – α2)b

(
� (τ )

)

+ 8n1l1
(
1 – 2α + 2α2)(α – α2)b

(
� 3(τ )

)

+ 4n1l1
(
α – α2)2b

(
� 4(τ )

)
+ 4n1l1

(
α – α2)2b

(
� (τ )

)

+ 2n1
(
1 – 2α + 2α2)d

(
� 2(τ )

)

+ 2n1
(
α – α2)d

(
� (τ )

)
+ +2n1

(
α – α2)d

(
� 3(τ )

) 
α τ
)]

. (22)

From (20) and (22), we obtain

G
α
1 (v) ≤ [[

2l1
(
1 – 2α + 2α2)2 + 4l1

(
α – α2)2]b(v) + 4l1

(
1 – 2α + 2α2)(α – α2)b

(
ς (v)

)

+ 4l1
(
1 – 2α + 2α2)(α – α2)b

(
� (v)

)
+ 2l1

(
α – α2)b

(
� 2(v)

)

+ 2l1
(
α – α2)b

(
ς2(v)

)]

×
[
Υ –1

(
2Υ (2j) +

∫ v

r

[[
4n1l1

(
1 – 2α + 2α2)2 + 8n1l1

(
α – α2)2]b

(
� 2(τ )

)

+ 8n1l1
(
1 – 2α + 2α2)(α – α2)b

(
� (τ )

)

+ 8n1l1
(
1 – 2α + 2α2)(α – α2)b

(
� 3(τ )

)

+ 4n1l1
(
α – α2)2b

(
� 4(τ )

)
+ 4n1l1

(
α – α2)2b

(
� (τ )

)

+ 2n1
(
1 – 2α + 2α2)d

(
� 2(τ )

)

+ 2n1
(
α – α2)d

(
� (τ )

)
+ +2n1

(
α – α2)d

(
� 3(τ )

) 
α τ
])]

,

which by the integration from r to v, using Lemma 3.1, (5) and G1(r) = 2j, produces the
required bound in (14). �

Remark 3.4 If j2 = a(v), a(v) is a non-decreasing function, y2(v) = u(v), r = v0, d(v) = k(τ , v),
2b(v) = f (v) and ψ(y(v)) = 1, then Theorem 3.3 is converted into Theorem 3 in [20] with
delta derivatives on time scales.

Remark 3.5 Put j2 = a(v), y2(v) = u(v), r = v0, d(v) = 0 and 2b(v) = f (v), then Theorem 3.3
changes into Corollary 3.11 in [4] related to delta derivatives.

4 Applications
Here, we will derive some applications of the established inequalities to discuss certain
characteristics of the solutions of nonlinear dynamic integro-differential equation on time
scales of the type

x
α (ξ ) = H
(

ξ , x(ξ ),
∫ ξ

0
N

(
ξ ,σ , x(σ )

) 
α σ

)
, x(0) = x0, ξ ∈ T

k , (23)
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where x0 is a constant, and H : Tk × R × R → R, N : Tk × T
k × R → R are continuous

functions.
The boundedness on the solution of (23) can be addressed in the first example.

Example 1 Suppose that x(ξ ) is a solution of (23), and the functions H and B in (23) satisfy
the following conditions:

∣∣H(ξ , x, z)
∣∣ ≤ b(ξ )|x| + |z|, (24)

∣∣N(ξ ,σ , x)
∣∣ ≤ b(ξ )d(σ )

∣∣ψ(x)
∣∣, (25)

then

∣∣x(ξ )
∣∣ ≤ 4|x0| + 2

∫ ξ

0

[([
2l1

(
1 – 2α + 2α2)2 + 4l1

(
α – α2)2]b(τ )

+ 4l1
(
1 – 2α + 2α2)(α – α2)b

(
ς (τ )

)

+ 4l1
(
1 – 2α + 2α2)(α – α2)b

(
� (τ )

)
+ 2l1

(
α – α2)2b

(
ς2(τ )

)

+ 2l1
(
α – α2)2b

(
� 2(τ )

))

×
(

Υ –1
[

2Υ
(
2|x0|

)
+

∫ τ

0

([
4n1l1

(
1 – 2α + 2α2)2 + 8n1l1

(
α – α2)2]b

(
� 2(ϑ)

)

+ 8n1l1
(
1 – 2α + 2α2)(α – α2)b

(
� (ϑ)

)

+ 8n1l1
(
1 – 2α + 2α2)(α – α2)b

(
� 3(ϑ)

)

+ 4n1l1
(
α – α2)2b

(
� 4(ϑ)

)
+ 4n1l1

(
α – α2)2b

(
� (ϑ)

)

+ 2n1
(
1 – 2α + 2α2)d

(
� 2(ϑ)

)

+ 2n1
(
α – α2)d

(
� (ϑ)

)
+ +2n1

(
α – α2)d

(
� 3(ϑ)

)) 
α ϑ

])]

α τ , (26)

where b, d, ψ , Υ , l1, n1 are given in Theorem 3.3.
Proof. Multiplying both sides of (23) by x(ξ ), substituting ξ = γ and then integrating

from 0 to ξ , we get

x2(ξ ) = x2
0 + 2

∫ ξ

0

[
x(γ )H

(
γ , x(γ ),

∫ γ

0
N

(
γ ,σ , x(σ )

) 
α σ

)]

α γ ,

it follows from (24) and (25) that

∣∣x(ξ )
∣∣2 ≤ |x0|2 + 2

∫ ξ

0

∣∣∣∣
[

x(γ )H
(

γ , x(γ ),
∫ γ

0
N

(
γ ,σ , x(σ )

) 
α σ

)]∣∣∣∣ 
α γ , (27)

∣∣x(ξ )
∣∣2 ≤ |x0|2 + 2

∫ ξ

0
b(γ )

∣∣x(γ )
∣∣2 
α γ

+ 2
∫ ξ

0
b(γ )

(∫ γ

0
d(σ )

∣∣x(σ )
∣∣∣∣ψ(

x(σ )
)∣∣ 
α σ

)

α γ . (28)

The desired estimation in (26) follows from the suitable implementation of Theorem 3.3
to |x(ξ )| in (28).
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The uniqueness of the solution of (23) is studied in the second example.

Example 2 Assume that

∣∣H(ξ , x, z) – H(ξ , x̄, z̄)
∣∣ ≤ b(ξ )|x – x̄| + |z – z̄|], (29)

∣∣N(ξ ,σ , x) – N(ξ ,σ , x̄)
∣∣ ≤ b(ξ )d(σ )|x – x̄|, (30)

then (23) has at most one positive solution on ξ ∈ T
k .

Proof. Let x(ξ ) and x̄(ξ ) be two solutions of (23) and applying (27), (28), (29), we obtain

∣∣x2(ξ ) – x̄2(ξ )
∣∣

≤ 2
∫ ξ

0
b(γ )

∣∣x2(γ ) – x̄2(γ )
∣∣ 
α γ

+ 2
∫ ξ

0
b(γ )

(∫ γ

0
d(σ )

∣∣x(σ ) – x̄(σ )
∣∣∣∣ψ(

x(σ )
)

– ψ
(
x̄(σ )

)∣∣ 
α σ

)

α γ . (31)

By making use of a similar procedure to Theorem 3.3 with appropriate modifications to
the function |x2(ξ ) – x̄2(ξ )| in (31), we obtain

∣∣x2(ξ ) – x̄2(ξ )
∣∣ ≤ 0, v ∈ I.

Hence x = x̄ on ξ ∈ T
k .
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