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Abstract
We present a collocation approach based on redefined cubic B-spline (RCBS)
functions and finite difference formulation to study the approximate solution of time
fractional Allen–Cahn equation (ACE). We discretize the time fractional derivative of
order α ∈ (0, 1] by using finite forward difference formula and bring RCBS functions
into action for spatial discretization. We find that the numerical scheme is of order
O(h2 +�t2–α) and unconditionally stable. We test the computational efficiency of the
proposed method through some numerical examples subject to
homogeneous/nonhomogeneous boundary constraints. The simulation results show
a superior agreement with the exact solution as compared to those found in the
literature.
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1 Introduction
Nonlinear evolution equations have numerous applications in various fields of engineer-
ing, physics, chemistry, and biology such as chemical reactions, gas and fluid mechanics,
elasticity, optical fiber, relativity, solid state and plasma physics, ecology and biomechan-
ics, and so on [1]. Analytical and numerical study of traveling wave equations has always
remained an interesting topic for the researchers. The fractional first integral method [2],
the fractional exp-function approach [3], the fractional Ǵ/G-expansion scheme [4], the
fractional variable method [5], the fractional modified trial equation algorithm [6], the
fractional subequation method [7], the fractional simplest equation formulation [8], and
the Tanh method using fractional complex transform [9] are some efficient and famous
methods for solving fractional-order nonlinear problems.

So far, intensive efforts have been made to study the time fractional phase-field models,
as these models catch great attention in the field of phase transitions [10]. Mostly two
very important phase-field partial differential equation (PDE) models, the Allen–Cahn
and Cahn–Hilliard models, have been studied rigorously [11]. The Allen–Cahn model is
used to describe the motion of phase boundaries in crystalline solids [12]. It also appears in
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some other applications such as mixture of two incompressible fluids, vesicle membranes,
and nucleation of solids [13–15].

In this paper, we consider the following time fractional ACE, which arises in mathemat-
ical modeling of phase separation in alloys of iron [1]:

∂αu(z, t)
∂tα

–
∂2u(z, t)

∂z2 +
(
u(z, t)

)3 – u(z, t) = f (z, t), z ∈ [a, b], t ∈ [0, T], (1)

subject to the initial conditions

u(z, 0) = φ0(z) (2)

and boundary conditions

u(a, t) = ψ1(t), u(b, t) = ψ2(t), (3)

where φ0(z) and ψi(z) are supposed to be smooth functions with continuous first-order
derivatives. There are many interpretations of fractional-order derivatives [16–19]. How-
ever, we have considered the fractional derivative in Caputo sense as [20]

∂αu(z, t)
∂tα

=
∫ t

0

∂u(z, τ )
∂τ

dτ

Γ (1 – α)(t – τ )α
, α ∈ (0, 1], (4)

where Γ is the usual gamma function. A lot of work on analytical solutions of time frac-
tional ACE is available in the literature. Esen et al. [21] employed homotopy analysis
method (HAM) to find the exact solution of time fractional ACE. The exact solution of
space-time fractional ACE was discussed in [22] by means of a fractional subdiffusion
method. The authors in [23] studied the coarsening of domains in a subdiffusive ACE
in the context of the Seki–Lindenberg subdiffusion–reaction model. Yasar and Giresunlu
[24] examined the exact solution of nonlinear space-time fractional ACE using ( Ǵ

G . 1
G )-

expansion algorithm. Guner et al. [25] solved the time fractional nonlinear ACE by means
of the first integral, the exp-function and ( Ǵ

G )-expansion methods. Zhai et al. [26] applied a
robust explicit operator splitting spectral approach to solve the nonlocal fractional Allen–
Cahn model. The existence and uniqueness of weak solutions for the fractional Allen–
Cahn, Cahn–Hilliard, and porous medium equations have been discussed by Akagi [27].

Tariq and Akram [1] proposed an analytical approach to determine the exact solutions
for time fractional ACE. The authors applied the fractional complex transform method
to reduce the equation into nonlinear ordinary differential equation (ODE). To explore
numerical solution of space fractional ACEs, Hou et al. [28] employed the finite difference
and Crank–Nicolson schemes for temporal and spatial discretization, respectively. Li et
al. [29] explored the numerical solution of space-time fractional Allen–Cahn phase-field
equation arising in the study of fluid mixture having two immiscible fluid phases. Some
new exact solutions for time fractional ACE were presented by Hosseini et al. [30] using a
new Kudryashov method in perspective of the conformable fractional derivative.

Most recently, Sakar et al. [31] proposed a numerical scheme based on the iterative re-
producing kernel method (IRKM) to investigate the approximate solution of time frac-
tional ACE. Liu et al. [32] developed a numerical scheme based on finite difference for-
mulation and the Fourier spectral method to solve time fractional ACE in one and two
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space dimensions. Smooth and nonsmooth solutions for nonlinear space fractional ACE
were studied by Yin et al. [33] using a fast algorithm based on time two-mesh finite differ-
ence method. Inc et al. [34] reduced the time fractional ACE and time fractional Klein–
Gordon equations into the corresponding nonlinear fractional ODEs and employed an
explicit power series method to solve these fractional ODEs. Khalid et al. [35] proposed
a numerical approach based on cubic modified extended basis spline functions for time
fractional diffusion wave equations. The authors in [36] employed nonpolynomial quin-
tic spline functions for numerical investigation of fourth-order fractional boundary value
problems involving product terms.

In this paper, we present a redefined cubic B-spline (RCBS) algorithm for numerical
investigation of time fractional ACEs. The Caputo time fractional derivative has been dis-
cretized by finite difference formula, whereas spatial derivatives are discretized by RCBS
functions. This approach is novel for numerical solution of fractional-order ACEs, and to
the best of our knowledge, spline solution of time fractional ACE has never been studied
yet. Moreover, this scheme is equally effective for homogeneous and nonhomogeneous
boundary conditions.

This paper is organized as follows. Section 2 evolves a brief description of temporal
discretization, cubic B-spline functions, and spatial discretization. In Sect. 3, we discuss
the stability of the proposed algorithm. The theoretical convergence analysis is presented
in Sect. 4. The discussion on numerical results of three test problems has been reported
in Sect. 5.

2 Description of the method
2.1 Temporal discretization
Let the time interval [0, T] be divided into M subintervals of equal length �t = T

M such as
0 = t0 < t1 < · · · < tM = T , where tn = n�t, n = 0, 1, . . . , M. The Caputo definition given in
Eq. (4) for time fractional derivative can be rewritten as

∂αu(z, tn+1)
∂tα

=
∫ tn+1

0

∂u(z, τ )
∂τ

dτ

Γ (1 – α)(tn+1 – τ )α

=
n∑

k=0

∫ tk+1

tk

∂u(z, τ )
∂τ

dτ

Γ (1 – α)(tn+1 – τ )α
. (5)

Using forward difference formulation, Eq. (5) can be modified as

∂αu(z, tn+1)
∂tα

=
1

Γ (1 – α)

n∑

k=0

u(z, tk+1) – u(z, tk)
�t

∫ tk+1

tk

dτ

(tn+1 – τ )α
+ ηn+1

�t

=
1

Γ (1 – α)

n∑

k=0

u(z, tk+1) – u(z, tk)
�t

∫ tn+1–k

tn–k

dρ

ρα
+ ηn+1

�t

=
1

Γ (1 – α)

n∑

k=0

u(z, tn–k+1) – u(z, tn–k)
�t

∫ tk+1

tk

dρ

ρα
+ ηn+1

�t

=
1

Γ (2 – α)

n∑

k=0

u(z, tn–k+1) – u(z, tn–k)
(�t)α

[
(k + 1)1–α – (k)1–α

]
+ ηn+1

�t .
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Hence

∂αu(z, tn+1)
∂tα

=
1

Γ (2 – α)

n∑

k=0

δk
u(z, tn–k+1) – u(z, tn–k)

(�t)α
+ ηn+1

�t , (6)

where δk = (k + 1)1–α – (k)1–α , ρ = tn+1 – τ , and the truncation error ηn+1
�t is bounded,

∣∣ηn+1
�t

∣∣≤ � (�t)2–α , (7)

where � is a finite constant.

Lemma 2.1 The coefficients δr possess following characteristics [20]:
• δ0 = 1, δk > 0, k = 1, . . . , n;
• δ0 > δ1 > δ2 > · · · > δk → 0 as k → ∞
•
∑n

k=0(δk – δk+1) + δn+1 = (1 – δ1) +
∑n–1

k=1(δk – δk+1) + δn = 1.

Substituting Eq. (6) into Eq. (1), we get

n∑

k=0

δk

Γ (2 – α)(�t)α
[
u(z, tn–k+1) – u(z, tn–k)

]
– u(z, tn+1)

=
∂2u(z, tn+1)

∂z2 + f (z, tn+1) – F
(
u(z, tn)

)
, (8)

where F is a nonlinear term such as F(u(z, t)) = u3(z, t). We can write the last equation in
the following form:

(r – 1)un+1 – run + r
n∑

k=1

δk
(
un–k+1 – un–k) =

(
∂2u
∂z2

)n+1

+ f n+1 – Fn, (9)

where r = 1
Γ (2–α)(�t)α , u(z, tn+1) = un+1, n = 0, 1, . . . , M.

2.2 Cubic B-spline functions
Consider the space interval [a, b] divided into N piecewise uniform spacing subintervals
of length h = zj – zj–1 = b–a

N , j = 1, . . . , N , such that a = z0 < z1 < · · · < zN = b. In typical cubic
B-spline collocation method, the approximation U∗(z, t) to the exact solution u(z, t) is

U∗(z, t) =
N+1∑

j=–1

γj(t)Bj(z), (10)

where γj(t) are time-dependent unknowns to be computed. The cubic B-spline functions
are twice differentiable at the nodal points zj over the domain [a, b] and preserve identical
properties like nonnegativity, local support, convex, full property, symmetry, partition of
unity, and geometric invariability. The blending function Bj(z) of cubic B-spline can be
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Table 1 The Coefficients of cubic B-splines and their derivatives at knots zj

z zj–2 zj–1 zj zj+1 zj+2

Bj(z) 0 1
6

4
6

1
6 0

B′
j (z) 0 1

2h 0 – 1
2h 0

B′′
j (z) 0 1

h2
– 2
h2

1
h2

0

represented in the following form [37]:

Bj(z) =
1

6h3

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(z – zj–2)3, for z ∈ [zj–2, zj–1),

(z – zj–2)3 – 4(z – zj–1)3, for z ∈ [zj–1, zj),

4(z – zj+1)3 – (z – zj+2)3, for z ∈ [zj, zj+1),

–(z – zi+2)3, for z ∈ [zj+1, zj+2),

0 otherwise,

(11)

where B–1, B0, . . . , BN+1 can serve as spline basis over the domain [a, b]. The values of Bj(z),
B′

j(z), and B′′
j (z) are given in Table 1 [38].

The approximate solution (U∗)n
j = U∗(zj, tn) with its first- and second-order derivatives

at the nth time level in terms of γj can be written as

⎧
⎪⎪⎨

⎪⎪⎩

6(U∗)n
j = γ n

j–1 + 4γ n
j + γ n

j+1,

2h(U∗
z )n

j = γ n
j–1 – γ n

j+1,

h2(U∗
zz)n

j = γ n
j–1 – 2γ n

j + γ n
j+1.

(12)

2.3 Redefined cubic B-spline functions
Usually, in collocation techniques, the Dirichlet type end conditions are imposed where
the basis of spline functions vanish, but the CBS functions B–1, B0, . . . , BN+1 do not vanish
at the boundaries. So we redefine these bases so that they vanish at the boundaries when
Dirichlet-type end conditions are prescribed [38, 39].

The spline solution U(z, t) for the exact solution u(z, t) is obtained by eliminating γ n
–1

and γ n
N+1 from Eq. (10) as follows:

U(z, t) = W̃ (z, t) +
N∑

j=0

γj(t)̃Bj(z), (13)

where the weight function W̃ (z, t) and RCBS B̃j(z) functions are given by

W̃ (z, t) =
B–1(z)
B–1(z0)

ψ1(t) +
BN+1(z)

BN+1(zN )
ψ2(t), (14)

⎧
⎪⎪⎨

⎪⎪⎩

B̃j(z) = Bj(z) – Bj(z0)
B–1(z0) B–1(z), j = 0, 1,

B̃j(z) = Bj(z), j = 2, . . . , N – 2,

B̃j(z) = Bj(z) – Bi(zN )
BN+1(zN ) BN+1(z), j = N – 1, N .

(15)
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Using Eq. (13) in Eq. (9), we obtain

(r – 1)

(

W̃ n+1(z, t) +
N∑

j=0

γ n+1
j (t)̃Bj(z)

)

– r

(

W̃ n(z, t) +
N∑

j=0

γ n
j (t)̃Bj(z)

)

+ r
n∑

k=1

δk

(

W̃ n–k+1(z, t) +
N∑

j=0

γ n–k+1
j (t)̃Bj(z) – W̃ n–k(z, t) –

N∑

j=0

γ n–k
j (t)̃Bj(z)

)

= W̃ n+1
zz (z, t) +

N∑

j=0

γ n+1
j (t)̃B′′

j (z) + f n+1 – Fn.

Let (W̃ ∗)n+1 be the resultant term obtained from the weight functions. Then the last equa-

tion becomes

(r – 1)
N∑

j=0

γ n+1
j (t)̃Bj(z) – r

N∑

j=0

γ n
j (t)̃Bj(z)

+ r
n∑

k=1

δk

( N∑

j=0

γ n–k+1
j (t)̃Bj(z) –

N∑

j=0

γ n–k
j (t)̃Bj(z)

)

=
N∑

j=0

γ n+1
j (t)̃B′′

j (z) + f n+1 – Fn –
(
W̃ ∗)n+1. (16)

Letting gn+1 = f n+1 – Fn – (W̃ ∗)n+1 and using the values given in Table 1 with Eqs. (14) and

(15) in Eq. (16), we form a recurrence relation after some simplifications:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρ0γ
n+1
0 = gn+1, j = 0,

ρ1γ
n+1
j–1 + ρ2γ

n+1
j + ρ1γ

n+1
j+1

= r
6 (γ n

j–1 + 4γ n
j + γ n

j+1)

– r
6
∑n

k=1 δk[(γ n–k+1
j–1 – γ n–k

j–1 ) + 4(γ n–k+1
j – γ n–k

j )

+ (γ n–k+1
j+1 – γ n–k

j+1 )] – gn+1, j = 1, . . . , N – 1,

ρ0γ
n+1
n = gn+1, j = N ,

(17)

where ρ0 = 6
h2 , ρ1 = ( r–1

6 – 1
h2 ), and ρ2 = 2( r–1

3 + 1
h2 ). The system of equations (17) in matrix

form is given by

Aγ n+1 = rB

[ n–1∑

k=0

(δk – δk+1)γ n–k + δnγ
0

]

– G, (18)
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where

A =

⎛

⎜
⎜⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎜
⎝

ρ0 0 0
ρ1 ρ2 ρ1

ρ1 ρ2 ρ1
. . .

ρ1 ρ2 ρ1

ρ1 ρ2 ρ1

0 0 ρ0

⎞

⎟
⎟⎟⎟
⎟⎟
⎟⎟
⎟⎟
⎟
⎠

, γ n+1 =

⎛

⎜⎜
⎜⎜
⎜⎜
⎜
⎝

γ n+1
0

γ n+1
1
...

γ n+1
N–1

γ n+1
N

⎞

⎟⎟
⎟⎟
⎟⎟
⎟
⎠

,

B =

⎛

⎜
⎜⎜
⎜⎜
⎜⎜⎜
⎜⎜
⎜
⎝

0 0 0
1
6

4
6

1
6

1
6

4
6

1
6

. . .
1
6

4
6

1
6

1
6

4
6

1
6

0 0 0

⎞

⎟
⎟⎟
⎟⎟
⎟⎟⎟
⎟⎟
⎟
⎠

, G =

⎛

⎜
⎜⎜
⎜⎜⎜
⎜
⎝

gn+1
0

gn+1
1
...

gn+1
N–1

gn+1
N

⎞

⎟
⎟⎟
⎟⎟⎟
⎟
⎠

.

Using the initial conditions given in Eq. (2), we obtain the initial vector γ 0 = [γ 0
0 ,γ 0

1 , . . . ,
γ 0

N ]T required to initiate the iteration process. We apply the initial conditions as follows:
⎧
⎪⎪⎨

⎪⎪⎩

(Uz)0
j = φ′

0(zj), j = 0,

(U)0
j = φ0(zj), j = 1, . . . , N – 1,

(Uz)0
j = φ′

0(zj), j = N .

(19)

This gives N + 1 linear equations and can be written as

Aγ 0 = b0, (20)

where

A =

⎛

⎜⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎝

2
h

1
h 0

1
6

4
6

1
6

1
6

4
6

1
6

. . .
1
6

4
6

1
6

1
6

4
6

1
6

0 – 1
h – 2

h

⎞

⎟⎟⎟
⎟⎟
⎟⎟
⎟⎟
⎟⎟
⎠

, b0 =

⎛

⎜
⎜⎜
⎜⎜
⎜⎜
⎝

φ′
0(z0)

φ0(z1)
...

φ0(zN–1)
φ′

0(zN )

⎞

⎟
⎟⎟
⎟⎟
⎟⎟
⎠

.

3 Stability analysis
A numerical algorithm is considered to be stable if the errors do not propagate during the
execution [40]. Here we employ the Fourier method to carry out the stability analysis of
the proposed scheme. Let Φn represent the growth factor in Fourier mode, and let Φ̃n be
its approximate value. The error λn

i at the nth time level is given by

λn = Φn – Φ̃n, (21)

where λn = [λn
1,λn

2, . . . ,λn
N–1]T .
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For simplicity, we study the stability in Eq. (17) for linear case (g = 0) only. Using Eqs. (21)
and (17), we get the round-off error in the form

ρ1λ
n+1
j–1 + ρ2λ

n+1
j + ρ1λ

n+1
j+1

=
r
6
(
λn

j–1 + 4λn
j + λn

j+1
)

–
r
6

n∑

k=1

δk
[(

λn–k+1
j–1 – λn–k

j–1
)

+ 4
(
λn–k+1

j – λn–k
j

)
+
(
λn–k+1

j+1 – λn–k
j+1

)]
. (22)

The initial condition is satisfied by the error equation

λ0
j = φ0(zj), j = 1, . . . , N , (23)

and similarly the boundary conditions become

λn
0 = ψ1(tn), λn

N = ψ2(tn), n = 0, . . . , M. (24)

Define a grid function in the Fourier form:

λn =

⎧
⎨

⎩
λn

q , zq – h
2 < z ≤ zq + h

2 , q = 1, . . . , N – 1,

0, a ≤ z ≤ a + h
2 or b – h

2 ≤ z ≤ b.
(25)

Now, in the Fourier series form, λn(z) can be expressed as

λn(z) =
∞∑

–∞
εn(m)e

2iπmz
b–a , n = 0, . . . , M, (26)

where

εn(m) =
1

b – a

∫ b

a
λn(z)e

–2iπmz
b–a dz. (27)

Applying the norm, we obtain

∥
∥λn∥∥

2 =

(N–1∑

i=1

h
∣
∣λn

i
∣
∣2
) 1

2

=

(∫ a+ h
2

a

∣
∣λn∣∣2 dz +

N–1∑

i=1

∫ zi+ h
2

zi– h
2

∣
∣λn∣∣2 dz +

∫ b

b– h
2

∣
∣λn∣∣2 dz

) 1
2

,

∥∥λn∥∥2
2 =

∫ b

a

∣∣λn∣∣2 dz.

Hence

∥∥λn∥∥2
2 =

∞∑

–∞

∣∣εn(m)
∣∣2

(

using the Parseval’s identity
∫ b

a

∣∣λn∣∣2 dz =
∞∑

–∞

∣∣εn(m)
∣∣2
)

. (28)

Let λn
j = εneiνjh be the solution in the Fourier series form, where i =

√
–1 and ν = 2πm

b–a .
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Using the expression λn
j = εneiνjh in Eq. (22) and then dividing by eiνjh, we obtain

ρ1εn+1e–iνh + ρ2εn+1 + ρ1εn+1eiνh

=
r
6
(
εne–iνh + 4εn + εneiνh)

–
r
6

n∑

k=1

δk
[
(εn–k+1 – εn–k)e–iνh + 4(εn–k+1 – εn–k) + (εn–k+1 – εn–k)eiνh]. (29)

Using the relation eiνh + e–iνh = 2 cos(νh), we can collect like terms in the following way:

εn+1 =
1
b∗ εn –

1
b∗

n∑

k=1

δk(εn–k+1 – εn–k), (30)

where b∗ = 1 + 12 sin2(νh/2)–h2(2+cos(νh))
ah2(2+cos(νh)) , and we can see that b∗ ≥ 1.

Theorem 1 The fully implicit scheme given in (17) is unconditionally stable if |εn| ≤ |ε0|,
n = 0, 1, . . . , T × M, where εn is the solution of (30).

Proof First of all, we have to prove by induction that |εn| ≤ |ε0| for n = 0, . . . , T × M.
For n = 0, Eq. (30) takes the form

|ε1| =
1
b∗ |ε0| ≤ |ε0|, b∗ ≥ 1.

Let us assume that the result |εn| ≤ |ε0| is true for n = 1, 2, . . . T × M – 1.
Now expression (30) can be written as

|εn+1| ≤ 1
b∗ |εn| –

1
b∗

n∑

k=1

δk
(|εn–k+1| – |εn–k|

)

≤ 1
b∗ |ε0| –

1
b∗

n∑

k=1

δk
(|ε0| – |ε0|

)

≤ |ε0|.

Hence

|εn| ≤ |ε0| for n = 0, . . . , M. (31)

Now, using Eqs. (28) and (31), we get

∥∥λn∥∥≤
∣∣λ0∣∣

2, n = 0, . . . , M,

This proves that the implicit scheme (17) is unconditionally stable. �

4 Convergence analysis
We follow the technique used in [41] to investigate the uniform convergence of the pro-
posed algorithm. Firstly, we state the following theorem [42, 43].
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Theorem 2 Suppose that the exact solution u(z, t) ∈ C4[a, b], f ∈ C2[a, b], � = {a =
z0, z1, . . . , zN = b} is an equidistant partition, each of length h, over the interval [a, b] such
that zj = jh, j = 1, . . . , N . Let Ũ(z, t) be the unique spline approximation to the given problem
at the spatial grid points zj ∈ �, j = 0, . . . , N , then for all t ≥ 0, there exist μj, independent
of h, such that

∥∥Dj(u – Ũ)
∥∥∞ ≤ μjh4–j, j = 0, 1, 2. (32)

Lemma 4.1 The B-spline set {B0, B1, . . . , BN } presented in (10) satisfies the inequality

N∑

j=0

∣
∣Bj(z)

∣
∣≤ 5

3
, 0 ≤ z ≤ 1. (33)

Proof By the triangle inequality we can write

∣∣∣
∣∣

N∑

j=0

Bj(z)

∣∣∣
∣∣
≤

N∑

j=0

∣∣Bj(z)
∣∣.

For grid points zj, we get

N∑

j=0

∣∣Bj(z)
∣∣ =

∣∣Bj–1(zj)
∣∣ +

∣∣Bj(zj)
∣∣ +

∣∣Bj+1(zj)
∣∣ = 1 <

5
3

.

Further, for a point z ∈ [zj, zj+1], we have

N∑

j=0

∣∣ηj(z)
∣∣ =

∣∣Bj–1(z)
∣∣ +

∣∣Bj(z)
∣∣ +

∣∣Bj+1(z)
∣∣ +

∣∣Bj+2(z)
∣∣ =

5
3

,

where

∣
∣Bj–1(z)

∣
∣≤ 1

6
,

∣
∣Bj(z)

∣
∣≤ 4

6
,

∣
∣Bj+1(z)

∣
∣≤ 4

6
,

∣
∣Bj+2(z)

∣
∣≤ 1

6
.

Hence

N∑

j=0

∣∣ηj(z)
∣∣≤ 5

3
. (34)

�

Theorem 3 Let U be the numerical approximation to the analytical exact solution u for
Eqs. (1)–(3). If f ∈ C2[0, 1], then we have

‖u – U‖∞ ≤ Ωh2, ∀t ≥ t0, (35)

where Ω > 0 is a constant independent from h, and h is sufficiently small.

Proof Let u be the exact solution, and let Ũ =
∑N

j=0 cj(t)Bj be the spline approximation
for U .
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Let Lu(zj, t) = LU(zj, t) = g(zj, t), j = 0, . . . , N , be the accumulation conditions. Then

LŨ(z, t) = g̃(zj, t), j = 0, . . . , N .

At the nth time stage, the present BVP can be written in the form of the difference equation
L(Ũ(zj, t) – U(zj, t)):

ρ1ξ
n+1
j–1 + ρ2ξ

n+1
j + ρ1ξ

n+1
j+1

=
r
6
(
ξn

j–1 + 4ξn
j + ξn

j+1
)

–
r
6

n∑

k=1

δk
[(

ξn–k+1
j–1 – ξn–k

j–1
)

+ 4
(
ξn–k+1

j – ξn–k
j

)
+
(
ξn–k+1

j+1 – ξn–k
j+1

)]
– gn+1. (36)

Also, the boundary constraints are

ξn+1
j–1 + 4ξn+1

j + ξn+1
j+1 = 0, j = 0, N ,

where

ξn
j = γ n

i – cn
j , j = 0, . . . , N ,

and

σ n
j = h2[gn

j – g̃j
n], j = 0, . . . , N .

It is evident from (32) that

∣∣σ n
j
∣∣ = h2∣∣gn

j – g̃j
n∣∣≤ μh4.

We define σ n = max{|σ n
j |; 0 ≤ j ≤ N}, ẽn

j = |ξn
j |, and ẽn = max{|en

j |; 0 ≤ j ≤ N}.
For n = 0, Eq. (36) gives

ρ1ξ
1
j–1 + ρ2ξ

1
j + ρ1ξ

1
j+1 =

r
6
(
ξ 0

j–1 + 4ξ 0
j + ξn

j+1
)

–
1
h2 σ 1

j , (37)

where j = 0, . . . , N , and by the initial condition e0 = 0 this implies

ρ2ξ
1
j = –ρ1

(
ξ 1

j–1 + ξ 1
j+1
)

–
1
h2 σ 1

j .

Taking the absolute values of σ n
j and ξn

j with sufficiently small h, we have

ẽ1
j ≤ 3μh4

(r – 1)h2 + 12
.

Using the boundary conditions, we conclude that

ẽ1 ≤ μ1h2, (38)

where μ1 does not depend on h.
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Using induction procedure on n, suppose that ẽk
j ≤ μkh2 for k = 1, . . . , n.

Let μ = max{μk : 0 ≤ k ≤ n}. Then Eq. (36) becomes

ρ1ξ
n+1
j–1 + ρ2ξ

n+1
j + ρ1ξ

n+1
j+1

=
r
6
[
(δ0 – δ1)

(
ξn

j–1 + 4ξn
j + ξn

j+1
)

+ (δ1 – δ2)
(
ξn–1

j–1 + 4ξn–1
j + ξn–1

j+1
)

+ · · · + (δn–1 – δn)
(
ξ 1

j–1 + 4ξ 1
j + ξ 1

j+1
)

+ δn
(
ξ 0

j–1 + 4ξ 0
j + ξ 0

j+1
)]

–
1
h2 σ 2. (39)

Again, taking the absolute values of σ n
j and ξn

j with very small h, we get

ẽn+1
j ≤ 3μh4

(r – 1)h2 + 12

(
r
6

n–1∑

k=0

(δk – δk+1)μh2 + μh2

)

.

Also, from the boundary conditions we have

ẽn+1
j ≤ μh2.

Thus, for all n, we have

ẽn+1
j ≤ μh2. (40)

Now

Ũ(z, t) – U(z, t) =
N∑

j=0

(
cj(t) – γj(t)

)
Bj(z).

Utilizing Lemma 4.1, we arrive at

‖Ũ – U‖∞ ≤ 5
3
μh2. (41)

Using the triangle inequality, the previous expression yields

∥∥u(z, t) – U(z, t)
∥∥∞ ≤ ∥∥u(z, t) – Ũ(z, t)

∥∥∞ +
∥∥Ũ(z, t) – U(z, t)

∥∥∞. (42)

Using inequalities (32) and (41) in (42), we obtain

‖u – U‖∞ ≤ μ0h4 +
5
3
μh2 = Ωh2,

where Ω = μ0h2 + 5
3μ. �

The proved theorem and relation (7) yield that the presented numerical scheme is con-
vergent. Hence

‖u – U‖∞ ≤ Ωh2 + � (�t)2–α ,
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where � and Ω are real constants, and α ∈ (0, 1]. This implies that the experimental order
of convergence (EOC) of the proposed method is O(h2 + �t2–α).

5 Numerical experiments and discussion
In this section, we present three numerical experiments to check the efficiency of the pro-
posed scheme for time fractional ACE. We test the computational results through error
norms L2 and L∞ and the experimental order of convergence (EOC) as

L2 =

√√
√√h

N∑

i=0

∣
∣U(zj, t) – u(zj, t)

∣
∣2, L∞ = max

0≤i≤N

∣
∣U(zj, t) – u(zj, t)

∣
∣,

EOC =
1

log 2
log

[
L∞(n)

L∞(2n)

]
.

All computations are done by using MATHEMATICA 9.0 software.

Problem 1 Consider the time fractional ACE [31]:

∂αu(z, t)
∂tα

–
∂2u(z, t)

∂z2 +
(
u(z, t)

)3 – u(z, t) = f (z, t), z ∈ [a, b], t ∈ [0, T],

where

f (z, t) = (α + 1)(z – 1)ztΓ (1 + α) +
(
z2 – z

)3t3+3α –
(
z2 – z + 2

)
t1+α .

The initial and boundary constraints can be extracted from the exact solution (z2 – z) ×
t1+α . A comparison of the maximum absolute error with IRKM [31] is presented in Ta-
bles 2, 3, 4, 5. The computational results are reported for α = 0.7, 0.9, t = 1, and �t = 0.001
for 0.1 ≤ z ≤ 0.9. It is clear that we have achieved self-explanatory results as compared
to the outcomes obtained from IRKM [31]. Table 6 reports the present experimental re-
sults at t = 1 with �t = h2 and α = 0.25, 0.5, 0.75. In Table 7, the error norms L2 and L∞
are tabulated for α = 0.2, 0.5, 0.8 with the variation of time t. Figure 1 depicts the physical
behavior of exact and numerical solutions at different time levels for N = 80, α = 0.6, and
�t = 0.001 in the domain z ∈ [0, 1]. The three-dimensional plots given in Fig. 2 show the
accuracy of the proposed scheme for α = 0.6, N = 80, �t = 0.001, and t = 0.2. In Fig. 3
the spline solution at different time stages is displayed in a single frame when –1 ≤ z ≤ 2.
The 3D plots of analytical exact and numerical solutions for N = 100, α = 0.4, t = 0.2, and
�t = 0.001 are shown in Fig. 4. Figure 5 shows the numerical results with variation of α

for N = 20, t = 0.4, and 0 ≤ z ≤ 1.

Problem 2 Consider the following time fractional ACE [29]:

∂αu(z, t)
∂tα

–
∂2u(z, t)

∂z2 +
(
u(z, t)

)3 – u(z, t) = f (z, t), z ∈ [a, b], t ∈ [0, T].

The source term f (z, t) on the right-hand side is given by

f (z, t) = z
(
1 – z2)3t2–αE1,3–α(t) + 6

(
7z4 – 10z2 + 3

)
zt2E1,3(t) +

1
2

u(z, t)

× [
u(z, t) – 1

][
2u(z, t) – 1

]
,
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Table 2 Absolute errors for Example 1 by IRKM [31] at t = 1 when α = 0.7, N = 100, and �t = 0.001

z/t → 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.1 3.23× 10–4 4.72× 10–5 3.74× 10–5 3.31× 10–5 4.38× 10–5 6.78× 10–5 7.25× 10–5 8.87× 10–5 5.08× 10–5

0.2 5.82× 10–4 9.50× 10–5 7.91× 10–5 4.43× 10–5 5.85× 10–5 9.51× 10–5 9.65× 10–5 1.17× 10–4 4.09× 10–5

0.3 7.70× 10–4 1.36× 10–4 1.14× 10–4 4.80× 10–5 6.41× 10–5 1.08× 10–4 1.06× 10–4 1.28× 10–4 2.22× 10–5

0.4 8.85× 10–4 1.64× 10–4 1.39× 10–4 4.66× 10–5 6.28× 10–5 1.10× 10–4 1.04× 10–4 1.27× 10–4 5.79× 10–7

0.5 9.24× 10–4 1.75× 10–4 1.51× 10–4 4.18× 10–5 5.62× 10–5 1.03× 10–5 9.40× 10–5 1.13× 10–4 2.09× 10–5

0.6 8.85× 10–4 1.68× 10–4 1.47× 10–4 3.59× 10–5 4.70× 10–5 9.03× 10–5 7.87× 10–5 9.52× 10–5 3.54× 10–5

0.7 7.69× 10–4 1.42× 10–4 1.28× 10–4 2.87× 10–5 3.56× 10–5 7.14× 10–5 5.90× 10–5 7.14× 10–5 4.31× 10–5

0.8 5.79× 10–4 1.01× 10–4 9.52× 10–5 2.09× 10–5 2.37× 10–5 4.96× 10–5 3.86× 10–5 4.68× 10–5 3.96× 10–5

0.9 3.21× 10–4 5.12× 10–5 5.08× 10–5 1.17× 10–5 1.17× 10–5 2.54× 10–5 1.85× 10–5 2.25× 10–5 2.52× 10–5

Table 3 Absolute errors for Example 1 by the proposed method at t = 1 when α = 0.7, N = 100, and
�t = 0.001

z/t → 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.1 7.77× 10–7 6.86× 10–7 6.29× 10–7 6.03× 10–7 6.15× 10–7 6.79× 10–7 8.13× 10–7 1.04× 10–6 1.41× 10–6

0.2 1.47× 10–6 1.30× 10–6 1.19× 10–6 1.15× 10–6 1.17× 10–6 1.30× 10–6 1.57× 10–6 2.03× 10–6 2.75× 10–6

0.3 2.01× 10–6 1.78× 10–6 1.63× 10–6 1.57× 10–6 1.62× 10–6 1.81× 10–6 2.20× 10–6 2.87× 10–6 3.91× 10–6

0.4 2.35× 10–6 2.08× 10–6 1.91× 10–6 1.85× 10–6 1.91× 10–6 2.14× 10–6 2.62× 10–6 3.44× 10–6 4.69× 10–6

0.5 2.47× 10–6 2.19× 10–6 2.01× 10–6 1.94× 10–6 2.01× 10–6 2.26× 10–6 2.77× 10–6 3.64× 10–6 4.98× 10–6

0.6 2.35× 10–6 2.08× 10–6 1.91× 10–6 1.85× 10–6 1.91× 10–6 2.14× 10–6 2.62× 10–6 3.44× 10–6 4.69× 10–6

0.7 2.01× 10–6 1.78× 10–6 1.63× 10–6 1.57× 10–6 1.62× 10–6 1.81× 10–6 2.20× 10–6 2.87× 10–6 3.91× 10–6

0.8 1.47× 10–6 1.30× 10–6 1.19× 10–6 1.15× 10–6 1.17× 10–6 1.30× 10–6 1.57× 10–6 2.03× 10–6 2.75× 10–6

0.9 7.77× 10–7 6.86× 10–7 6.29× 10–7 6.03× 10–7 6.15× 10–7 6.79× 10–7 8.13× 10–7 1.04× 10–6 1.41× 10–6

Table 4 Absolute errors for Example 1 by IRKM [31] at t = 1 when α = 0.9, N = 100, and �t = 0.001

z/t → 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.1 2.58× 10–4 7.34× 10–5 7.11× 10–5 1.06× 10–6 3.18× 10–5 6.59× 10–5 7.91× 10–5 6.96× 10–5 4.67× 10–5

0.2 4.66× 10–4 1.41× 10–4 1.40× 10–4 1.42× 10–5 3.65× 10–5 9.17× 10–5 1.07× 10–4 8.14× 10–5 2.96× 10–5

0.3 6.18× 10–4 1.98× 10–4 1.98× 10–4 3.17× 10–5 3.36× 10–5 1.03× 10–4 1.20× 10–4 7.88× 10–5 3.02× 10–6

0.4 7.11× 10–4 2.36× 10–4 2.37× 10–4 4.69× 10–5 2.63× 10–5 1.03× 10–4 1.19× 10–4 6.69× 10–5 2.52× 10–5

0.5 7.42× 10–4 2.51× 10–4 2.54× 10–4 5.70× 10–5 1.69× 10–5 9.49× 10–5 1.07× 10–4 4.85× 10–5 5.10× 10–5

0.6 7.10× 10–4 2.40× 10–4 2.45× 10–4 5.86× 10–5 9.06× 10–6 8.10× 10–5 9.00× 10–5 3.09× 10–5 6.54× 10–5

0.7 6.16× 10–4 2.04× 10–4 2.12× 10–4 2.25× 10–5 2.63× 10–6 6.23× 10–5 6.75× 10–5 1.40× 10–5 6.93× 10–5

0.8 4.63× 10–4 1.48× 10–4 1.56× 10–4 3.86× 10–5 5.42× 10–7 4.21× 10–5 4.43× 10–5 3.08× 10–6 5.82× 10–5

0.9 2.55× 10–4 7.68× 10–5 8.36× 10–5 1.99× 10–5 1.15× 10–6 2.10× 10–5 2.13× 10–5 1.71× 10–6 3.40× 10–5

Table 5 Absolute errors for Example 1 by the proposed method at t = 1 when α = 0.9, N = 100, and
�t = 0.001

z/t → 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.1 3.05× 10–6 3.57× 10–6 3.67× 10–6 3.66× 10–6 3.65× 10–6 3.67× 10–6 3.75× 10–6 3.94× 10–6 4.28× 10–6

0.2 5.76× 10–6 6.76× 10–6 6.95× 10–6 6.94× 10–6 6.92× 10–6 6.96× 10–6 7.13× 10–6 7.83× 10–6 8.20× 10–6

0.3 7.88× 10–6 9.26× 10–6 9.52× 10–6 9.51× 10–6 9.49× 10–6 9.56× 10–6 9.81× 10–6 1.01× 10–5 1.14× 10–5

0.4 9.22× 10–6 1.08× 10–5 1.11× 10–5 1.11× 10–5 1.11× 10–5 1.12× 10–5 1.15× 10–5 1.22× 10–5 1.34× 10–5

0.5 9.67× 10–6 1.14× 10–5 1.17× 10–5 1.17× 10–5 1.17× 10–5 1.18× 10–5 1.21× 10–5 1.28× 10–5 1.42× 10–5

0.6 9.22× 10–6 1.08× 10–5 1.11× 10–5 1.11× 10–5 1.11× 10–5 1.12× 10–5 1.15× 10–5 1.22× 10–5 1.34× 10–5

0.7 7.88× 10–6 9.26× 10–6 9.52× 10–6 9.51× 10–6 9.49× 10–6 9.56× 10–6 9.81× 10–6 1.01× 10–5 1.14× 10–5

0.8 5.76× 10–6 6.76× 10–6 6.95× 10–6 6.94× 10–6 6.92× 10–6 6.96× 10–6 7.13× 10–6 7.83× 10–6 8.20× 10–6

0.9 3.05× 10–6 3.57× 10–6 3.67× 10–6 3.66× 10–6 3.65× 10–6 3.67× 10–6 3.75× 10–6 3.94× 10–6 4.28× 10–6

Table 6 Maximum absolutes (L∞) for Example 1 at t = 1 with �t = h2 and z ∈ [0, 1]

h α = 0.25 α = 0.5 α = 0.75
1
4 3.5449× 10–4 6.8582× 10–4 2.6160× 10–4

1
8 8.8562× 10–5 1.5535× 10–4 7.0858× 10–5

1
16 2.1568× 10–5 3.4386× 10–5 1.8055× 10–5

1
32 5.2803× 10–6 7.7057× 10–6 4.5317× 10–6
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Table 7 Error norms for Example 1 when N = 64 and �t = 0.001

t α = 0.2 α = 0.5 α = 0.8
L∞ L2 L∞ L2 L∞ L2

0.2 7.7931× 10–8 5.3722× 10–8 3.6339× 10–7 2.5744× 10–7 2.1057× 10–6 3.6237× 10–6

0.4 4.1594× 10–7 2.8554× 10–7 4.4462× 10–7 3.1036× 10–7 4.7705× 10–6 3.3828× 10–6

0.6 1.1898× 10–6 8.1671× 10–7 1.0487× 10–6 7.2256× 10–7 4.8911× 10–6 3.4553× 10–6

0.8 2.5164× 10–6 1.7275× 10–6 2.5481× 10–6 1.7497× 10–6 6.1172× 10–6 4.2852× 10–6

1.0 4.4909× 10–6 3.0839× 10–6 5.4123× 10–6 3.7133× 10–6 9.4954× 10–6 6.5892× 10–6

Figure 1 Exact and numerical solutions for Example 1 when N = 80, �t = 0.001, α = 0.6, and 0≤ z ≤ 1

Figure 2 Exact and numerical solutions for Example 1 when N = 80, α = 0.6, t = 0.2, and �t = 0.001

where Eβ ,γ (ζ ), the Mittag–Leffler function, is defined as [29]

Eβ ,γ (ζ ) =
∞∑

k=0

ζ k

Γ (βk + γ )
.

The initial and boundary conditions can be derived from the given exact solution
z(1 – z2)3t2E1,3(t). To affirm the impact and applicability of the proposed approach, the
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Figure 3 Exact and approximate solutions for Example 1 when N = 60, �t = 0.001, α = 0.4, and –1 ≤ z ≤ 2

Figure 4 Exact and numerical solutions for Example 1 when N = 100, α = 0.4, t = 0.2, �t = 0.01, and
–4≤ z ≤ 5

absolute error appeared in computations is given in Table 8 corresponding to different
values of z using α = 0.5, n = 10, t = 0.1, �t = 0.001, and 0 ≤ z ≤ 1. In Table 9 the L2

norm is presented against different values of α and t for h–3 in the domain z ∈ [–1, 1].
The graphic representation of exact and approximate solutions is shown in Fig. 6 subject
to N = 100, �t = 0.001 α = 0.6, and –1 ≤ z ≤ 1. The 3D plots of exact and approximate
solution for Example 2 are shown in Figs. 7–8.

Problem 3 Consider the following time fractional ACE [32]:

∂αu(z, t)
∂tα

–
∂2u(z, t)

∂z2 +
(
u(z, t)

)3 – u(z, t) = f (z, t), z ∈ [a, b], t ∈ [0, T],

where the forcing term on the right-hand side is given by

f (z, t) = 2
t2–α sin(z)
Γ [3 – α]

+ t2 sin(z) +
1
2

u(z, t)
[
u(z, t) – 1

][
2u(z, t) – 1

]
.
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Figure 5 Numerical solution for Example 1 when N = 20, t = 0.4, 0≤ z ≤ 1 with variation of α

Table 8 Absolute errors for Example 2 at t = 0.1 with �t = 0.001, α = 0.5, N = 10, and z ∈ [0, 1]

z Exact solution Approximate solution Error

0.1 0.0005017 0.0005368 3.511× 10–5

0.2 0.0009149 0.0009807 6.575× 10–5

0.3 0.0011690 0.0012574 8.838× 10–5

0.4 0.0012259 0.0013269 1.010× 10–4

0.5 0.0010907 0.0011941 1.034× 10–4

0.6 0.0008133 0.0009103 9.700× 10–5

0.7 0.0004801 0.0005638 8.364× 10–5

0.8 0.0001930 0.0002574 6.448× 10–5

0.9 0.0000319 0.0000702 3.827× 10–5

Table 9 Error norms L2 for Example 2 when α = 0.2, h–3, �t = 0.01, and z ∈ [–1, 1]

t L2 error norm

α = 0.2 α = 0.4 α = 0.6 α = 0.8

0.2 4.2145× 10–4 3.8436× 10–4 3.3911× 10–4 2.9504× 10–4

0.4 1.8178× 10–3 1.7159× 10–3 1.5938× 10–3 1.4600× 10–3

0.6 4.3268× 10–3 4.1545× 10–3 3.9567× 10–3 3.7434× 10–3

0.8 7.9933× 10–3 7.7596× 10–3 7.5042× 10–3 7.2411× 10–3

1.0 1.2685× 10–2 1.2418× 10–2 1.2144× 10–2 1.1884× 10–2

The initial and boundary conditions are

u(z, 0) = φ0(z), u(a, t) = ψ1(t), u(b, t) = ψ2(t).

The exact solution of the given problem is t2 sin(z). In Table 10 the exact and numerical so-
lutions have been showcased for α = 0.9, t = 0.1, �t = 0.001, and z ∈ [0,π ]. Moreover, the
absolute computational error has also been reported using the same choice of parameters.
Here we have intentionally taken n = 10 to demonstrate the efficiency of our method. In
Figs. 9, 10, 11 the 2D and 3D plots of exact and numerical solutions are displayed. We can
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Table 10 Maximum absolute errors (L∞) for Example 3 at t = 0.1 when α = 0.9, n = 10, �t = 0.001,
and z ∈ [0,π ]

z Exact solution Approximate solution L∞-norm
π
10 0.00309017 0.00317619 8.6021× 10–5
π
5 0.00587785 0.00604098 1.6313× 10–4

3π
10 0.00809017 0.00831405 2.2388× 10–4

2π
5 0.00951057 0.00977324 2.6268× 10–4

π
2 0.01000000 0.01027600 2.7604× 10–4

3π
5 0.00951057 0.00977324 2.6268× 10–4

7π
10 0.00809017 0.00831405 2.2388× 10–4

4π
5 0.00587785 0.00604098 1.6313× 10–4

9π
10 0.00309017 0.00317619 8.6021× 10–5

Figure 6 Exact and approximate solutions for Example 2 when N = 100, �t = 0.001, α = 0.6, and –1 ≤ z ≤ 1

Figure 7 Exact and approximate solutions for Example 2 when N = 16, α = 0.8, t = 1, �t = 0.001, and
0≤ z ≤ 1

see that even with a large grid spacing, our numerical scheme can efficiently approximate
the cubic B-spline solution for time fractional ACE.
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Figure 8 Exact and approximate solutions for Example 2 when N = 40, α = 0.3, t = 1, �t = 0.001, and
–1≤ z ≤ 1

Figure 9 Exact and numerical solutions for Example 3 when N = 100, t = 1, �t = 0.0001, α = 0.8, and
–π ≤ z ≤ π

6 Concluding remarks
We conclude this work by the following remarks:

• An efficient algorithm based on redefined cubic B-spline collocation approach has
been presented for approximate solution of time fractional Allen–Cahn equation.

• The proposed scheme engages usual finite forward difference formulation and
a redefined set of cubic B-spline functions for temporal and spatial discretizations,
respectively.

• The unconditional stability of the proposed method has been proved rigorously.
• The computational order of convergence is conformable with the theoretical

estimations.
• The numerical simulation has been run for three test examples, which show that the

proposed scheme can efficiently be employed for numerical treatment of time
fractional problems.
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Figure 10 Exact and approximate solutions for Example 3 when N = 20, α = 0.4, t = 0.3, �t = 0.001, and
–π ≤ z ≤ π

Figure 11 Exact and approximate solutions for Example 3, when N = 80, α = 0.5, t = 1, �t = 0.001 and
–2π ≤ z ≤ 2π
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