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Abstract
Dengue fever is a common disease which can cause shock, internal bleeding, and
death in patients if a second infection is involved. In this paper, a multi-serotype
dengue model with nonlinear incidence rate is formulated to study the transmission
of two dengue serotypes. The dynamical behaviors of the proposed model depend
on the threshold value Rn0 known as the reproductive number which depends on the
associated reproductive numbers with serotype-1 and serotype-2. The value of Rn0 is
used to reflect whether the disease dies out or becomes endemic. It is found that the
proposed model has a globally stable disease-free equilibrium if Rn0 ≤ 1, which
indicates that if public health measures that make (and keep) the threshold to a value
less than unity are carried out, the strategy in disease control is effective in the sense
that the number of infected human and mosquito populations in the community will
be brought to zero irrespective of the initial sizes of sub-populations. When Rn0 > 1,
the endemic equilibria called the co-existence primary and secondary infection
equilibria are locally asymptotically stable. The effects of cross immunity and
nonlinear incidence rate are explored using data from Thailand to determine the
effective strategy in controlling and preventing dengue transmission and reinfection.
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1 Introduction
Dengue is a viral mosquito-borne infection which in recent years has become a major in-
ternational public health concern, a leading cause of illness and death in the tropics and
subtropics with more than 50 million dengue fever cases per year [1, 2]. There are four
distinct serotypes of the dengue virus (DEN 1, DEN 2, DEN 3, and DEN 4) that coexist
in many endemic areas [3, 4], although recently a potential fifth strain has been discov-
ered [5]. Infection with one serotype affords life-long immunity to that serotype [6], but
only cross immunity or none at all to the other three serotypes [6, 7]. Patients reinfected
with a different serotype, called secondary infection, face an increased risk of developing
DHF and DSS [8]. Recently, cross protection, or cross immunity between serotypes, has
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been conjectured to play a role in the dynamics of dengue in the sense that while a pri-
mary dengue infection with a particular serotype may confer life-long immunity to that
serotype, it may also confer temporary cross immunity to the other serotypes. It means
that the cross immunity may be complete (individuals cannot contract a secondary infec-
tion during the cross immune period) or partial (cross immune individuals have a reduced
but not zero probability to contract the disease) [9, 10]. Cross immunity may be the re-
sult of an immunological response to the disease. It acts to reduce the susceptibility to a
secondary infection lowering the effective probability for reinfection to happen [11]. In
general, the length of the cross immunity period may vary depending on the disease. In
case of dengue fever, the cross immunity may last from two to nine months [12] after the
antibodies have dropped to sufficiently low levels that allow infection with other serotypes
and subsequent ADE. The study in Bianco et al. [13] showed that the main risk factor as-
sociated with DHF/DSS in secondary infection is the presence of pre-existing dengue an-
tibodies at sub-neutralizing level after the cross immunity period. This increasing risk has
been attributed to the effect of cross immunity [14]. These indicate that the cross immu-
nity, thus, plays a crucial role in the co-circulation of serotypes and the pathogen diversity
[15, 16].

Today, dengue is regarded as the most prevalent and rapidly spreading mosquito-borne
viral disease of human beings. This leads to an upsurge in research on dengue virology,
pathogenesis, and immunology and in development of antivirals and vaccines. Especially,
mathematical models are one useful tool to investigate the cause of epidemic and to sug-
gest the best way to control and prevent dengue [9, 16–27]. Kooi et al. [22] studied an
asymmetric two-strain dengue model for predicting characteristic dynamic behavior and
chaos occurring for smaller parameter regimes. Zheng et al. [24] formulated a two-strain
dengue model and suggested that the measures of enhancing awareness of the infected
and susceptible human self-protection should be taken, and the mosquito control measure
is necessary in order to prevent the transmission of dengue virus from mosquitoes to hu-
mans. Souto-Maior [25] studied the transmission of dengue virus using multiple-serotype
models and showed that the proposed model can sustain oscillations in the absence of any
of the latter effects or stochasticity. This model was applied to simulate both epidemiologi-
cal and viral evolution for epidemiological surveillance. These research works constructed
the epidemiological model and employed bilinear and standard incidence rates (given by
βSI and βSI

N , respectively), which may be a good approximation if the number of available
partners is large enough and everybody could not make more contacts than is practically
feasible [28, 29]. Woodall et al. [16] presented a new modeling framework based on SIR
model with enhancement to study cross enhancement between dengue serotypes which
may be influencing the epidemic oscillations. González Morales et al. [23] studied the
asymptotic and dynamical behavior of a two-strain dengue model under the application
of a vaccine and indicated that vaccination and cross immunity period are seen to decrease
the frequency and magnitude of outbreaks but in a differentiated manner with specific ef-
fects depending upon the interaction vaccine and the strain type. Meanwhile, Anggriani
et al.[26] studied the effect of reinfection with the same serotype on dengue transmission
dynamics by developing a multi-strain dengue mathematical model, which suggested that
reinfection with the same serotype may be one of the underlying factors causing an in-
crease in the number of secondary infections. Further, the dengue model with standard
incidence rate proposed by Janreung et al. [27] was applied in order to investigate only the
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effect of vaccine parameters in controlling reinfection dengue by vaccination. In addition,
empirical data in Thailand 2018 [30] showed that secondary infection leads to severe dis-
ease which is a major cause of death from dengue. Therefore, the reinfection between two
serotypes is a major cause of yearly outbreaks of dengue [8, 30]. However, a number of au-
thors have pointed out that a nonlinear incidence rate that includes the behavioral change
and crowding effect of the infected individuals and also prevents unboundedness of the
contact rate may be more realistic than others during the disease transmission process
[9, 17, 31–41]. In addition, studies have found that epidemic models with nonlinear inci-
dences have more complicated dynamics than those with bilinear or standard incidence.
For example, Capasso and Serio [31] suggested a saturated nonlinear incidence βIS

1+αI to
better model the cholera epidemic spread in Bari in 1973. This is important because the
number of effective contacts between infective and susceptible individuals may saturate
at high infective level due to overcrowding of infective individuals or due to protective
measures enclosed by susceptible. Since then Cunningham [32] introduced an incidence
rate k(SI)p (p > 1) to point out that there may exist periodic solution in a deterministic
model for measles. Li et al. [33] studied the influence of nonlinear incidence rates βIlS

1+αIh

upon the behavior of SIRS epidemiological models. Roop-O et al. [38] studied the influ-
ence of nonlinear incidence rates βIS

1+αI upon the backward bifurcation for a malaria model
with temporary immunity. The study results suggested the different control strategies of
infectious diseases. For dengue fever, infection by one serotype confers life-long immu-
nity to that serotype and a period of temporary cross immunity to other serotypes. In-
fection with other kinds of dengue viruses in a person who already had a dengue fever in
the past is called secondary dengue and has been found to be more severe disease than
the primary infection due to cross immunity between serotypes [7, 9, 17]. In this paper,
therefore, a mathematical model of dengue fever epidemiology with two serotypes is con-
structed by incorporating cross immunity and nonlinear incidence rate to explore the risk
of secondary infection.

The paper is organized as follows: In Sect. 2, a mathematical model of two serotype
dengue fever is constructed based on the biological aspects of dengue fever epidemiology.
In Sect. 3, the formulated model is analyzed for the existence and stability of its equilibria.
The reproductive number is derived using the next generation. By constructing a Lya-
punov function, the disease-free equilibrium of the formulated model is globally asymp-
totically stable if the reproductive number is less than or equal to unity. The existence of
endemic equilibrium is determined and its local stability is proved by applying the cen-
ter manifold theory [42]. In Sect. 4, numerical simulations are illustrated to determine the
appropriate parameter values used for the formulated model and to determine the param-
eter which is sensitive to disease prevalence. The effect of temporary cross immunity and
nonlinear incidence rate for disease prevention and secondary infection control is inves-
tigated. Finally, discussion and conclusion are presented in Sect. 5.

2 Multi-serotype dengue model
In this section, the dengue model is formulated based on the situation of dengue transmis-
sion as follows. Dengue fever is caused by any one of four types of dengue viruses spread
by mosquitoes. When a mosquito bites a person infected with a dengue virus, the virus
enters the mosquito. When the infected mosquito then bites another person, the virus
enters that person’s bloodstream. Thus, the study populations are human population and
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mosquito population. Although, there are four types of dengue virus, infection with any
one of the viruses provides lifetime immunity to future infections from the same virus
but it will have cross protection (cross immunity) against other types for a short period
which leads to the possibility of secondary infection. Moreover, secondary infection will
increase the risk of developing dengue hemorrhagic fever. Thus, temporary cross immu-
nity can lead to subsequent infection with a different serotype. To study the influential
factors to secondary dengue infection, the infection is divided into two parts: primary
dengue infection and secondary dengue infection, respectively. The total human popula-
tion is divided into two groups: human populations who are infected with dengue with
serotype-i for the first time (the primary infection) and populations who are infected with
dengue with serotype-j for the second time. In the primary infection, human populations
consist of humans susceptible to both serotypes (SH ), i.e., susceptible to dengue serotype-
1 and dengue serotype-2; exposed humans with serotype-i (EHi), infected humans with
serotype-i (IHi), and recovered humans with serotype-i (RHi) who recover from the first
infection with serotype-i, that is, if individuals are infected with the same dengue virus
serotype they become immune to future infections. However, if individuals are infected
subsequently with a different serotype, immunity wanes over time, which increases the
risk of developing dengue hemorrhagic fever [43]. Thus, these sub-populations become
susceptible to infection with a different serotype. For this reasons, the sub-populations
in the second infection consist of recovered humans with serotype-i (RHi) and then be-
coming susceptible to other serotypes (serotype-j), exposed with serotype-j when the first
infection was caused by serotype-i (EHij), infected with serotype-j when the first infec-
tion was caused by serotype-i (IHij); and recovered humans from the secondary infection
(RH22) who then have life-long immunity to both serotypes, respectively. Thus, the total
population is given by

NH (t) = SH (t) +
2∑

i=1

(
EHi(t) + IHi(t) + RHi(t)

)

+
2∑

i=1

2∑

j=1
i�=j

(
EHij(t) + IHij(t)

)
+ RH22(t). (2.1)

For mosquito population, there is a pool of mosquitoes that are exposed and yet in-
capable of passing on dengue because virus incubation is 4–10 days and after this pe-
riod an infected mosquito is capable of transmitting the virus for the rest of its life.
The total mosquito population at time t, therefore, denoted by NV , is split into five sub-
populations: susceptible mosquito (SV (t)), exposed mosquito with serotype-i (EVi), and
infected mosquito with serotype-i (IVi(t)), so that

NV (t) = SV (t) +
2∑

i=1

(
EVi(t) + IVi(t)

)
. (2.2)

It is noted that the population of recovered mosquitoes is not consider, because once a
mosquito is infected with one serotype it never recovers from the infection and it cannot
be reinfected with a different serotype since the life cycle of Aedes aegypti is short (ap-
proximated one and a half to three weeks) [19]. The description of variables in (2.1) and
(2.2) are summarized in Table 1.
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Table 1 Description of variables in model (2.4)–(2.5)

.

Variables Description

SH Susceptible human to both serotypes
EHi Exposed human with serotype-i in primary infection
IHi Infected human with serotype-i in primary infection
RHi Recovered human from serotype-i and susceptible human to serotype-j
EHij Exposed human with serotype-j in secondary infection
IHij Infected human with serotype-j in secondary infection
RH22 Recovered human from both serotypes
SV Susceptible mosquito to both serotypes
EVi Exposed mosquito with serotype-i
IVi Infected mosquito with serotype-i

2.1 Nonlinear incidence rate
The incidence rate in an epidemiological model is the rate at which susceptible become
infectious, which plays a very important role in analyzing the transmission of diseases.
Several researchers thus used the standard incidence for studying dengue transmission,
(see for instance [7, 9, 17, 20] and the references therein). However, dengue is a viral in-
fection caused by four types of viruses (DENV-1, DENV-2, DENV-3, DENV-4), infection
with one serotype will provide life-long protection to future infections from the same virus
but only short-term cross immunity to the other types, leading to the possibility of sec-
ondary infections by other serotypes and developing into severe dengue. In addition, the
dengue viruses are transmitted through the bite of infected female mosquitoes that feed
both indoors and outdoors during the daytime (from dawn to dusk). These mosquitoes
thrive in areas with standing water, including puddles, water tanks, containers, and old
tires. Lack of reliable sanitation and regular garbage collection are also the causes of con-
tribution to the spread of the mosquitoes. These are due to influence on nonlinearities in
dengue transmission. For these reasons, the standard incidence rate should be modified
into a nonlinear incidence rate order to be more realistic (see [31–33, 38, 40, 41]). More-
over, Bartley et al. [44] suggested that the strongest influences on the pattern of dengue
infection and its seasonal variation were duration of infectiousness of the host, vector mor-
tality, and biting rate. Let ϕi and ϕVi represent the nonlinear incidence rate with serotype-i
from an infected mosquito to a susceptible human and the nonlinear incidence rate with
serotype-i from an exposed human and an infected human to a susceptible mosquito, re-
spectively. Motivated by Capasso and Serio [31], the nonlinear incidence rates for humans
and mosquitoes are defined by

ϕi =
bβiIVi

1 + αV IVi
and ϕVi =

bβVi(ηHi(EHi + EHji) + IHi + IHji)
1 + αH (IHi + IHji)

(2.3)

for i, j = 1, 2, i �= j. The modification parameter ηHi accounts for the relative infectiousness
of exposed humans with serotype-i in relation to infected humans with serotype-i, and αV ,
αH denote the parameters measuring the inhibitory effect for human and mosquito, re-
spectively. Notice that when αV = 0 and αH = 0, the nonlinear incidence rate (2.3) becomes
the bilinear incidence rate.

2.2 Cross immunity
Cross immunity introduces significant challenges to researchers looking to create an accu-
rate and identifiable epidemiological model of the disease. Temporary cross immunity can
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give rise to complex temporal dynamics in disease incidence, creating oscillating time se-
ries from which it is difficult to elicit information on or draw conclusions about parameters
that govern the underlying epidemiological processes. It is known that a person currently
infected with dengue or recovered from one serotype may experience a double infection
or reinfection by a different serotype, but at a rate reduced by cross immunity. The phylo-
genetic data further suggest that there is a clade-specific immunological reaction between
two serotypes. This cross immunity is encapsulated by the parameter λ, which modifies
the probability of secondary infection. Values of λ between 0 and 1 represent cross pro-
tection with λ = 0 giving complete protection against secondary infection and λ = 1 no
protection [45].

2.3 Multi-serotype dengue model with a nonlinear incidence rate
A flow diagram of the transmission of multi-serotype dengue in the primary and sec-
ondary infections is shown in Fig. 1. The model of dengue with two serotypes and nonlin-
ear incidence rates, from Fig. 1, is described by the following system of differential equa-
tions: for i, j = 1, 2 and i �= j.

Human population:

dSH
dt = ΠH –

∑2
i=1 ϕiSH – μHSH ,

dEHi
dt = ϕiSH – KiEHi,

dIHi
dt = σiEHi – Ki+2IHi,

dRHi
dt = γiIHi – λϕjRHi – μHRHi,

dEHij
dt = λϕjRHi – KjEHij,

dIHij
dt = σjEHij – Kj+2IHij,

dRH22
dt =

∑2
i=1

∑2
j=1
i�=j

γiIHji – μH RH22,

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.4)

Mosquito population:

dSV
dt = ΠV –

∑2
i=1 ϕViSV – μV SV ,

dEVi
dt =

∑2
i=1 ϕViSV – Ki+4EVi,

dIVi
dt = σViEVi – μV IVi,

⎫
⎪⎬

⎪⎭
(2.5)

where Ki = σi + μH , Ki+2 = γi + δi + μH , Ki+4 = σ Vi + μV . System (2.4)–(2.5) is called a multi-
serotype dengue model. The dynamics of human populations in (2.4) are described as
follows. The susceptible human population is generated via recruitment of humans (by
birth or immigration) into the community at a constant rate ΠH . This population is de-
creased due to the primary infection with serotype-i, which can be acquired via effective
contact with an infectious mosquito with serotype-i at a rate ϕi and the natural death at
a rate μH . It is also assumed that all classes of human population die at the same natu-
ral death rate μH . In the primary infection by serotype-i, exposed humans (EHi) develop
clinical symptoms of dengue and move to the infectious class at a rate σi. Infected humans
(IHi) recover and move into the recovered class, which has life-long immunity to serotype-
i, but partial cross immunity to serotype-j, at a rate γi and suffer disease-induced death
by infection with serotype-i at a rate δi. In the secondary infection by serotype-j, recov-
ered humans with serotype-i (RHi) in the primary infection are susceptible to dengue with
the second serotype-j. Due to the cross immunity, this population can be infected with
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Figure 1 Schematic diagram of multi-serotype dengue model

serotype-j and becomes exposed human population at the reduced rate λϕj, 0 < λ < 1. Ex-
posed humans (EHij) develop clinical symptoms of dengue by the secondary infection with
serotype-j and move to the infectious class at a rate σj. Infected humans (IHij) recover and
move into the recovered class (RH22) with life-long immunity to both serotypes at the rate
γj. This population suffers the disease-induced death by infection with serotype-j at a rate
δj.

For the mosquito population in (2.5), the susceptible mosquito population is generated
by birth at a constant rate ΠV . Susceptible mosquitoes are infected by both serotypes by
biting the exposed and infected humans with serotype-i at the rate ϕVi. After virus incuba-
tion for 4 – 10 days, the exposed mosquito with serotype-i develops symptoms of disease
and becomes the infected mosquito with serotype-i at the rate σVi. It is assumed that all
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Table 2 Description of parameters and values used for the multi-serotype dengue model (2.4)–(2.5)

Parameter Description Value Range Refs.

ΠH Recruitment rate of human 100 people per day – –
ΠV Recruitment rate of mosquito 11,690 mosquitoes per day – –
1/μH Natural death rate of human 70 years [50–70] [29]
1/μV Natural death rate of mosquito 14 days [8–42] [53]
δi Disease-induced death rate for infected

human with serotype-i
δ1 = 0.00031 δ2 = 0.00063 [0.05,0.32] [59]

1/σi Rate at which infected human with
serotype-i becomes infectious

1/σ1 = 5.7 days
1/σ2 = 5.4 days

[4–10] [60]

1/γi Recovery rate from serotype-i 1/γ1 = 7.9 days
1/γ2 = 7 days

[4–12] [53]

1/σVi Rate at which infected mosquito with
serotype-i becomes infectious

1/σV1 = 10.9 days
1/σV2 = 8 days

[6–12] [53]

1/λ Cross immunity between serotypes 3 months [2–24] [53, 54]
ηHi Modification parameters with serotype-i ηH1 = ηH2 = 0.0072 [0–1] [20]
βi Transmission probability rate from

infected mosquito with serotype-i to
susceptible human

β1 = 1.320× 10–6

β2 = 1.3080× 10–6
(0,1) –

βVi Transmission probability rate from
infected human with serotype-i to
susceptible mosquito

βV1 = 9.59× 10–6

βV1 = 9835× 10–6
(0,1) –

b Biting rate 0.68 per day [0.33–1] [53]
αH Inhibitory effect for human 8.648× 10–5 (0,1) [30]
αV Inhibitory effect for mosquito 1.3405× 10–6 (0,1) [30]

mosquito populations die due to their finite life span (natural death) at the same rate μV .
It is noted that the index i refers to the virus serotype (DEN-1 or DEN-2 or DEN-3 or
DEN-4), and the new index j refers to different virus serotypes. The state variables and
parameters of the multi-serotype dengue model are described in Tables 1 and 2, respec-
tively.

Since multi-serotype model (2.4)–(2.5) monitors human and vector populations, all the
associated parameters and state variables are nonnegative. The region of biological inter-
est, then, is given in the following theorem.

Theorem 2.1 The closed set

Ω = Ω1 ∪ Ω2 ⊂ �12
+ × �5

+,

where

Ω1 =
{

(SH , EH1, IH1, RH1, EH12, IH12, EH2, IH2, RH2, EH21, IH21, RH22) ∈ �12
+ :

NH ≤ ΠH

μH

}
,

Ω2 =
{

(SV , EV 1, IV 1, EV 2, IV 2) ∈ �5
+ : NV =

ΠV

μV

}
,

is positively invariant and attracting.

Proof Let PH = (SH , EH1, IH1, RH1, EH12, IH12, EH2, IH2, RH2, EH21, IH21, RH22) ∈ �12
+ be a so-

lution of human system (2.4) with nonnegative initial conditions. Adding all equations in
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(2.4) yields

dNH

dt
= ΠH – μHNH – (δ1IH1 + δ1IH21 + δ2IH2 + δ2IH12). (2.6)

It follows from (2.6) that

ΠH – (μH + δ1 + δ2)NH ≤ dNH

dt
≤ ΠH – μHNH . (2.7)

Using Gronwall’s inequality and solutions of two linear first order equations in (2.7), we
get

ΠH

μH + δ1 + δ2
+ NH (0)e–(μH +δ1+δ2)t ≤ NH(t) ≤ NH(0)e–μH t +

ΠH

μH
, (2.8)

where NH (0) represents the initial value of a total human population (2.1) at time t = 0.
Thus, as t → ∞,

ΠH

μH + δ1 + δ2
≤ NH (t) ≤ ΠH

μH
.

Therefore, all feasible solutions of the human population (2.4) enter the region Ω1:

Ω1 =
{

(SH , EH1, IH1, RH1, EH12, IH12, EH2, IH2, RH2, EH21, IH21, RH22) ∈ �12
+ :

ΠH

μH + δ1 + δ2
+ ε ≤ NH ≤ ΠH

μH
+ ε,∀ε > 0

}
.

Further, let PV = (SV , EV 1, IV 1, EV 2, IV 2) ∈ �5
+ be a solution of the mosquito system (2.5)

with nonnegative initial conditions. Adding all equations in (2.5) yields

dNV

dt
= ΠV – μV NV . (2.9)

Obviously, the total mosquito population NV (t) approaches ΠV /μV as t → ∞. Then, all
feasible solutions of the mosquito population (2.2) enter the region Ω2:

Ω2 =
{

(SV , EV 1, IV 1, EV 2, IV 2) ∈ �5
+ : NV =

ΠV

μV

}
.

Taking N = min{NH , NV }, it follows that all possible solutions of system (2.4)–(2.5) will
enter the region Ω = Ω1 ∪ Ω2. �

Hence, the region of biological interest Ω is positively invariant under the flow induced
by system (2.4)–(2.5). Furthermore, the existence and continuation results of system (2.4)–
(2.5) hold in Ω . Thus, model (2.4)–(2.5) is mathematically and epidemiology well posed.
It is, therefore, sufficient to consider the dynamics of the flow generated by system (2.4)–
(2.5) in Ω .
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3 Analysis of multi-serotype dengue model
3.1 Stability of disease-free equilibrium
Multi-serotype dengue model (2.4)–(2.5) has a disease-free equilibrium (DFE) denoted by
Po

n which is given by

Po
n =

(
So

H , Eo
H1, Io

H1, Ro
H1, Eo

H12, Io
H12, Eo

H2, Io
H2, Ro

H2, Eo
H21, Io

H21, Ro
H22, So

V , Eo
V 1, Io

V 1, Eo
V 2, Io

V 2
)

=
(

ΠH

μH
, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

ΠV

μV
, 0, 0, 0, 0

)
. (3.1)

According to the next generation method and the notations proposed by van den Driess-
che and Watmough [46], the 12 × 12 matrices F (containing the new infection terms) and
V (containing transfer terms) are given by

F =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0 0 0 B1 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 B2

0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0

ηH1A1 A1 0 0 0 0 ηH1A1 A1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 ηH2A2 A2 ηH2A2 A2 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

and

V =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

K1 0 0 0 0 0 0 0 0 0 0 0
–σ1 K3 0 0 0 0 0 0 0 0 0 0

0 0 K2 0 0 0 0 0 0 0 0 0
0 0 –σ2 K4 0 0 0 0 0 0 0 0
0 0 0 0 K2 0 0 0 0 0 0 0
0 0 0 0 –σ2 K4 0 0 0 0 0 0
0 0 0 0 0 0 K1 0 0 0 0 0
0 0 0 0 0 0 –σ1 K3 0 0 0 0
0 0 0 0 0 0 0 0 K5 0 0 0
0 0 0 0 0 0 0 0 –σV 1 μV 0 0
0 0 0 0 0 0 0 0 0 0 K6 0
0 0 0 0 0 0 0 0 0 0 –σV 2 μV

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

respectively, where Ai = ΠV bβVi
μV

and Bi = ΠH bβi
μH

for i = 1, 2. The matrix G := FV –1 = [gij]12×12

is a sparse matrix with nonzero elements as specified below:

g1,9 = ΠH bβ1σV 1
μH μV K5

, g1,10 = ΠH bβ1
μHμV

, g5,11 = ΠH bβ2σV 2
μHμV K6

, g5,12 = ΠH bβ2
μHμV

g9,1 = g9,7 = ΠV bβV 1(ηH1K3+σ1)
μV K1K3

, g9,2 = g9,4 = ΠV bβV 1
μV K3

g11,3 = g11,5 = ΠV bβV 2(ηH2K4+σ2)
μV K2K4

, g11,4 = g11,6 = ΠV bβV 2
μV K4

.

⎫
⎪⎪⎬

⎪⎪⎭
(3.2)
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The entries of G in (3.2) are interpreted as the number of secondary infections pro-
duced by infected mosquitoes and humans during the course of their infection. The en-
tries g9,1, g9,7, g11,3, and g11,5 are defined as the expected number of infectious humans with
serotype-i generated by the infectious period of mosquitoes with serotype-i. The entries
g1,9 and g5,11 are defined as the expected number of infectious mosquitoes with serotype-i
generated by incubation period and infectious period, respectively. It is noted that in-
fected humans produce infected mosquitoes and vise versa. Thus, the entries g9,2, g9,4, g11,4,
and g11,6 display that humans cannot infect humans. The entries g1,10 and g5,12 show that
mosquitoes cannot infect mosquitoes. The other entries are zero, which means no sec-
ondary infection in mosquitoes. Let Rn

0 = ρ(G), where ρ is the spectral radius (dominant
eigenvalue in magnitude) of G. It is easy to show that

Rn
0 = max{Rn1, Rn2}, (3.3)

where

Rni =

√
ΠHΠV b2βiβViσVi(ηHiKi+2 + σi)

μHμ2
V KiKi+2Ki+4

for i = 1, 2. (3.4)

According to Theorem 2 of [46], the local stability of disease-free equilibrium (DFE) Po
n

is established in the following lemma.

Lemma 3.1 The DFE Po
n, given in (3.1), of system (2.4)–(2.5) is locally asymptotically stable

(LAS) in Ω whenever Rn
0 < 1 and unstable if Rn

0 > 1.

This lemma verifies that Rn
0 is a threshold value called the basic reproduction number of

multi-serotype dengue model and Rni is the basic reproduction number associated with
infection serotype-i for i = 1, 2. In epidemiology, the reproductive number Rn

0 represents
the number of cases one case generates in a completely susceptible population [47]. It
is found that Rn

0 , see (3.3), depends on the values of Rn1 and Rn2, see (3.4). Further, it is
found that if Rn

0 < 1 whenever Rn1 < 1 and Rn2 < 1, a small influx of infected cases into the
community would not generate large outbreaks in both primary and secondary infections,
and the disease dies out in time because the DFE is LAS as guaranteed by Lemma 3.1.
However, to ensure the effective disease control of both primary and secondary dengue
infections, it is imperative to show that the DFE is globally asymptotically stable (GAS) in
order to make sure that the number of infected cases in the community at steady state are
independent of the initial sizes of the sub-populations of a multi-serotype dengue model.
The following theorem is established and its proof is given in the Appendix.

Theorem 3.1 The DFE, Po
n, of multi-serotype dengue model (2.4)–(2.5) is globally asymp-

totically stable (GAS) in Ω whenever Rn
0 ≤ 1.

Lemma 3.1 and Theorem 3.1 verify that the asymptotic behavior of multi-serotype
dengue model (2.4)–(2.5) is determined by the basic reproduction number Rn

0 . As evi-
dent in Fig. 2(a)–(m), all profile solutions of multi-serotype dengue model (2.4)–(2.5) al-
ways converge to Po

n for all initial sizes of sub-populations used whenever Rn
0 ≤ 1 in the

sense that the numbers of infectious human and mosquito populations decline to zero, see
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Figure 2 Time series plots of the multi-serotype dengue model (2.4)–(2.5) with different initial sizes of the
sub-populations. The parameter values are given in Table 2 at which (Rn1 = 0.9747,Rn2 = 0.9851) and
Rn0 = max{Rn1,Rn2} = Rn2 < 1. (a)–(h) Showing the dynamics of human sub-populations. (i)–(m) Showing the
dynamics of mosquito sub-populations

Fig. 2(c),(d),(e),(f ), and (j)–(m). These study results suggest that when Rn
0 ≤ 1 the disease

will be eradicated from the population irrespective of the initial sizes of sub-populations,
which should be the great public health interest.

3.2 Existence of endemic equilibrium
Let

P∗∗
n =

(
S∗∗

H , E∗∗
H1, I∗∗

H1, R∗∗
H1, E∗∗

H12, I∗∗
H12, E∗∗

H2, I∗∗
H2, R∗∗

H2, E∗∗
H21, I∗∗

H21,

R∗∗
H22, S∗∗

V , E∗∗
V 1, I∗∗

V 1, E∗∗
V 2, I∗∗

V 2
)

(3.5)

be an arbitrary endemic equilibrium. Solving the endemic (positive) equilibrium of multi-
serotype dengue model (2.4)–(2.5) in terms of state variables at steady state is laborious
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Figure 2 Continued

owing to its high dimensionality. For simplicity, we start from defining the force of infec-
tion with serotype-i of human and the force of infection with serotype-i of mosquito at
steady state as follows: for i, j = 1, 2, (i �= j),

ϕ∗∗
i =

bβiI∗∗
Vi

1 + αViI∗∗
Vi

and ϕ∗∗
Vi =

bβVi(ηHi(E∗∗
Hi + E∗∗

Hij) + I∗∗
Hi + I∗∗

Hji)
1 + αHi(I∗∗

Hi + I∗∗
Hji)

, (3.6)

respectively, where ∗∗ represents the component of the positive equilibrium at steady state.
Then all state variables of system (2.4)–(2.5) at steady state can be expressed in terms of
ϕ∗∗

i and ϕ∗∗
Vi as given in the following: for i, j = 1, 2 (i �= j),

S∗∗
H = ΠH

G∗∗
μϕ

, E∗∗
Hi = ΠHϕ∗∗

i
KiG∗∗

μϕ
, I∗∗

Hi = ΠH σiϕ∗∗
i

KiKi+2G∗∗
μϕ

,

R∗∗
Hi = ΠHσiγiϕ∗∗

i
KiKi+2G∗∗

μϕλG∗∗
μϕ

,

E∗∗
Hij =

ΠH σiγiλϕ∗∗
i ϕ∗∗

j
KiKjKi+2G∗∗

μϕλG∗∗
μϕ

, I∗∗
Hij =

ΠHσiσjγiλϕ∗∗
i ϕ∗∗

j
KiKjKi+2Kj+2G∗∗

μϕλG∗∗
μϕ

,

R∗∗
H22 =

∑2
i=1

∑2
j=1
i�=j

γiIHji
μH

, S∗∗
V = ΠV

G∗∗
μϕV

, E∗
Vi = ΠV ϕ∗∗

Vi
Ki+4G∗∗

μϕV
,

I∗∗
Vi = ΠV σViϕ∗∗

Vi
μV Ki+4G∗∗

μϕV
,

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.7)

where G∗∗
μϕλ = λϕ∗∗

j + μH , G∗∗
μϕ = ϕ∗∗

i + ϕ∗∗
j + μH and G∗∗

μϕV
= ϕ∗∗

Vi + ϕ∗∗
Vj + μV .
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Substituting expressions (3.7) into (3.6) and after simplifying, we get the following sys-
tem:

ϕ∗∗
1 = ΠV bβ1ϕ∗∗

V 1
μV K5(ϕ∗∗

V 1+ϕ∗∗
V 2+μV )+αV 1ΠV σV 1ϕ∗∗

V 1
,

ϕ∗∗
2 = ΠV bβ2ϕ∗∗

V 2
μV K6(ϕ∗∗

V 1+ϕ∗∗
V 2+μV )+αV 2ΠV σV 2ϕ∗∗

V 2
,

ϕ∗∗
V 1 =

ΠH bβV 1(ηH1K2+σ1)(K2K4G∗∗
λ1

+λ1γ2σ2ϕ∗∗
2 ])ϕ∗∗

1
K1K2K3K4G∗∗

λ1
G∗∗+ΠHαH1σ1(K2K4G∗∗

λ +λ1γ2σ2ϕ∗∗
2 )ϕ∗∗

1
,

ϕ∗∗
V 2 =

ΠH bβV 2(ηH2K3+σ2)(K1K3G∗∗
λ2

+λγ1σ1ϕ∗∗
1 )ϕ∗∗

2
K1K2K3K4G∗∗

λ2
G∗∗+ΠHαH2σ2(K1K3G∗∗

λ2
+λ2γ1σ1ϕ∗∗

1 )ϕ∗∗
2

,

⎫
⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎭

(3.8)

where G∗∗ = ϕ∗∗
1 + ϕ∗∗

2 + μH , G∗∗
λ1

= λϕ∗∗
1 + μH , and G∗∗

λ2
= λϕ∗∗

2 + μH .
In the case when ϕ∗∗

1 = ϕ∗∗
2 = 0, it follows from (3.8) that ϕ∗∗

V 1 = ϕ∗∗
V 2 = 0. Substituting

these values into expressions (3.7), we get the disease-free equilibrium.
In the case when ϕ∗∗

i ,ϕ∗∗
j > 0 for i, j = 1, 2 (i �= j), system (3.8) is rearranged to the system

(
μV Ki+4 + ΠV σVi

(
αVi –

bβi

ϕ∗∗
i

))
ϕ∗∗

Vi + μV Ki+4
(
ϕ∗∗

Vj + μV
)

= 0, (3.9)

R2
ni = R2

nj

[ (1 + λϕ∗∗
i

λϕ∗∗
j +μH

MiR2
ni)(1 –

αVjϕ∗∗
j

bβj
)Pi

(1 +
λϕ∗∗

j
λϕ∗∗

i +μH
MjR2

nj)(1 – αVi
bβi

ϕ∗∗
i )Pj

]
, (3.10)

where

Pi = ϕ∗∗
i + ϕ∗∗

j + μH + R2
niMi+2ϕ

∗∗
i

(
1 +

λϕ∗∗
j MjR2

nj

λϕ∗∗
i + μH

)
,

Mi =
μHμ2

V σiγiKi+4

ΠHΠV b2βiβViσVi(ηHiKi+2 + σi)
, Mi+2 =

ΠHαHi

γi
Mi.

(3.11)

Clearly, system (3.9)–(3.10) is consistent if and only if Rni/Rnj > 1, which implies that sys-
tem (3.8) is consistent whenever Rni ≥ Rnj > 1. Therefore, the endemic equilibrium P∗∗

n

given in (3.5) of system (2.4)–(2.5) is obtained by solving the fixed point problem (3.8) for
positive ϕ∗∗

i and ϕ∗∗
Vi , i = 1, 2, and then substituting the results obtained into (3.7). Further,

the existence of endemic equilibrium of system (2.4)–(2.5) in the primary infection and
secondary infection is investigated based on the cross immunity when 0 ≤ λ < 1 as follows.

Case i: λ = 0
In this case, system (3.9)–(3.10) gives the endemic equilibrium which has only the pri-

mary infection whenever Rn
0 = max{Rn1, Rn2} > 1, that is, Rn1 = Rn2 > 1. This equilibrium is

called the co-existence primary infection equilibrium and is given below.

Theorem 3.2 If λ = 0, the multi-serotype dengue model has the co-existence primary in-
fection equilibrium, denoted by P∗

H :

P∗
H =

(
S∗∗

H , E∗∗
H1, I∗∗

H1, R∗∗
H1, 0, 0, E∗∗

H2, I∗∗
H2, R∗∗

H2, 0, 0, 0, S∗∗
V , E∗∗

V 1, I∗∗
V 1, E∗∗

V 2, I∗∗
V 2

)
,

whenever Rn1 = Rn2 > 1.

This theorem indicates that when λ = 0, the infection with one serotype produces com-
plete immunity against the other serotypes in the sense that there is no reinfection dengue.
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Case ii: 0 < λ < 1
In the case when Rn

0 = max{Rn1, Rn2} > 1, that is, Rni ≥ Rnj > 1, system (3.9)–(3.10) has
the endemic equilibrium which is called the co-existence secondary infection equilibrium
in the sense that the second infection occurs following the primary infection after some
time interval. Thus, the following result is claimed.

Theorem 3.3 If 0 < λ < 1, the multi-serotype dengue model has the co-existence secondary
infection equilibrium, denoted by P∗∗

n , whenever Rni ≥ Rnj > 1, i �= j.

This theorem indicates that the infection with one serotype produces partial immunity
against another serotypes when 0 < λ < 1.

3.3 Local stabilities of co-existence equilibria
The local stabilities of co-existence equilibria of the multi-serotype dengue model (see
Theorem 3.2 or Theorem 3.3) are analyzed based on the use of the center manifold theory
[42]. To simplify, the state variables are changed first of all. Let SH = x1, EH1 = x2, IH1 =
x3, RH1 = x4, EH12 = x5, IH12 = x6, EH2 = x7, IH2 = x8, RH2 = x9, EH21 = x10, IH21 = x11, RH22 =
x12, SV = x13, EV 1 = x14, IV 1 = x15, EV 2 = x16, and IV 2 = x17, so that NH =

∑12
n=1 xn and NV =∑5

n=1 xn+12, respectively. Further, by using the vector notations x = (x1, x2, x3, . . . , x17)T and
F(x) = (f1(x), f2(x), . . . , f17(x))T , multi-serotype dengue model (2.4)–(2.5) is written in the
form

dx
dt

= F(x), (3.12)

where

f1 = ΠH – (ϕ1 + ϕ2)x1 – μHx1, f2 = ϕ1x1 – (σ1 + μH )x2,
f3 = σ1x2 – (γ1 + δ1 + μH )x3, f4 = γ1x3 – (λϕ2 + μH )x4,
f5 = λϕ2x4 – (σ2 + μH )x5 f6 = σ2x5 – (γ2 + δ2 + μH )x6,
f7 = ϕ2x1 – (σ2 + μH )x7, f8 = σ2x7 – (γ2 + δ2 + μH )x8,
f9 = γ2x8 – (λϕ1 + μH )x9, f10 = λϕ1x9 – (σ1 + μH )x10,
f11 = σ1x10 – (γ1 + δ1 + μH )x11, f12 = γ1x11 + γ2x6 – μHx12,
f13 = ΠV – (ϕV 1 + ϕV 2)x13 – μV x13, f14 = ϕV 1x13 – (σV 1 + μV )x14,
f15 = σV 1x14 – μV x15, f16 = ϕV 2x13 – (σV 2 + μV )x16,
f17 = σV 2x16 – μV x17, ϕ1 = bβ1x15

1+αV 1x15
,ϕ2 = bβ2x17

1+αV 2x17
,

ϕV 1 = bβV 1(ηH1(x2+x10)+x3+x11)
1+αH1(x3+x11) , ϕV 2 = bβV 2(ηH2(x5+x7)+x6+x8)

1+αH2(x6+x8) .

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.13)

Since system (3.12) is identical to system (2.4)–(2.5), the disease-free equilibrium Po
n

and the reproduction number Rn
0 of system (3.12) are given in (3.1) and (3.3), respectively.

Consider Rn
0 = max{Rn1, Rn2} = 1, then

β2 = β∗∗
2 =

μHμ2
V K2K4K6

ΠHΠV b2βV 2σV 2(ηH2K4 + σ2)

is chosen to be a bifurcation parameter with

β1 =
β∗∗

2 βV 2σV 2(ηH2K4 + σ2)K1K3K5

βV 1σV 1(ηH1K3 + σ1)K2K4K6
.
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The Jacobian of system (3.12) evaluated at Po
n with β2 = β∗∗

2 is given by

J
(
β∗∗

2
)

=

⎡

⎢⎣
J1 06×5 J2

05×6 J3 J4

J5 J6 J7

⎤

⎥⎦ ,

where 0m×n is a zero matrix of m rows by n column and the matrices Ji, i = 1, . . . , 7, are
given by

J1 =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

–μH 0 0 0 0 0
0 –K1 0 0 0 0
0 σ1 –K3 0 0 0
0 0 γ1 –μH 0 0
0 0 0 0 –K2 0
0 0 0 0 σ2 –K4

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

J2 =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 –Cβ∗∗
2 0 –Cβ∗∗

2

0 0 0 Cβ∗∗
2 0 0

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

J3 =

⎡

⎢⎢⎢⎢⎢⎢⎣

–K2 0 0 0 0
σ2 –K4 0 0 0
0 γ2 –μH 0 0
0 0 0 –K1 0
0 0 0 σ1 –K3

⎤

⎥⎥⎥⎥⎥⎥⎦
, J4 =

⎡

⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 Cβ∗∗
2

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

⎤

⎥⎥⎥⎥⎥⎥⎦
,

J5 =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 γ2

0 –ηH1A1 –A1 0 –ηH2A2 –A2

0 ηH1A1 A1 0 0 0
0 0 0 0 0 0
0 0 0 0 ηH2A2 A2

0 0 0 0 0 0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

J6 =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 γ1

–ηH2A2 –A2 0 –ηH1A1 –A1

0 0 0 ηH1A1 A1

0 0 0 0 0
ηH2A2 A2 0 0 0

0 0 0 0 0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

J7 =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

–μH 0 0 0 0 0
0 –μV 0 0 0 0
0 0 –K5 0 0 0
0 0 σV 1 –μV 0 0
0 0 0 0 –K6 0
0 0 0 0 σV 2 –μV

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

,
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with Ai = ΠV bβVi
μV

, i = 1, 2, and C = ΠH bβV 2σV 2(ηH2K4+σ2)K1K3K5
μHβV 1σV 1(ηH1K3+σ1)K2K4K6

, respectively. It can be shown
that J(β∗∗

2 ) has at least one eigenvalue with zero real part. Hence, the center manifold
theory [42] can be used to analyze the dynamics of (3.12) with β2 = β∗∗

2 .
Next, the right eigenvector of J(β∗∗

2 ) associated with the zero eigenvalue at β2 = β∗∗
2 is

given by w = [w1, w2, w3, . . . , w17]T , where

w1 = – K1w2+K2w7
μH

, w3 = σ1w2
K3

, w4 = γ1σ1w2
μH K3

, w2 = w2 > 0,
w5 = w6 = 0, w8 = σ2w7

K4
, w9 = γ2σ2w7

μH K4
,

w10 = w11 = w12 = 0, w7 = w7 > 0,
w13 = – bΠV βV 1K4(ηH1K3+σ1)

μ2
V K3K4

w2 – bΠV βV 2K3(ηH2K4+σ2)
μ2

V K3K4
w7,

w14 = bΠV βV 1(ηH1K3+σ1)
μV K3K5

w2, w15 = bΠV βV 1σV 1(ηH1K3+σ1)
μ2

V K3K5
w2,

w16 = bΠV βV 2(ηH2K4+σ2)
μV K4K6

w7, w17 = bΠV βV 2σV 2(ηH2K4+σ2)
μ2

V K4K6
w7.

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.14)

Similarly, the components of the left eigenvector of J(β∗∗
2 ) associated with the zero eigen-

values at β2 = β∗∗
2 , denoted by v = [v1, v2, v3, . . . , v17], are given by

v1 = v4 = v9 = v12 = v13 = 0, v14 = v14 > 0, v16 = v16 > 0,

v2 = bΠV βV 1(ηH1K3+σ1)
μV K1K3

v14, v3 = bΠV βV 1
μV K3

v14, v5 = bΠV βV 2(ηH2K4+σ2)
μV K2K4

v16,

v6 = bΠV βV 2
μV K4

v16, v7 = bΠV βV 2(ηH2K4+σ2)
μV K2K4

v16, v8 = bΠV βV 2
μV K4

v16,

v10 = bΠV βV 1(ηH1K3+σ1)
μV K1K3

v14, v11 = bΠV βV 1
μV K3

v14,
v15 = K5

σV 1
v14 and v17 = K6

σV 2
,

⎫
⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎭

(3.15)

respectively.
Computing the associated nonzero partial derivatives of F(x) at Po

n and using the ex-
pression in (3.14)–(3.15), the coefficients a and b defined in Theorem 4.1 [48] are given
by

a =
17∑

k,n,m=1

vkwnwm
∂2fk

∂xn∂xm
(0, 0)

= –
2bΠV βV 1K7w2w14

μV ΠHK3K4

(
K1K4w2 + (K2K4 – γ2σ2λ)w7

)

–
2bΠV βV 2K8w7w16

μV ΠHK3K4

(
K1K4w2 + (K2K4 – γ2σ2λ)w7

)

–
2b2Π2

V
μ3

V K2
3 K2

4 K5K6

(
β2

V 1σV 1αV 1K2
7 K2

4 K6w2
2v14 + β2

V 2σV 2αV 2K2
3 K5K2

8 w2
7v16

)

–
2b2ΠV (βV 1K4K7w2 + βV 2K3K8w7)

μ2
V K2

3 K2
4

(βV 1K4K7w2v14 + βV 2K3K8w7v16) (3.16)

and

b =
17∑

k,n=1

vkwn
∂2fk

∂xn∂β
∗∗
2

(0, 0)

=
ΠHΠ2

V b3βV 2σV 2K8(βV 1K4K7w2v14 + βV 2K3K8w7v16)
μ3

V μH K2K3K2
4 K6

, (3.17)

where K7 = ηH1K3 + σ1 and K8 = ηH2K4 + σ2.
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Clearly, the coefficient b is always positive and the coefficient a is positive whenever 0 ≤
λ < 1. Similar results are obtained when the bifurcation is chosen to be β1 = β∗∗

1 . According
to Theorems 3.2–3.3 and Theorem 4.1 of [48], the following lemmas are established.

Lemma 3.2 If λ = 0, the co-existence primary infection equilibrium P∗
H of the multi-

serotype dengue model exists and is locally asymptotically stable whenever Rn
0 > 1 (that

is, Rni = Rnj > 1 for i, j = 1, 2 and i �= j) and is close to 1.

Lemma 3.3 If 0 < λ < 1, the co-existence secondary infection equilibrium P∗∗
n of multi-

serotype dengue model exists and is locally asymptotically stable whenever Rn
0 > 1 (that is,

Rni ≥ Rnj > 1 for i, j = 1, 2 and i �= j) and is close to 1.

4 Numerical simulations
4.1 Estimation of model parameters
The Ministry of Public Health Thailand reported the dengue outbreak during 2014–2018
and indicated that dengue is epidemic every year, especially the number of dengue cases
increased in the year 2018 [30]. Thus, the multi-serotype dengue model is applied for
predicting the number of infectious populations and computing the cumulative number
of dengue cases by solving the following differential equation [49]:

dC
at

= κ1(IH1 + IH21) + κ2(IH2 + IH12), (4.1)

where C denotes the cumulative number of dengue cases, κ1 and κ2 are the rates of pro-
gression from infective to diagnosed. The parameters used in simulation are λ = 0.0111,
αH = 8.648 × 10–5, αV = 1.3404 × 10–6, κ1 = 0.0361, κ2 = 0.0283, and the other parameter
values are given in Table 2. The values of λ, αH , and αV [30] correspond to three months
of cross immunity, the prevalence rates per one million people, and mosquitoes’ density,
respectively. The other model parameters chosen are reliable data corresponding to the
dengue transmission in Thailand and those in the literature.

The cumulative numbers of dengue cases produced by the multi-serotype dengue model
are compared with the real data in the year 2018 [30], see Fig. 3. The accuracy of the
approximated data obtained are tested by using the coefficient of determination denoted
by R2 [50]. It is found that R2 = 0.9997 verifies that the approximated data are closer to
the real data, see Fig. 3. This study indicates that the values of model parameter in Table 2
are appropriated values for the multi-serotype dengue model. These values will be used
to investigate the sensitivity of model parameters that impact the transmission of dengue
and then to analyze the effects of cross immunity and nonlinear incidence rate on the
occurrence of reinfection dengue.

4.2 Sensitivity analysis
The parameters that have high impact on the transmission and should be targeted by in-
terference strategies can be discovered by the sensitivity analysis [51]. When a parameter
changes, the relative change in a variable can be measured by the normalized forward
sensitivity index of a variable with respect to a parameter. The normalized forward sensi-
tivity index of the reproduction number of a multi-dengue model Rn

0 with respect to the
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Figure 3 Comparison of the cumulative number of infected number produced by the multi-serotype
dengue model and the cumulative number of reported dengue cases in Thailand, 2018

Figure 4 Sensitivity indexes of Rn0 = Rnn2 to the twelve different parameters for dengue serotype-2: μV , b, μH ,
ΠV , ΠH , β2, βV2, γ2, σV2, ηH2, σ2, δ2 at the baseline parameter values given in Table 2

parameter p is given by

Υ
Rn

0
p =

∂Rn
0

∂p
× p

Rn
0

. (4.2)

It is found, from predicted cumulative number of dengue cases, that Rn
0 = Rn

2 > 1. Then
the sensitivity indices of Rn

2 to the twelve different parameters at the baseline parameter
values (see Table 2) are shown in Fig. 4. The study results show that the most sensitive pa-
rameter for mosquito is the natural death rate μV followed by the mosquito biting rate b,
the probability of disease transmission from infectious humans to susceptible mosquitoes
βV 1, and the recruitment rate by mosquito birth ΠV , respectively. Meanwhile, the most
sensitive parameter for human population is the mosquito biting rate b followed by the
natural death rate μH , the recruitment rate ΠH , the transmission probability rate from
infected mosquito to susceptible human β1, the human recovery rate γ1, and the modifi-
cation parameters ηH1, respectively. It is also found that the sensitivity indices of Rn

0 with
respect to β1, βV 1, ΠH , and ΠV do not depend on any parameter values, which implies that
increasing these model parameters will lead to increasing Rn

0 = Rn
1 and vice versa. Similarly,

the same results are found when Rn
0 = Rn

1 > 1 by changing index 2 to index 1. These study
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results indicate that the model parameters βV 2, b, β2, and ηH2 affect the transmission of
dengue. On the other hand, the model parameters μV and γ1 impact its prevention.

4.3 Effect of cross immunity and nonlinear incidence rates on secondary
infections

It is found that, from (3.3)–(3.4), the reproductive number of the multi-serotype dengue
model Rn

0 does not depend on the cross immunity and nonlinear incidence rates. However,
the co-existence equilibria of the multi-serotype dengue model exist whenever the ratio
of R2

ni and R2
nj is greater than unity (see system (3.9)–(3.10)) and is guaranteed by Lemmas

3.2–3.3, respectively. To investigate the effect of cross immunity and nonlinear incidence
rates on the secondary infections, the relation of R2

ni and R2
nj given in (3.10) is compared

with the following functions:

R2
ni > fi

(
R2

nj
)

if Rni ≥ Rnj > 1, (4.3)

where

fi
(
R2

nj
)

:=
R2

nj

1 + λ(1 – αV )(1 – αHσi
KiKi+2

)Mj[R2
nj – 1]

, (4.4)

and Mj = ΠH ΠV b2βjβVjσVj(ηHjKj+2+σj)
μH μ2

V σjγjKj+4
for i, j = 1, 2 and i �= j, respectively.

Let λ = λ∗
i , αH = α∗

Hi, and αV = α∗
Vi be the bifurcation parameters of fi, i = 1, 2. The first

and second derivatives of fi(R2
nj) with respect to R2

nj are given by

f ′
i
(
R2

nj
)

=
1 – A

(1 + A(R2
nj – 1))2 and f ′′

i
(
R2

nj
)

=
–2A(1 – A)

(1 + A(R2
nj – 1))3 , (4.5)

respectively, where Ai = λ(1 – αV )(1 – αHσi
KiKi+2

)Mj for j = 1, 2 and i �= j. Further, solving
f ′
i (R2

nj) = 0 for λ∗
i , α∗

Hi, and α∗
Vi, we get

λ∗
i =

1
Mj(1 – αV )(1 – αHσi

KiKi+2
)
, α∗

Vi = 1 –
1

λMj(1 – αHσi
KiKi+2

)
, (4.6)

α∗
Hi =

KiKi+2

σi

(
1 –

1
λMj(1 – αV )

)
. (4.7)

According to (4.4)–(4.7), the following lemma is established.

Lemma 4.1 For all R2
ni > R2

nj > 1, i, j = 1, 2 and i �= j.
(i) The function fi(R2

nj) is increasing and concave down if one of the following conditions
holds:
(a) λ < λ∗

i ;
(b) αH > α∗

Hi;
(c) αV > α∗

Vi.
(ii) The function fi(R2

nj) is decreasing and concave up if one of the following conditions
holds:
(a) λ > λ∗

i ;
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Figure 5 Showing the region of primary and secondary infections which are separated by the functions f1
and f2 given in (4.4) under the condition in Lemma 4.1

(b) αH < α∗
Hi;

(c) αV < α∗
Vi.

(iii) The functions f1(R2
n2) = f2(R2

n1) = 1 if one of the following conditions holds:
(a) λ = λ∗

i ;
(b) αH = α∗

Hi;
(c) αV = α∗

Vi.
(iv) The functions f1(R2

n2) = f2(R2
n1) > 1 if one of the following conditions holds:

(a) λ = 0;
(b) αH = KiKi+2

σi
;

(c) αV = 1.

4.4 Theoretical results
The results in Lemma 4.1 are applied to monitor the effect of cross immunity (λ) and
the inhibitory effect for humans (αH ) and mosquitoes (αV ) on the secondary infection as
follows. First, the conditions in Lemma 4.1 are tested to determine the area of secondary
infection by plotting the functions f1(R2

n2) versus R2
n2 and f2(R2

n1) versus R2
n1. The model

parameter values/ranges used for simulation are given in Table 2. The results obtained are
shown in Fig. 5. In this figure, the secondary infection is the area bounded by the profiles of
f1(R2

n2) and f2(R2
n1). The primary infection with dengue serotype-i represents the stability
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Figure 6 Showing the region of secondary infection covered by the functions f1 and f2 given in (4.4) with
λ = 0.0714 (brown solid), 0.0110 (blue dashed), 0.0037 (red dashdot), and 0.0014 (green solid)

region of co-existence primary infection equilibrium P∗
H (in line with Theorem 3.2), and

the secondary infection represents the stability region of co-existence secondary infection
equilibrium P∗

n (in line with Theorem 3.3) whenever R2
ni ≥ R2

nj > 1 for i, j = 1, 2 and i �= j. It
is found that the second infection occurs whenever conditions (i)–(iii) in Lemma 4.1 hold,
see Fig. 5(b)–(d). On the other hand, the second infection is reduced if the condition (i)
holds, see Fig. 5(b), and then it is eliminated if condition (iv) holds, see Fig. 5(a). These
study results reveal that the cross immunity and nonlinear incidence rates for human and
mosquito are important factors in controlling and preventing the secondary infection.

4.5 Effect of cross immunity
The effect of cross immunity is investigated with various λ. The values of λ are chosen to
be 0.0714, 0.0110, 0.0037, and 0.0014 which correspond to the period of cross immunity
as two weeks [52], three months, nine months, and two years [53, 54], respectively. With
these parameters and the parameter uses given in Table 2, the secondary infection, which
is the area bounded by the profiles of f1(R2

n2) and f2(R2
n1), is displayed in Fig. 6. It is found

that when λ = 0.0714, the area of secondary infection is widest and would reduce when λ

increases to 0.0110, 0.0037, and 0.0014, respectively. This study interprets that the cross
immunity affects the decrease in the occurrence of dengue reinfection after getting the
primary infection.

The number of infected populations at steady state is predicted by simulating multi-
serotype dengue model (2.4)–(2.5) using the values of model parameters given in Table 2
and various λ. With the parameter values used in Table 2, the reproductive numbers asso-
ciated with infection dengue serotype-1 and dengue serotype-2 are given by Rn1 = 3.8987
and R2 = 3.9402 so that the reproductive number of multi-serotype dengue model (2.4)–
(2.5) is Rn

0 = max{Rn1, Rn2} = R2 = 3.9402. The results obtained are tabulated in Table 3. It
is found from Table 3 that when Rn2 > Rn1 > 1, increasing the period of cross immunity
would decrease the number of infected humans in primary infection, which results in de-
creasing the number of mosquitoes carrying dengue serotype-1 and serotype-2. However,
increasing the period of cross immunity would decrease the number of infected humans in
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Table 3 Effect of the period of cross immunity (1/λ) on the number of infected populations: IH1, IH2,
IH12, IH21, IV1, and IV2 at steady state using the multi-serotype dengue model (2.4)–(2.5)

1/λ Infected human Infected
mosquito

Stable equilibrium
Primary infection Secondary infection
IH1 IH2 IH12 IH21 IV1 IV2

3 months 324 365 23 27 285 367 P∗∗
n

9 months 284 399 7 8 238 383 P∗∗
n

2 years 250 428 2 3 207 405 P∗
H

6 years 227 448 0 0 187 421 P∗
H

15 years 219 455 0 0 180 427 P∗
H

secondary infection, which exchanges the stabilities of two equilibria (P∗∗
n and P∗

H ). This,
of course, is in line with Lemmas 3.2–3.3. Further, Figs. 7–8 display the number of infected
humans and mosquitoes produced by multi-serotype dengue model (2.4)–(2.5) using the
values of model parameters given in Table 2 and various λ (λ = 0.0111 and λ = 0.0014). The
value of λ corresponds to the period of cross immunity as three months and two years,
respectively. The initial conditions in simulation vary, which corresponds to the dynamics
of dengue transmission. The numbers of infected humans and mosquitoes for ten years
are shown in Figs. 7–8. It is found that if the period of cross immunity is short (approxi-
mated three months), the number of infected humans in secondary infection increases and
fluctuates, see Fig. 7(c)–(d). On the other hand, increasing the period of cross immunity
(approximated two years) would decrease the number of infected humans in secondary
infection but it would not die out as shown in Fig. 8(c)–(d). This is a strong evidence that
the immunological interactions between serotypes are of central importance in under-
standing epidemiological dynamics and anticipating the impact of strategy in controlling
and preventing dengue.

4.6 Effect of nonlinear incidence rates
It is evident from Table 3 that only the number of infected humans in secondary infection
die out as the period of cross immunity is increased, while the infected humans in pri-
mary infection and the infected mosquitoes still be in the community. This may cause the
dengue outbreak again. For these reasons, in the case when the period of cross immunity
is three months, the effect of nonlinear incidence rates for human and mosquito is investi-
gated with various the inhibitory effect of human αH and the inhibitory effect of mosquito
αV .

When the inhibitory effect of human αH varies as αH = 8.6480 × 10–5, 0.05, 0.125, re-
spectively. With these values and the other parameter values given in Table 2, the area of
secondary infection is shown in Fig. 9(a). It is found that the area of secondary infection
decreases as αH increases. A similar result is found in the case when the inhibitory effect
of mosquito αV is chosen to be αV = 1.3405 × 10–6, 0.125, 0.85, respectively, see Fig. 9(b).
By comparing the region of secondary infection, it is observed that slight increase in αH

would reduce the region of secondary infection. It is also found that in order to reduce the
area of secondary infection while increasing αH , the value of αV must be close to unity.
These results indicate that the inhibitory effect of human is sensitive to decreasing the
region of secondary infection more than the inhibitory effect of mosquito.

Further simulations are carried out using various values of αH and αV and are tabu-
lated in Tables 4–6. It is evident from Table 4 that, as the effectiveness of αH increases, the
number of infected humans in primary infection decreases, which causes the numbers
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Figure 7 Time series plots of the number of infected humans and mosquitoes predicted by the
multi-serotype dengue model (2.4)–(2.5) with different initial sizes of the sub-populations. The values of
model parameters used are given in Table 2 and λ = 0.0111 which corresponds to cross immunity lasting as
long as three months after primary experience infection

of infected humans in secondary infection and infected mosquitoes to greatly reduce and
finally die out. Meanwhile, increasing the efficiency level of αV , the number of infected hu-
mans in primary infection decreases, which causes the number of infected humans in sec-
ondary infection to greatly reduce and finally die out. The results also show that although
the effectiveness of αV would decrease the number of infected mosquitoes, it would not
eliminate the number of infected mosquitoes. This study suggests that the strategy of vec-
tor control only may induce the risk of reinfection dengue in these populations.

The study results also show that at 5% effectiveness of inhibitory effects (that is, αH =
αV = 0.05), the steady states P∗

H and P∗∗
n exchange their stability, see Tables 4–5. This new
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Figure 8 Time series plots of the number of infected humans and mosquitoes predicted by the
multi-serotype dengue model (2.4)–(2.5) with different initial sizes of the sub-populations. The values of
model parameters used are given in Table 2 and λ = 1.3699× 10–3 which corresponds to two years of cross
immunity after primary experience infection

result verifies that even nonlinear incidence rates αH ,αV are not parameters in the asso-
ciated reproductive number with serotype-i, but they are important factors that influence
exchange of the stability region of co-existence primary infection equilibrium P∗

H and the
stability region of co-existence secondary infection equilibrium P∗∗

n , which leads to elim-
inating the infected populations and decreasing the risk of reinfection dengue. Thus, the
combination of inhibitory effect of human and mosquito is explored by varying αH and
αV . The obtained result is shown in Table 6. The results in Table 6 verify that if the effi-
ciency level of αH is 85%, the efficiency level of αV must be 95% in order to eliminate the
infected human in secondary infection and the infected mosquito. It is also shown that
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Figure 9 Showing the region of secondary infection covered by the functions f1 and f2 given in (4.4) with
various αH and αV . (a) αV = 1.3405× 10–6 and αH varies. (b) αH = 8.6480× 10–5 and αV varies

Table 4 Effect of αH on the number of infected populations: IH1, IH2, IH12, IH21, IV1, and IV2 at steady
state using the multi-serotype dengue model (2.4)–(2.5)

αH Infected human Infected
mosquito

Stable equilibrium

Primary infection Secondary infection

IH1 IH2 IH12 IH21 IV1 IV2

8.648× 10–5 324 365 23 27 285 367 P∗∗
n

0.02 230 236 2 2 34 40 P∗∗
n

0.05 154 158 0 0 14 17 P∗
H

0.85 15 16 0 0 0 1 P∗
H

0.95 14 14 0 0 0 0 P∗
H

1 13 13 0 0 0 0 P∗
H

when αH is close to unity and αV slightly increases, that is, αH = 0.9 and αV = 0.3, these
shall reduce the number of infected humans in primary infection, which leads to eliminat-
ing the infected humans in secondary infection and the infected mosquitoes. Therefore,



Janreung et al. Advances in Difference Equations        (2020) 2020:147 Page 27 of 32

Table 5 Effect of αV on the number of infected populations: IH1, IH2, IH12, IH21, IV1, and IV2 at steady
state using the multi-serotype dengue model (2.4)–(2.5)

αV Infected human Infected
mosquito

Stable equilibrium
Primary infection Secondary infection
IH1 IH2 IH12 IH21 IV1 IV2

1.3405× 10–6 324 325 23 27 285 367 P∗∗
n

0.02 256 225 2 2 212 218 P∗∗
n

0.05 176 154 0 0 146 150 P∗
H

0.85 18 16 0 0 15 16 P∗
H

0.95 16 14 0 0 14 14 P∗
H

1 16 14 0 0 13 13 P∗
H

Table 6 Effect of αH and αV on the number of infected populations: IH1, IH2, IH12, IH21, IV1, and IV2 at
steady state using the multi-serotype dengue model (2.4)–(2.5)

αH αV Infected human Infected
mosquitoPrimary infection Secondary infection

IH1 IH2 IH12 IH21 IV1 IV2

0.85 0.95 8 7 0 0 0 0
0.87 0.87 8 8 0 0 0 0
0.90 0.3 11 11 0 0 0 0

these study results suggest that the best way of dengue prevention and control should be
the effective vector control measures and personal protection.

5 Discussion and conclusion
In this paper, we formulate the multi-serotype dengue model with nonlinear incidence
rate (2.4)–(2.5) for studying the influence of cross immunity and nonlinear incidence rate
on the secondary infection. The main results from this study are as follows. The repro-
duction number of the multi-serotype dengue model derived by using the next generation
method is given by Rn

0 = max{Rn1, Rn2}. This number depends on the reproduction num-
ber associated with infection serotype-i (Rni, i = 1, 2) in the sense that the transmission
of dengue serotype-1 or dengue serotype-2 in primary infection has strong influence on
the possibility of secondary infection in some period when the cross immunity is weak.
Mathematical analysis has shown that the multi-serotype dengue model has a globally sta-
ble disease-free equilibrium if Rn

0 ≤ 1, as guaranteed by Theorem 3.2. This result indicates
that if public health measures that make (and keep) the threshold to a value less than unity
are carried out, the number of infected human and mosquito populations in the commu-
nity will be brought to zero irrespective of the initial sizes of sub-populations, see Fig. 2.
The local stability of co-existence infection equilibria of the multi-serotype dengue model
is analyzed by applying the center manifold theory. When Rn

0 > 1, the endemic equilibria
of the multi-serotype dengue model called the coexistence primary and secondary equi-
libria exist and are locally asymptotically stable as guaranteed by Theorems 3.2–3.3 and
Lemmas 3.2–3.3, respectively.

The multi-serotype dengue model is applied to predict the number of infected humans
and compare it with the real data reported by the Ministry of Public Health Thailand [30].
This study gives the appropriated values of model parameters of the formulated model.
Sensitivity analysis shows that the model parameters βV 2, b, β2, and ηH2 influence the
transmission of dengue. On the other hand, the model parameters μV and γ1 impact the
prevention. In biological meaning, the sensitivity of parameter μV indicates that dengue



Janreung et al. Advances in Difference Equations        (2020) 2020:147 Page 28 of 32

prevention and control depends on effective vector control measures. Meanwhile, the sen-
sitivities of parameters βV 2, b, β2, and ηH2 indicate that reducing the number of contacts
between humans and mosquitoes, through a reduction in either or both, the frequency of
mosquito blood meals, and the number of bites that a human will tolerate would have the
largest effect on disease transmission. The sensitivity of parameter ηH also shows that the
infected asymptomatic humans are the main carriers and multipliers of the virus, serving
as a source of the virus for uninfected mosquitoes. In addition, the sensitivity of recov-
ery rate in both primary and secondary infection humans indicates that early detection
and access to proper medical care lowers fatality rates due to no specific treatment for
dengue/severe dengue [55].

The appropriate values of model parameters relevant to dengue transmission dynamics
in Thailand are used to investigate the effect of cross immunity and nonlinear incidence
rate on the transmission of dengue and reinfection. The study results reveal that the cross
immunity affects reinfection of dengue transmission. These study results suggest that in-
creasing immunity to people who have previously had a dengue infection is the best way
to prevent dengue, which is in line with the developing dengue vaccine [56], including the
manufacturer recommendation that the vaccine only be used in people who have previ-
ously had a dengue infection, as outcomes may be worsened in those who have not been
previously infected [57].

Further, the results are shown that the nonlinear incidence rates αH and αV affect ex-
change of the stabilities of the coexistence primary and secondary equilibria. The study
results verify that increasing the effective level of αH would decrease the numbers of the
infected humans in secondary infection and infected mosquitoes and they would finally
die out. On the other hand, increasing the effective level of αV leads to elimination of the
infected humans in secondary infection but it does not eliminate the number of infected
mosquitoes, which may induce the risk of reinfection dengue in these populations. In ad-
dition, increasing both the effective levels of αH and αV shall eliminate both the infected
humans in secondary infection and infected mosquitoes. Therefore, these study results
suggest that the best way of dengue prevention and control should be the effective vector
control measures and personal protection, especially boosting immunity should be pro-
vided to people who have previously had a dengue infection.

In summary, the multi-serotype dengue model considered here is refined to incorpo-
rate cross immunity between serotypes and nonlinear incidence rate. These findings will
impact strategies for designing dengue vaccine studies and future multi-strain modeling
efforts in order to understand the evolutionary pressures in multi-strain disease systems
which will be the future work.

Appendix: Proof of Theorem 3.1

Proof Consider the Lyapunov function for model (2.4)–(2.5)

F = h1(EH1 + EH21) + h2(IH1 + IH21) + h3(EH2 + EH12) + h4(IH2 + IH12)

+ h5EV 1 + h6IV 1 + h7EV 2 + h8IV 2,
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where

h1 = ΠV bβV 1(ηH1K3 + σ1)σV 1γ1, h2 = ΠV bβV 1σV 1K1γ1,

h3 = ΠV bβV 2(ηH2K4 + σ2)σV 2γ2,

h4 = ΠV bβV 2σV 2K2γ2, h5 = μV K1K3σV 1γ1R2
n1, h6 = μV K1K3K5γ1R2

n1,

h7 = μV K2K4σV 2γ2R2
n2, h8 = μV K2K4K6γ2R2

n2.

The derivative of F along the solution of system (2.4)–(2.5) is given by

dF (t)
dt

= ΠV bβV 1(ηH1K3 + σ1)σV 1γ1

[
bβ1IV 1

1 + αV 1IV 1
SH – K1EH1

]

+ ΠV bβV 1σV 1K1γ1[σ1EH1 – K3IH1]

+ ΠV bβV 2(ηH2K4 + σ2)σV 2γ2

[
λ2bβ2IV 2

1 + αV 2IV 2
RH1 – K2EH12

]

+ ΠV bβV 2σV 2K2γ2[σ2EH12 – K4IH12]

+ ΠV bβV 2(ηH2K4 + σ2)σV 2γ2

[
bβ2IV 2

1 + αV 2IV 2
SH – K2EH2

]

+ ΠV bβV 2σV 2K2γ2[σ2EH2 – K4IH2]

+ ΠV bβV 1(ηH1K3 + σ1)σV 1γ1

[
λ1bβ1IV 1

1 + αV 1IV 1
RH2 – K1EH21

]

+ ΠV bβV 1σV 1K1γ1[σ1EH21 – K3IH21]

+ μV K1K3σV 1γ1Rn
1

[
bβV 1(ηH1(EH1 + EH21) + IH1 + IH21)

1 + αH1(IH1 + IH21)
SV – K5EV 1

]

+ μV K1K3K5γ1Rn
1[σV 1EV 1 – μV IV 1]

+ μV K2K4σV 2γ2, Rn
2

[
bβV 2(ηH2(EH2 + EH12) + IH2 + IH12)

1 + αH2(IH2 + IH12)
SV – K6EV 2

]

+ μV K2K4K6γ2Rn
2[σV 2EV 2 – μV IV 2]

≤ ΠV bβV 1σV 1ηH1K1K3γ1
[
R2

n1 – 1
]
EH1 + ΠV bβV 1σV 1K1K3γ1

[
R2

n1 – 1
]
IH1

+ ΠV bβV 2σV 2ηH2K2K4γ2
[
R2

n2 – 1
]
EH12 + ΠV bβV 2σV 2K2K4γ2

[
R2

n2 – 1
]
IH12

+ ΠV bβV 2σV 2ηH2K2K4γ2
[
R2

n2 – 1
]
EH2 + ΠV bβV 2σV 2K2K4γ2

[
R2

n2 – 1
]
IH2

+ ΠV bβV 1σV 1ηH1K1K3γ1
[
R2

n1 – 1
]
EH21 + ΠV bβV 1σV 1K1K3γ1

[
R2

n1 – 1
]
IH21

+ μ2
V K1K3K5γ1R2

n1
[
R2

n1 – 1
]
IV 1 + μ2

V K2K4K6γ2R2
n2

[
R2

n2 – 1
]
IV 2

= ΠV bβV 1σV 1K1K3γ1
[
ηH1(EH1 + EH21) + IH1 + IH21

][
R2

n1 – 1
]

+ ΠV bβV 2σV 2K2K4γ2
[
ηH2(EH2 + EH12) + IH2 + IH12

][
R2

n2 – 1
]

+ μ2
V K1K3K5γ1R2

n1
[
R2

n1 – 1
]
IV 1 + μ2

V K2K4K6γ2R2
n2

[
R2

n2 – 1
]
IV 2.

It is obvious that dF (t)
dt < 0 whenever Rn

0 = max{Rn1, Rn2} < 1 and dF (t)
dt = 0 if and only if

EH1 = IH1 = EH12 = IH12 = EH2 = IH2 = EH21 = IH21 = IV 1 = IV 2 = 0. This indicates that the
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maximum invariant set in {(SH , EH1, IH1, RH1, EH12, IH12, EH2, IH2, RH2, EH21, IH21, RH22, SV ,
EV 1, IV 1, EV 2, IV 2) ∈ Ω : dF (t)

dt = 0} is the singleton Po
n. Hence, F is a Lyapunov function in

Ω . Thus, it follows from LaSalle’s invariance principle [58] that

(
EH1(t), IH1(t), EH12(t), IH12(t), EH2(t), IH2(t), EH21(t), IH21(t)

) → (0, 0, 0, 0, 0, 0, 0, 0)

as t → ∞.
Substituting EH1 = IH1 = EH12 = IH12 = EH2 = IH2 = EH21 = IH21 = IV 1 = IV 2 = 0 into the

first and the thirteenth of model (2.4)–(2.5) gives SH (t) → S∗
H and SV (t) → S∗

V as t → ∞.
Therefore, every solution of multi-serotype dengue model (2.4)–(2.5) approaches the DFE
(Po

n), as t → ∞ for Rn
0 = max{Rn1, Rn2} < 1, so that Po

n is GAS in Ω if Rn
0 = max{Rn1, Rn2} <

1. �
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