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1 Introduction

In the past three decades, fractional differential equations received much attention. The
growing interest in the subject is due to its extensive applications in diverse fields such
as physics, fluid mechanics, viscoelasticity, heat conduction in materials with memory;,
chemistry and engineering. Much of the work is devoted to the existence and uniqueness
of solutions for fractional differential equations; see, for example, Kilbas et al. [10], Miller
and Ross [13], Podlubny [14], Zhou [22] and [1, 5, 19, 21, 23, 24] and the references cited
therein. Since Hilfer [9] proposed the generalized Riemann—-Liouville fractional derivative
(Hilfer fractional derivative), there has been shown some interest in studying evolution
equations involving Hilfer fractional derivatives (see [2, 4, 7, 8, 18, 20]).

Recently, the stability of fractional-order systems has been discussed by several authors.
Abbas et al. [2] investigated the Ulam stability for Hilfer fractional differential inclusions
via the weakly Picard operators theory. Chen et al. [6] established the global attractivity
for nonlinear fractional differential equations. Losada, et al. [11] studied the attractivity of
solutions for a class of multi-term fractional functional differential equations. Rajivgan-
thi, Rihan et al. [15-17] studied the stability of a fractional-order prey—predator system.
Moreover, stochastic perturbation is unavoidable in nature and sometimes useful in re-
search, for example, the existence of stochastic perturbation in the mathematical model
has been found to be quite effective in preventing the explosion of the population. Hence,
it is important and necessary to consider stochastic perturbation into the investigation
of fractional differential equations (see [3, 12]. However, it seems that there is less litera-
ture related to the stability of Hilfer fractional stochastic evolution equations. Therefore,
the attractivity of solutions of Hilfer fractional stochastic evolution equations might be a
fascinating and useful problem.
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In this work, we study the attractivity of solutions for the following Hilfer fractional

stochastic evolution equations:

t>0,

Dy x(t) = Ax(t) + f(t,x(t)) + o (£, 2() 22, w1

I(()l+ WA (0) = xo,

where Dgﬂ’ﬂ denotes the Hilfer fractional derivative of order x and type g which will be
given in next section, % <pm<1,0< B <1, A is the infinitesimal generator of a strongly
continuous semigroup S(¢), (¢ > 0) on a separable Hilbert space X with inner product (-),
and norm || - ||. Let {w(£)};>0 denote a K-valued Wiener process with a finite trace nuclear
covariance operator Q > 0 defined on the filtered complete probability space (£2, F, P).
The functions f, o are given functions satisfying some appropriate assumptions. xy is an
element of the Hilbert space L5(£2, X) which will be specified later.

The objective of this paper is to discuss the attractivity of solutions for Cauchy problem
(1.1). In fact, we establish sufficient conditions for the global attractivity of mild solutions
for system (1.1) in cases that semigroup associated with A is compact. The obtained re-
sults essentially reveal certain characteristics of solutions for Hilfer fractional evolution
equations, in contrast to integer-order evolution equations.

The rest of this paper is organized as follows. Section 2 contains some basic notations
and essential preliminary results. In Sect. 3, we obtain alternative sufficient conditions
for the attractivity of fractional stochastic evolution equations. Some conclusions are pre-

sented in Sect. 4.

2 Preliminaries
In this section, we provide some basic definitions, notations, lemmas, properties of semi-

group theory and fractional calculus which are used throughout this paper.

Definition 2.1 ([10]) The fractional integral of order « with the lower limit O for a func-
tion f is defined as

« f)
I°f(t) = T )/ (t—s)l"‘ds’ t>0,a>0,

provided the right side is pointwise defined on [0, 00), where I'(-) is the gamma function.

Definition 2.2 ([10]) The left-sided Riemann—Liouville fractional-order derivative of or-

der o with the low limit 0 for a function f : [0, +o0) — R is defined as

A O

Lo _
Dre) = IF'n—a)dt J, (t—s)2tl-"

ds, t>0n-1l<a<n.

Definition 2.3 ([10]) The left-sided Caputo derivative of order « € (n—1,n), n € Z* for a
function f : [a, +00) — R is defined by

CD"‘f(t)— Toio a)/ _S)ii)lnds, t>an—-1l<a<n.



Yang et al. Advances in Difference Equations (2020) 2020:130 Page 3 of 22

Definition 2.4 ([9]; Hilfer fractional derivative) The left-sided Hilfer fractional derivative
of order 0 < u <1 and 0 < B8 <1 of the function f(¢) is defined as

a

d
Dglﬂf(t) _ (IEEI—M)D(I({:M)(I*IS)JC))(t), where D := E

Lemma 2.1 ([9])
(i) When B=0,0<pu <1 anda =0, the Hilfer fractional derivative reduces to the
classical Riemann—Liouville fractional derivative:

DIYf(t) —IOJ‘f(t) =L Dy f(2).

(i) For B=1,0<u <1 and a =0, the Hilfer fractional derivative becomes the classical

Caputo fractional derivative:

d

prACKS Dy f(2).

Dy f(®) = 1"
Lemma 2.2 ([10]) Foro €(0,1] and 0 <a < b, we have |a® — b° | < (b —a)°.
For convenience, let v = 8 + u — Bu, by a simple calculation, we show that 0 < v < 1.

Lemma 2.3 The Cauchy problem (1.1) is equivalent to the integral equation

X0 tv—l
F(ﬁ(l — )+ 1)

/(t st Ax(s +f(s,x(s )]

x(t) =

T (u)

+ ) /0 (t-9)""o(s,x(s)) dols), t>0. (2.1)

Proof We omit it and refer the reader to [22].

To define a mild solution of system (1.1), we use the Wright function M, (@) defined by

o (G
M = AN ~ra 1, )
1(0) ;(n—l)l"(l—,un) 0<pu<1,0eC

and [ 07 M,,(0)d6 = 54, for 6 > 0.

Denote by L,(£2, X) the collection of all strongly-measurable, square-integrable, and X -
valued random variables, which is a Banach space equipped with the norm ||x(-)|ly(2,x) =
(Elx(-, )| )2 where the expectation E is defined by E(x) = [, #(w)dP. An important
subspace of Ly(£2,X) is LY(2,X) = {x € Ly(£2,X),x is Fo- measurable}. Let C((0, +00),
L,(£2,X)) be the Banach space of all continuous maps from (0,+00) into L,(£2,X)
with (|2 c(0,+00),L0(2,X) = (supte(o,oo)Elx(t)lz)% < 00, for each x € C((0, +00),L,(£2,X)). Let
Co((0,00),Ly(£2,X)) = {x € C((0,00),L>(£2,X)) : lim,_, o0 E|x(£)|> = 0} be endowed with
the norm ||x||o = (supte(o,oo)Elx(t)IZ)% < 00. Obviously, Cy((0,00),L(£2,X)) is a Banach
space. |
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Lemma 2.4 By a mild solution of system (1.1) we mean the F;-adapted stochastic progress
x:(0,+00) — Ly(82, H) that satisfies

x(t) = S, p(E)xo + /: T,(t- s)f(s,x(s)) ds + /Ot T,(t-s)o (s,x(s)) dw(s), t>0, (2.2)

where T, (£) = " P,(£), P (t) = [5° wOM,,(6)S(t"0) dO, and S, 5(t) = 1LV T, ().
Lemma 2.5 ([10]) Ifa >0 and b >0, then

ety T@I®) 4
‘/O(t—S) S dS— mta . (23)

To formulate some essential propositions, we introduce the assumption:

(Ho) S(2) is continuous in the uniform operator topology for ¢ > 0, and {S(¢)}:>0 is uni-
formly bounded, i.e., there exists M > 1 such that sup,g , ) IS()| < M.

Remark 2.1 ([7]) Under the assumption (Hy), P, (¢) is continuous in the uniform operator

topology for ¢ > 0.

Remark2.2 ([22]) Under the assumption (Hy), for any fixed ¢ > 0, {T,(t)}s>0 and {S,, 5 (t) } >0
are linear operators, and, for any x € X,

-1 tv—l

M
llll, HSM,,g(t)xH = m”x”,

MtH
” Tﬂ(t)x” = F(H)

wherev =8+ u - Bu.

Remark 2.3 ([7]) Under the assumption (Hyo), {7,.(t)}ss0 and {S,, g(£)}s0 are strongly con-
tinuous, that is, for any x € X, and 0 < ¢’ < ¢ < b, we have

1T (8)x = T, (¢")x] = 0 and [S,5(¢)x=Sus(t)x] =0, ast”—¢.
We also need the following generalization of the Ascoli—Arzela theorem.

Lemma 2.6 The set H C Cy((0,00),X) is relatively compact if and only if the following
conditions hold.:
(i) for any b > 0, the function in H is equicontinuous on [0, b];
(ii) foranyt € [0,00), H(t) = {x(¢) : x € H} is relatively compact in X
(iti) limy oo |x(2)| = O uniformly for x € H.

Theorem 2.1 ([5]) Let S be a nonempty, closed, convex and bounded subset of the Banach
space X and let A: X — X and B: S — X be two operators such that

(a) A is a contraction with constant L < 1,

(b) B is continuous, BS resides in a compact subset of X,

(c) [x=Ax+By,ye Sl =x€S.
Then the operator equation Ax + Bx = x has a solution in S.
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3 Main results
In this section, we establish the attractivity of solutions for system (1.1).
Since T, () = t*"1P,(¢), (2.2) takes the form

x(t) = Sp,p(H)xo + f t(t =)7L, (¢ = 5)f (s,x(s)) ds
0
+ /t(t - s)”_lp,t(t —8)o (s,x(s)) dw(s), t>0. (3.1)
0

In order to establish the attractivity of solutions for system (1.1), we need the following
assumptions:

(Hy) S(¢) is a compact operator for each ¢ > 0.

(Hp) f(¢,x(2)) and o (¢,%(¢)) are Lebesgue measurable with respect to ¢ on (0, 00),
and f(¢,x(2)), o (¢,x(2)) are continuous with respect to x on C((0, 00), Lo(£2, X)).

(H3) There exists a constant 1 € (%, w) such that

2
- dt < 00, forall i < oo.

h ) h
/ E[f(t,x(t)) | 2T dt < 00, / E|a (t,x(t))
0 0

(Hy) E|f(t,x)]?> < Lt™, Elo(t,x)|> < Lt™" for t € (0,00), L > 0 and x € C((0,00),
Ly($2,X)), where 2u — 1 < p <min{1,2u + 1 - 2v}.

By a simple calculation, we can infer that ¢ € (—1,0) when ¢ = ;‘_;jl .
For any x € C((0,00), L5(£2, X)), we define an operator F as
(Ex)(t) = (Fo)(t) + (Fax)(2)
= Sup(t)xo + /0 t(t — )P, (t — 5)f (s,%(s)) ds
+ /0 t(t —$)"P, (¢ 5)0 (5,%(5)) da(s), t>0, (3.2)
where
(F1x)(8) = S, p(t)x0, >0, (3.3)
and
(Fax)(t) = fo (- sy $)f (5,x(s)) ds
+ /O t(t - )P, (t - $)o (s,x(5)) dw(s), ¢>0. (3.4)

Observe that x is a mild solution of (1.1) if and only there exists a fixed point x* such that
the operator equation x* = Fx* = F1x* + Fox* holds for ¢ > 0.

Lemma 3.1 Assume that (Ho) and (Hy)—(Hy) hold. Then the operator F, is contin-
uous and for any b > 0, F,S; is equicontinuous on [0,b), where Dy = {y(t) | y(t) €
C((0,00),L2(2, X)), Ely@®)|* < £ fort > T1}, 8§ = 2(1 + n — 2u) and T satisfies the in-
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M2 |x)? M2L2Ir(1-n)I(2u-1
. | f_l . ( mI (2u )( TQ)T @+n-2p) <1. (35)
2B -p)+up) () (2 —n)

Proof Obviously, D; is a nonempty bounded closed and convex subset of Cy((0, 00),
Ly($2,X)). The proof will be completed in three steps.
Step 1. F, maps D into itself for £ > T;.

For any ¢ > 0, from (H4) and Lemma 2.5, we obtain

2
E|Fyx||* < 2E

/t(t - s)“_IP,L(t - s)f(s,x(s)) ds
0

2

+ ZEH ‘/.t(t — )P, (¢ - $)o (s,%(s)) dew(s)

2u-2
§2<F( )) /(t s)H= E|[f(sxs))|| ds

+2TrQ<F( )> /(t §)2H- 2E||G(S,x(s))|| s

52(1{\? )) (1+TrQ)/ (¢ —5)** 25 ds

- ML’I(1-n)IQ2u-1)
- I2(u)I (2 —n)

(1 + TrQ)e+n=2m),

Note that the above inequity is restricted to the integrability of s™", which is indeed true
forn<1.
For ¢ > T}, taking into account the fact that n > 2 — 1 and inequality (3.5), we infer that

MAPT(1-n) I (2u—-1)
r2w)rew-mn)
ML’ (1 - (2u-1)
- I (wrQp-mn)

(1 + TrQ)e2n=2

1+ TrQ T, 20 < .

Then, for ¢t > T}, we have

M2 (1-n)F(2u—-1)
r>(wW)rQep-n)

< 3 (en-2p)

E|F2y(t)}2 = [2 1+ TrQ)té(“"ZW]t%(“nM

Thus F,D; C D, for t > T;.

Step 2. F, is continuous.

For any y,(t),y(t) € D1, m = 1,2,... with lim, .« Ely.({t) — y®)|*> = 0, we get
1im,,, 00 E|ym(®)1? = Ey(£)1? and lim,,_ o0 E|f (&, ¥ (£))|* = E|f (¢, y(¢))|? for ¢ > T;. By direct

1
computation, we infer that (¢ — 5)**~2 € L>%41 for t >0 and u; € (3, 1).

Page 6 of 22
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Applying Holder’s inequality, we have
2
E|Fyyu(t) - Fy(t)|

<2 /0 (t =% |t = )| *E|f (5, ym(5)) —f (5,7(5))|” ds

+21rQ f =92 = )l (51n(9) o (5,3 s
= (Nu)) / (6= 5P (Elf (s,3m(9) =/ (5.7(5)) ) ds

+ 2TrQ<F( )> / (t - 5)2“‘2(E|0(s,ym(s)) - a(s,y(s)) |2) ds

1+c )(2-2441) t 2 2u1-1
- (m)) T+ o7 ( [ 15 m9) =509 5 "“)

£1+0(2-211) 2p1-1
F(M)) (14 )2 </ ia S’ym(s) s, y(s))ihq I ds)

+2TrQ(

£(1+)2-211) o
- (rw)) T L W GynO) =/ (y0)]

I
L2n1-1

1+ ¢)22m

1+c (2-2p1)
e ) T o () = (30 |y =0
as m — o0,

which implies that F, is continuous.
Step 3. F»D; is equicontinuous.
Let & > 0 be given. Since lim,_, o, t-1*7-2) = 0, there exists a T’ > T} such that for t > T

ML’ (1-) I 2u-1)(1 + TrQ)

£
r2(uw)ru-mn) ’

(1+n-2p)

< =
Let Ty <t <t" <T,then
E|Fay(¢) - Fay(¢) [

/0 (t” - S)M_IP” (t” - s)f(s,y(s)) ds — /(; (t’ - s)”_lPM (t’ - s)f(s,y(s)) ds

2
=2E

+2E /Ot (¢ - s)ll_lPu (t” - S)O (50’(5)) da(s)

2

_ /0 (¢ - S)M_IP“ (¢ =s)o (s, 7(s)) deo(s)

/

§4At (t/_S)ZH72|Pﬂ(t/—S)|2Elf(8,y(s))|2ds
+4/t (t// 5)211«—2|P ( )|2E[f(5,y(5))|2ds

+4TrQ/ - 2“ 2 t —s)| E| (s,y(s))| ds

Page 7 of 22
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t”
+4T7Q / (¢ =) (P (¢ = 5)E|o (s,y(5)) | ds
0

272 v’ v
<4——(1+ Tr )|:/ ¢ s)H g ds+/ ¢ — )2 ds:|
Fz(/t)( Q 0 ( ) 0 ( )
M2 (1-n)(2u—-1)

I () (2 —n)

1+ TrQ) (t”_um_z“) + t/_(lm_z")) <e.

Moreover, for 0 < ¢’ < t” < Ty, by using Holder’s inequality and Remark 2.3, we have
, 2
E|Eyy(¢") - Exy(t)|

/0 (¢ - s)’klP,L (t" = s)f (s,7(s)) ds — /0 (¢ - S)WIPM (¢ =s)f(s,x(s)) ds

2
<2E

+2E /Ot (¢ - s)ll_lPu (" =s)a (s,5(5)) deo(s)

2

_ /l (¢ - S)M_IP,L (£ =s)o (s, 7(s)) deo(s)
0

2

<o [ (=8B (¢ =) (5,9(6)) ds

¢ 2
+6E f (t” - s)yflPM (t” - s)o (s,y(s)) daw(s)

2

+6E /0 f’[(t” ) T (¢ =) P (= 9)f (5, 9(5)) dis

2

vt [ 15 (¢ =5 Bt~ 5)o (509 ot
0

2

+6E /: (¢ - s)ﬁk1 [Pu(t" —s) = Pu(t —5)]f (s, ¥(5)) ds

2

o] [R5 Bule -] (500 dots
<6 [ (- a9 PElfs 00 o
161 [ (- (¢ ) Bl s
6 [ e ) PR ) Bl o)
v61Q [ 19 - (¢ PRl -9 Elo 5.0
06 [ Bl =) Pl ) PElf 0

t/
+6TrQ f (t” - s)zlk2 |Pu (¢ - s) -P, (t” - s) |2E|0 (S,y(s)) ‘2 ds
0

6
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where

L :/:[ (t//_S)2M_2|Pﬂ(t”—S)|2Elf(S,y(S))|2dS

2 ¢ auez \ 2211 ¢ L 2u1-1
(i ([ o) ([ )™

t//
B=1Q [ (5Bl ) Elo 506 s
t/

M 2 ¢! 2-2 2-2u1 t’ 1 2p1-1
= () 7o € =975) ([ leepra)
2 " n-1 / u-12 " 2 2
= 1= = =) Pl =) PElf(s.00) s
M 2

1 A+0@=2111)  n(1+0)2=2u1) (1+9)2-211)
< t/ H1) _ t// M1 + t// _ t/ M1
(F(M)> (1+C)(2—2M1)[ ( ) ]

t 1 2pu1-1
X </0 [f(s,y(s))| 1 ds) ,

t/
L= TrQ/ ‘t” —s o (t/ —s)’klyz}P,L(t" —s)‘zE‘o(s,y(s))yzds
0

M\’ 1 W+0@-211) _ r(1+0@-2111) (1+0@2-2u1)
< T t/ +C 1 _t// +C 175} t// _t/ 1
: (rw) i ron =zl ) ]
v L\l
X </ Elo (s,5(5))| 71T ds) ,
0
2 1 2p-2 / " 2 2
Is = (t —s) |Pu(t —s)—Pﬂ(t —s)| E[f(s,y(s))| ds
0
” ’ 2 2 ” 242 2
< [Pu(t’ =s) = Pu(t' -] (=) E[f(s,5)) " s,
t/
Is = TrQ/ (¢ —s)2“_2|PM (£ =s) =P (" —s)|2E|o(s,y(s))|2ds
0

t/
< TrQ|PM (t” - s) -P, (t’ - s) |2 /0 (t” - 5)2H72EH o (s,y(s)) H % ds.

By a standard calculation, we have

M? (¢ - t/)(1+c)(2—2p.1)

v’ 1 2p1-1
L < Elf(s,y(s))|>1 T ds —0, ast’'-t —0.
T e (/ daadl )

In a similar manner, one can show that I, — Oas ¢’ —t — 0. Moveover, from Lemma 2.2
and the fact that 1 + ¢ € (0, 1), it follows that I5,I, — 0 as t” —t' — 0. As for I5, I, by the

strong continuity of S(¢), (¢ > 0), we can infer that Is,/ — Oas " - ¢ — 0.

On the other hand, if T} <t < T <" andt' -t — 0,thent’" — T and ¢’ — T. Thus

one can easily get

E|Eyy(¢") - Eyy(¢)|” < 2E|Fay(¢") — Ey(T)|” + 2E| Exy(T) - Eyy(¢)

— 0, ast'—t —0.

Page 9 of 22
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Lemma 3.2 Suppose the assumptions (Ho), (Hy) and (Hy) are satisfied, then a solution of
(1.1) is in Dy for t > T.

Proof Tt is clear that x(¢) is a fixed point of L,(£2, X) if and only if it is a solution of system
(1.1). To prove this assertion, we only need to show that, for each fixed y € D; and for
Va € C((0,00),L2($2, X)), x = Fix + Fy = x € D; holds. In fact, if x = Fix + F,y, according
to (Hs), we can obtain

Elx(0)|* < E|Fix(t) + Fyy(®)[*

M ? 2v-2 2
<31 o) B

+ B/t(t—s)z"2|P,L(t—s)}zEV(s,y(s))|2ds
0

+ 3TrQ/t(t - )P, (- s)]zE‘o(S,y(s)) |2ds
0

M ? 20-2 2
<)

ML \* t -
+3<m> (1+TrQ)/O (t—s)*""s"ds
M 2 20-2 2
=3(——— ) »%F
3(F(5(1—M)+M)> o
ML’ (1-n)I"(2pn —1)
2w -n)

+3(1 + TrQ) g =2

For ¢t > T}, from inequality (3.5) and 0 < 2j¢ — 1 < 1, it follows that

M Y i MPPTA=mIRr=1) 10
3(F(ﬂ(1—u)+u)) Bl 30+ T - '
M 2 1 2
Sg(r(ﬁ(l—mw) i Elol

ML’ (1-n)IQ2u-1)

—1(1en-2p)
() (2p —n) !

+3(1+ TrQ)

<1

In addition, since n < min{1,2u + 1 —2v} and § = %(1 +n—2u), we can deducev —1-6 —
(2v —2) > 0, then it follows that

M 2
E|x(t)|2 < 3(m) tzu_2E|x0|2
ML (1-n)I(2u—1)
r2(wWrew-n)

M ? -1 2
<3| (g em) ¢ 15

ML’ (1 - (2u-1)
I2(u) I (2m —n)

(1 + TrQ)¢1+n-21)

1+ Tr())t‘%‘“"‘zﬂ)]t“S



Yang et al. Advances in Difference Equations (2020) 2020:130

<t
which implies that x(¢) € D; for t > Tj. O

Lemma 3.3 Assume that (H,)—(H3) hold. Then the set V(t) = {(Fax)(t) : x € D1} is rela-
tively compact in L,($2,X) for any t € (0,00).

Proof Define Fy’x as
(F*5)(0

t—A 00
= S(1"0) / / HOM, (0)S((t = 5)" 0 — 17 0)(t — )"~ (s,%(s)) 4 ds
0 8
t—A 00
+8(1"9) / / HOM,,(0)S((£ - 5)0 = 110)(t - )" o (s,x(5)) dO deo(s).
0 8

From the compactness of S(A*0), (A*6 > 0), it is easy to see that, for VA € (0,£) and V§ > 0,
the set V*%(¢) = {(F;‘ *x)(¢),x € Dy} is relatively compact in L,(§2, X). Then we obtain

E|E>x(t) - Y x(0)|°

t po
<E / / no(t— s)“’lMﬂ (G)S((t - s)"Q)f(s,x(s)) do ds
o Jo

+ /t /00 uo(t - s)”_lMM(Q)S((t - s)“@)f(s,x(s)) do ds
o Js

- / - / " L0 = 9 M (O)S((¢ - 9)0)f (5,%(s)) db di
0o Js

t pé

+ / / no (£ —s)* " M, (0)S((£ —5)0) 0 (s,%(5)) dO dew(s)
o Jo

+ /t /00 uo(t— s)“_lMM(Q)S((t - s)“@)a (s,x(s)) db dw(s)
o Js

2

_ / - / " L0 = 9 ML O)S((¢ - 9)6)0 () d deo(s)
0 )

2

t s
<4E f / uo(t - s)“_lMﬂ(G)S((t - s)“@)f(s,x(s)) do ds
o Jo

2
+4E

/t /00 uo(t— s)”_lMM(G)S((t - s)“@)f(s,x(s)) do ds
t-2 Js

2

t s
+4TrQE /0 /(; no(t - s)"_lM,L (9)S((t - s)“@)a (s,x(s)) do ds

2
+4TrQE

t [oe]
/ / no(t— s)"_lMM (0)5((t - s)"@)a (s,x(s)) de ds
-1 Js
0 1+ (2-2411) t 1 2p1-1
<4u'M m (/(; Elf(S,y(S)) 2u1-1 dS>

Y e ot L\l
+ 4 M TrQ——7M78 — Elo(s,y(s))|*11 ds
H Q(1+C)2-2u1 (/0 | (s:( ))| )

2

)
f OM,,(0) do
0

2

8
/ OM,,(0)d6
0

Page 11 of 22
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A 1+9(2-2u1)

t 1
+ 4M2M2 m </t_)\ EV(S,y(S))

1 2u1-1
T
" dﬁ 21+ p)

0 o A (1+0)(2-211) t 1 2p1-1
- 2u1-1
+4pu M TI‘Q(1 o (/t_)LE|G(s,y(s)) ) ds)

1
21+ p)

—-0, asA— 0,6 —>0.

Therefore, there do exist relatively compact sets arbitrarily close to the set {V(¢),¢ > 0}.
Thus we deduce that the set {V(¢), ¢ > 0} is also relatively compact in L,(£2, X).

Hence, {F>x,x € D1} is a relatively compact set in L,(£2, X) by the Arzola—Ascoli theo-
rem. As a consequence of Lemmas 3.1-3.3 and Theorem 2.1, there exists a y € D; such
that y = F1y + F,y, that is, H has a fixed point in D; which is a solution of system (1.1) for
t>1T. O

Now, we are well prepared to present our first attractivity result for system (1.1).

Theorem 3.1 Suppose that assumptions (Hy)—(Hy) hold. Then the zero solution of system
(1.1) is globally attractive.

Proof From Lemmas 3.1-3.3 and the properties of Dy, for ¢ > T, we know that the solu-
tion of (1.1) does exist which is still in D;. Moreover, all functions in D; tend to 0 as £ — o©.

Therefore the solution of system (1.1) tends to zero as ¢ — oco. The proof is completed. [

To give our second attractivity result, we require the following hypothesis:
(Hs) E|f(t,x)|> < LM E|x(t)|?, Elo(t,x)|* < LM E|x(¢)|?, for V¢ € (0,00) and each x €
C((0,00),L5(82,X)), where L > 0,2 — 1 <11 < lt.

Theorem 3.2 Suppose that assumptions (H;)—(Hsz) and (Hs) hold, then the zero solution
of (1.1) is globally attractive.

Proof Set Dy = {y(t) | y(£) € C((0,00), Ly(£2, X)), E|y(t)|* < t°1 for t > T}, where §; = 1 -
1. We choose constant T5 large enough such that the following inequality holds:

M2E|xo]? i, 3M2L2F(1 —)rQ2u-1)

—(14+51-20)
m 2 2w (2 —n) 1+ TVQ)Tz nes <1. (3.6)

One can easily see that operator Fj is contraction. In addition, for each fixed y € D, and
for Vx € Ly(£2,X), x = Fix + Foy = x € D, holds. If x = Fix + F,y, then the application of
(Hs) yields

Elx()|* < E|Fix(t) + By(0)|*

<3($)2t2”_2}5|x0|2+3/t(t—s)2“_2|P (s)’zE[f(s,y(s))‘zds
T\ BA-w) + ) 0 8

+3TrQ/ (t—s)2“_2|P,L(S)|2E|U(S’y(5))|2ds
0

M ’ 2v-2 2
<3 )
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ﬂ ’ ' 2u-2 —n1 2
+3<F(,U«)) (1+TrQ)/0(t—s) s E|y(s)| ds

M ’ 2v-2 2
=g m) ©

ﬂ ’ ' 22 —m 81
+3<F(M)> (1+TrQ)‘/O (t—s)* s ds

M g 2v-2 2
§3<F(ﬁ(1—u)+u)) Rkl

ML’ (1-n -8)T"(2u-1)

1+ TrQ) (I+m+o1-2u) 3.7
Pren-m-s) 7T 37

Since n; < and 8; = 1 — u, we have —i; — 8, > —1, therefore s™1~%1 in (3.7) is integrable.
Furthermore, for ¢ > T5, we have

1+ T}"Q)t_%(“m +81-2u)

( M )2t“-1 . 3M2L2F(1 -m=-8)r2u-1)
r(B—p)+u) I2(u) I (2 —ny —61)

M S
_— | T
§3<F(ﬁ(1—u)+u)) 2

M2l - -8 (2u—-1) _
T rrn—m ey L Tn

<1 (3.8)

%(1+n1+81—2u)

From inequality (3.6) and v — 1 < §;, we have

2
Elx()|* < 3( > £*2E|xo|*

F(B(L—p)+p)
M’ (1-n -8)I(2u—1)
T2 () (2 =1 = 81)
<

M 2 1 2
_— V2 E
= [3<F<ﬁ<1—m+m) b Ekl

M2l - -8 (2u—-1)
() (2p = - 81)

<t (3.9)

1+ TrQ)t—(Hm +81-241)

1+ TrQ)t(“mz“)]L‘Bl

which implies that x(t) € D, for £ > T,. Moreover, taking (3.6) and (3.9) into account, we
can also get E|F,y(t)|> < t7%1, which implies that F,D, C D, for t > T.

By applying a similar argument to the one used in Lemma 3.1, we can deduce that the
operator F; is continuous and F,D; resides in a compact subset of Ly(£2,X) for t > T».
Using Theorem 2.1 and Krasnoselskii’s theorem, there exists some y € D, such that y =
Fiy + Fyy, that is, F has a fixed point in D, which is indeed a solution of (1.1). Moreover,
it is obvious that all functions in D, tend to 0 as ¢ — 0o, therefore, the solution of (1.1)
tends to zero as t — oo which implies the zero solution of (1.1) is globally attractive. This
completes the proof. d

Corollary 3.1 Suppose that assumptions (H1)—(Hs) hold and that
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(He) EIf(t, () ~f (&, y(O)? < LERE|x(t)—y(8) 2, Elo (&, x(8)) o (6, y ()P < LEE|x(2) -
y(®)|? for t € (0,00) and x(t),y(t) € C((0,00),L1($2,X)), L >0 and 2u —1<ny < 1,
f(t,0)=0,0(0)=0.

Then the zero solution of system (1.1) is globally attractive.

Proof From condition (Hg), we have

2
)

Elf (6,20)|* = E|f (t,x(0)) - f(£,0)]" < L ME|x(¢) - 0| = L ™ E|x(2)

(3.10)

2

Elo (£,x(t))|” = E|o (t,x(®)) = o (¢,0)|" < Lt M E|x(t) - 0|” = Lt ™ E|x(#)|*, (3.11)

which imply that condition (Hs) holds. According to Theorem 3.2, the solution of (1.1) is
global attractive. O

Lemma 3.4 Suppose that assumptions (Hy), (Hy) and (Hy) hold. Then F maps D into D
and F is continuous in D.

Proof Since 0 <2u —1<nand0<v<1,wecan choose a constant & > 0 sufficiently small
suchthat &£ <1-vand& —n+2u—1<0.Let T >0 be sufficiently large such that

M 2
3 TE+2V—2E 2
(F(ﬁ(l —0)+ m) ol

M L’Ir(1 - Q2u-1)
r*(w)r2u-mn)

(1+ TrQ) T~ (+1=21 < 1, (3.12)

Define a set D = {x(t) : x € C((0,00),L2(82, X)), E|x(t)|*> < ¢ for t > T}, we note that D is
a nonempty closed bounded and convex subset of Cy((0, 00), L2($2, X)).

We now show that F maps D into D. For x € D, from (H,), (H,) and (3.12), we can deduce
that

E|(Fx)@®)|°

< 3E[S,,6(6)xo|” + 3E / (- 2 Putts - O Elf (5,566) s
0
+3TrQE / (- 2Pt~ 9 Elo (5:56) [ dots)
0

- (BtE |15 0| + 3¢5 / (6= 92|By (e — ) E]f (5.2(5) [ ds
0

+ 385 TrQ/t(t R VACE s)|2E‘o(s,x(s)) ’2 da)(s)) ts
0
< < 3M2 té+2v—2
TA2(BA - p) + )
ML’ (1-n)I(2u-1)
I2(u)r(2m —n)

, t>T,

| o

1+ TrQ)ts"(“”"Z“)>f§

<t*
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which implies that FD C D. We next shall prove that F is continuous in D by considering
F on two intervals.
Firstly, for £ > T} > T, for each x,, € D, m = 1,2,..., with lim,,_, oo E[x"(£)|? = E|x(¢)|?,

we have
E|Fx,() — Ex(8)|
<2 /0 t(t )72 (e - ) "E|( (5,2(5)) £ (5,2(5)) " ds
+2TrQ fo t(t —$)#72|P, (¢ - )| E| (o (5,4 (s)) — o (s,(5)) | ds
<2 [ (6= 9721t )+ £l 500) ) s
+2T1Q / (=92 |Pu =9 PCE| o (55 6)  + Elo (5:x(9) ) s

ﬂ ’ ' _¢)2n-2n
§4<F(M)> (1+TrQ)[)(t s)** s ds

- M2 (1 - (2u—-1)
- r2(uw)rQ2p-mn)

1+ TrQT; MM <,
Next, for 0 < t < T, we have
E|Fx,(t) - Fx(8)|”
<2 /0 (- sy 1Pt = 9)|"E|(f (5,5 (5)) - £ (5, %(s)) |” ds s
+2TrQ /0 [(t —$)#72|P, (¢ - 9)[E| (o (5, (s)) — o (s, (5)) | ds

2 ¢
<2750 [ =Pl (65 0) £ (o409) P s

M2

+2TrQ 20

/t(t ~ )% 2E| (0 (5,4(5)) - o (s,x(5)) " .
0

Since 1im,,;_, o0 E|f (£, %, (£)) — f (£, 2(£))]? = 0, lim,,,, o0 E|0 (£, %, (£)) — 0 (£, %(£))|?> = 0 as m —
00, it follows from the Lebesgue dominated convergence theorem that E|(Fx,,)(t) —
(Fx)(t)|* — 0 as m — oo. The above arguments lead to the fact that the operator F is

continuous. O

Lemma 3.5 Suppose that assumptions (Hy), (Hy) and (Hy) hold. Then {Fx : x € D} is

equicontinuous and lim;_, o, E|(Fx)(t)|*> = 0 uniformly for x € D.

Proof Since v<1and1+n—-2u>0,there exists a T > T such that, for t > T1,

M ’ 2v-2 2 £
<m> t7"Elxol” < c
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and

MPLPT(1-n)I (2 - 1) ) _ €
2w (2 —n) 6
212
M-L 1;(1 - U)F(ZM - 1) Ter—(l+r]—2u) <.
A (w)rew-n 6

Foranyx € Dand t,t, > Ty, we can deduce that

E|(Fx)(t2) - (Fx)(0)|*

ty
< 6E|S,,p(t2)%0|” + 6E|S,5(t1)x0|” + 6 / (t2 = 82| Py (82 — ) PE|f (5, x(5)) |* ds
0

+6 / " b= sy P, (1 - 5)| E|f (s,(5))|” ds
0
+6TrQ / "o =2 |P,(t - 9| E|o (s, ()| ds
0

670 [ (6916 -9 Bl 5505)
0

M? M?
<6— 15" Elxo* + 6——————11"Elxo|*
I2(B(1—p)+ ) 2B —p)+w)
M2 2
+6F2( )(1+TrQ)f (b — ) 257 ds

272

+61}i/12(L) 1+TrQ)/ (b1 — ) 27 ds

M2 T 2
— )P+ 66— 2V 2F|x |
rrpa-w+w > 0 TR ) T
ML’ (1-n)2u-1)

A (w)r2u—mn)

1+ TrQ[ 7 4 4772,
Furthermore, for 0 < t; < t, < T1, we have
2
E|(Fx)(52) - (Fx)(11)|

< E|(S,p(t2)x0 — S,u,8(t1)x0

51

+ /tz(tz — )P, (ty - s)f(s,x(s)) ds — f (tr—s)" Py (ts - s)f(s,x(s)) ds
0 0

+ /tz (ty — S)H_IPM(tZ —s)o (s,x(s)) dw(s)
0

2

- / (t - s)"’lP,L(tl —s)f(s,x(s)) dw(s)
0

2
= 7|S/t,ﬂ (t2) - Sup (t1)| E|x0|2

+ 7/(:1 [(tz —5)2 2 (- S)zu—Z] |Pu(t2 _5)|2Elf(s,x(5)) ’26{5

+7TrQ ! (tr = ™72 = (ty — ) 2 |Pyu(ta - 9)[E|o (s, %(5)) | ds
0

Page 16 of 22
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+7 f ! (t1 = )72 P, (t2 — 5) — Py(ty — ) E|f (s,%(5)) |” ds
0
C7TQ [t~ P |Bults ) Balts =) Elo (5,309 ds
0

. 7/t2[(t2 9% (1) — %2\ Pty - 5)PE|f (5,4(9)) | ds

t1

+7TrQ /t2 [(tz —8)2H 2 (¢ — 3)2"_2] |P“(t2 —) |2E|a(s,x(s)) |2 ds.

By using the arguments employed in Lemma 3.1, the Lebesgue dominated convergence
theorem and Remark 2.3, we get E|(Fx)(t;) — (Fx)(t1)|> — 0 as t, — t; — 0. Therefore, we
conclude that the family of functions {Fx : x € D} is equicontinuous.
We now verify that lim,_, o, E|(Fx)(£)|> = 0 uniformly for x € D. Indeed, by a standard
calculation, we have
E|(Ex)(®)[*

t 2
< 3E|S,5(t)x| + 3E ’ / (t —s)“ 1P, (t — s)f (s, %(s)) ds
0

2
+3E

/t(t — )P, (t - $)o (5,(5)) dew(s)
0

F(B(1—p)+p)

+3TrQ f t(t_s)z,kz‘ Py(ty - 9)[E|o (s,x(5)) | ds
0

M ? 20-2 2 ML \? ! 2u-2 —
3(m) ol +3(W)) (1+TVQ)fO(t—s)“ s ds

M % a9 MPLAT(1 =) (2u—1)
— ) %
(Fae) Bl 8

M ? 1 2
3[<F(ﬂ(1—u)+u)) v Bkl
M2 (1 - (2u—-1)

2 (w)rQep-mn)

< t_%(l”"z“) — 0, ast— o0.

2 t
53<$) tz”‘2E|x0|2+3/ (t—s)z"‘z]Pu(tz—S)]ZEV(S'x(S))\ZdS
0

IA

(1 + TrQ)t -2

IA
w

IA

a+ TFQ)t%(1+n2u):|t%(l+n2y)

Thus, we deduce that lim,_, o, E[(Fx)(¢)|? = 0 uniformly for x € D. O
We now proceed to our third attractivity result for system (1.1).

Theorem 3.3 Suppose that assumptions (Hy)—(Ha) hold. Then the Cauchy problem (1.1)
admits at least one attractive solution.

Proof In order to verify that x is a mild solution of (1.1) in D, we need to verify that the
operator Fx = x has a fixed point in D. By Lemmas 3.4—3.5, it follows that F: D — D
is continuous and F maps D into itself. Moreover, {Fx : x € D} is equicontinuous and

lim,_, o E|Fx(t)]? = 0 is uniformly valid for x € D. We next show that F is relatively com-
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pact. From the definition of S, (), we have

1(,)34,(17#) TM (t)x()

_ 1 L e
_F(ﬁ(l—M))/o(t §PETHTIT (s)xo dis

t— s)ﬂ(l’“)’ls’“lP# (s)xo ds

Su,ﬂ (t)xO

1 t
F(ﬁ(l—M))fo (

= m /Ot(t—s)ﬂ(lmlwl '/000 HOM,(0)x0 db ds.

For VA € (0,¢) and V§ > 0, we define

(F¥x)(8) = (F1x)(0) + (F) %) (0)

1 t=A 0o
_— _ BU-)-1 -1
mmrw»A (£—s)7 s ﬂﬂﬂl HOM,,(0)x0 db ds

-\ 9]
+ S()J‘G) /0 /5 HOM,, (Q)S((t —s)"0 — A“G)(t - s)“_lf(s,x(s)) do ds

t—A oo
+S(10) /0 /5 oM, (0)S((t - 5)"0 — 1"0)(t - s)"

X o (s,x(s)) do dw(s).

Since {S(£)};-0 is compact, it is easy to see that \_/1’\’5(1,‘) = {(F{\”sx)(t),x € D} is relatively com-
pact for £ > 0. Next, we verify that V,(£) = {(Fyx)(t),x € D} is relatively compact for ¢ > 0.
Observe that

E|(Fi(2) - (F2) ()|

I S APV TR g /5
§4rwu—unﬁ“ UHIS(50) | uoM, )0 do ds

1 ¢ .
_ _ )BA-p)-1 -1
+ rBA-p) ‘/0 (t =)=k S(SMQ)/(; WOM,,(0)xo db ds

[e'e) 2
(t - S)ﬂ(l_“)_ls“_lS(s"O) / WOM,,(0)x0 db ds
s

1 t—A
‘qu—u»A
<2—M E
T r(BA-p)+p)
M
(B —pw)+un)

Mu 2 - ’ s
_ Mu _, 0
S2<F(ﬂ(1—u)+u)) Elxo|*B*(B(1 - 1) u)/o OM,,(0)do

2( Mu 1 >2E|x 2
rA-w+m) ra+w) °

as A, 8 — 07,

2

t s
/0 (t — 5)P-1-Tgn-1 /0 HOM,, (0)x0 db ds

2

t [ee]
+ / (t - s)PU-w-lgn-1 f HOM,,(0)x0 d6 ds
t—A

8

2

2
— 0,

t
/ (t - s)"g(l_“)_ls"“‘1 ds
-2

Page 18 of 22
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which, together with Lemma 3.3 implies that V(£) = {(Fx)(£),x € D} is relatively compact
for t > 0. In view of the foregoing arguments, it follows by Schauder’s fixed point theorem
that system (1.1) has a mild solution x € D and that x(t) tends to zero as ¢ — oo. This
completes the proof. O

To end this section, we now present the last result of our paper.
Theorem 3.4 Suppose that assumptions (H;)—(Hs) and the following assumptions are sat-
isfied:

(H7) There exists a strictly decreasing function A : (0,00) — [0, 00) such that,
forall € C((0,00),L2(82,X)), and t > 0,

E

Sup()xo + /Ot(t - S)“’lPu(t - s)f(s,x(s)) ds

2

+ /t(t - s)"_lPﬂ(t —3s)o (s,x(s)) do(s)| < A(2),
0

and limt—>+oo A(t) =0.
Then the system (1.1) has at least one attractive solution in C((0,00),L,(£2,X)).

Proof Define a set D3 := {u € C((0,00), L5(£2, X)) : E|lu(t)|*> < A(t) for all £ > 0}. We note

that D5 is nonempty and convex. We next verify that Ds is bounded. Indeed, from (Hy),

we have
stlj([))E|u(t)|2 < A(#), t>0forevery u € C((0,00), Ly(£2,X)).
For ¢ > 0, we introduce
(P u)(®) = Sy ()%0 + /0 - )7 IP, (¢ - s)f (s, uls)) ds
+ /Ot(t — )P, (¢ = $)o (s, u(s)) de(s).

Clearly ¥ (D3) C D3 by (H;). We next show continuity of ¥. Let {u,},cn be a sequence
in D3 such that lim,_, 4, = u is uniformly valid on compact subsets of (0,00). By (Hy),
we deduce that A tend to 0 at infinity and A is strictly decreasing. Thus, for an arbitrary
given € > 0, there exists T > 0 such that A(¢) < € for all £ > T. Moreover, by (H,), there
exists §; > 0 such that ||u, — u|c(0,00),L,(2,%)) < 61, Which yields

If (8, ua(6)) = f (£ u(2)) ”C((O,oo),Lz(Q.X)) <6

”‘7 (t’ ”(t)) -0 (t’ V(t)) ” C(O,00)La(2,%) < €

(3.13)

Then there exist N € N and §’ > 0 such that E|u,(t) — u(t)|* < §' is uniformly valid on com-
pact subsets of (0,00) for Vi > N and Vt > 0. Since ||| c(0,00),(2,X)) := (supt>0E|u(t)|2)%,
1
we have |1, — |l c((0,00),L5(2,%)) := (SUP;ag Eltin(£) — u(2)|?)2 for Vt > 0.
Now we prove continuity of ¥ as follows.
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For 0 <t < T, by Holder’s inequality, (H3) and (3.13), we obtain
E|W (u,) — W ()|
t
<2 / (6= P22 Pt = ) PE| (F (5, 10n(9)) — £ (s, u(s)) | s
0

+2 /t( )2 |Pu(t - s)|2E|(o (S, u,,(s)) - o(s, u(s)) |2 ds

< ( r(u> f (¢ = $PU2E|(f (5, 4a(s)) — f (5 u(5)) | ds
(75

+2TrQ ) f (t = $)*2E|(0 (s, un(s)) — o (s, uls)) |2 ds

<o) [[msetas [ Elrtoanto) .o P

+2TrQ(F )/(t 5)2H- st/ E|(o (s, u,,s))—a(s,u(s))|2ds

t -2\ 27241 t 1 2u1-1
= ( ) 1+TrQ< ( _5)22u1) (/ Islzﬂllds) ]
() o

Next, for 0 < T < ¢, using (H7) and the S-invariance of ¥, we have the estimate
E|W (1,)(2) — @ (u)(0)|* < 2E|® (w,)(0)| + 2E|¥ ()(8)|” < 2.A(8) < 2.

This leads to the fact that ¥ is continuous.

As argued in Lemma 3.1, we conclude that ¥ (Ds) is equicontinuous on each compact
interval [0, T] for VT > 0, which establishes the claim.

Now, we claim that ¥ (D) is uniformly bounded. Indeed, by the definition of the set D3
and the fact that A is strictly decreasing, we can infer sup,,. y (p,) sup;. 7 Elu(t)|* < A(T -0).
By (H7), we obtain limy_, o SUp,,cy (p,) Sup, 7 Elu(£)|* = 0. On the other hand, by similar
arguments to Theorem 3.3, we can show that V(¢) = {(¥u)(¢), u € D3} is relatively compact
for t > 0. Consequently, Lemma 2.6 enables us to claim that the family ¥ (D) is relatively
compact in C((0,00), Ly(£2, X)). Thus, from Schauder’s fixed point theorem, it shows that
the operator ¥ has a fixed point in Ds. Hence the system (1.1) has at least one attractive
solution u € Ds. This completes the proof. d

4 Conclusion

In this paper, we have revealed that a certain class of Hilfer fractional stochastic evolution
equations with fast decaying nonlinear term have global attractive solutions, whereas the
integer-order evolution equations do not have such attractivity. Our future work will be
focused on addressing the attractivity for Hilfer fractional stochastic evolution equations

with fractional Brownian motion and Poisson jumps.
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