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Abstract
In this work, we develop a high-order composite time discretization scheme based
on classical collocation and integral deferred correction methods in a backward
semi-Lagrangian framework (BSL) to simulate nonlinear
advection–diffusion–dispersion problems. The third-order backward differentiation
formula and fourth-order finite difference schemes are used in temporal and spatial
discretizations, respectively. Additionally, to evaluate function values at non-grid
points in BSL, the constrained interpolation profile method is used. Several numerical
experiments demonstrate the efficiency of the proposed techniques in terms of
accuracy and computation costs, compare with existing departure traceback
schemes.
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1 Introduction
This study focuses on the advection–diffusion–dispersion equation described as

⎧
⎪⎪⎨

⎪⎪⎩

ut + J u – ν�u – μ∇3u = 0, t > ts, x ∈ Ω ,

u(ts, x) = u0(x), x ∈ Ω ,

u(t, x) = q(t, x), t > ts, x ∈ ∂Ω ,

(1)

where u := u or [u, v]T denotes the solution of (1); ν is a positive kinematic viscosity; μ is
a dispersive coefficient; J := ux or

[ ux uy
vx vy

]
; operator ∇3 denotes third-order partial deriva-

tives or their sum; x := x or [x, y]T ; x and y represent special coordinates in the longitudinal
and transverse directions, respectively; and t denotes time. Moreover, u0(x) and q(t, x) are
the given initial and boundary conditions, and ∂Ω is the boundary of the computational
domain Ω = [xL, xR] or [xL, xR] × [yL, yR].
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Many physical phenomena can be described by the advection–diffusion or advection–
dispersion equations, including various nonlinear time-dependent partial differential
equations (PDEs), such as the Burgers-type and Korteweg–de Vries (KdV) type equations.
In particular, the Burgers-type problems are simple models to describe various physical
problems, such as turbulence flow, approximate theories of shock waves, vorticity trans-
portation, and dispersion in porous media [9, 11, 13]. Many powerful methods to simu-
late Burgers-type problems have been proposed [2, 4, 8, 10, 12, 17, 20–23, 32, 35, 36] and
have drawn research interest to find methodologies for nonlinear time-dependent PDEs
in many fields, among which the characteristic methods are very attractive [14].

As one of the characteristic methods, the semi-Lagrangian method is one of the most
popular numerical methods to simulate flow problems in computational fluid dynamics
[1, 4, 6, 7, 27, 31, 33]. Among them, the backward semi-Lagrangian method (BSL) de-
scribes the movement of particles in the Lagrangian description and resets the positions
of the particles to the Eulerian grid point at each time level to reduce the accumulation
and collision of particles. Moreover, it is well known that BSL exhibits good stability, al-
lowing the use of larger temporal steps than the spatial grid size by solving equations im-
plicitly along characteristic curves of particles in the reverse direction to time evolution
[3, 5, 30, 31]. Therefore, this paper proposes a robust high-order BSL algorithm for solv-
ing nonlinear advection–diffusion–dispersion equations. To do this, we first observe the
abstract model (1) in the Lagrangian description, in which individual fluid particles are
followed through time. Suppose that the position of a particle at time t is described by a
function x∗(t). In both the Lagrangian and the Eulerian descriptions, the velocity of the
particle at time t is satisfied as follows:

dx∗(t)
dt

= u
(
t, x∗(t)

)
. (2)

Then the model equation (1) can be expressed as

D
Dt

u
(
t, x∗(t)

)
= ν�u

(
t, x∗(t)

)
+ μ∇3u

(
t, x∗(t)

)
(3)

about the material derivative. By solving (2) at the same time as (3), we obtain the solution
u of the model equation.

In the conventional BSL, several approximate methods are required to solve (3) simul-
taneously with (2): time and spatial discretization methods for (3), a departure traceback
method for nonlinear ordinary differential equation (2), and an interpolation scheme to
obtain the solution at non-Eulerian grid points. These approximate methods affect the
overall time-to-space accuracy of the BSL. Additionally, a high-order stable temporal dis-
cretization method is critical to provide an accurate numerical approximation for the
model problem, and it potentially allows for a sparser time step size than lower-order
methods. Nevertheless, most current methods focus on developing spatial discretization
schemes, since the strong nonlinearity of (3) is coupled with the unknown solution to (2)
(or the original problem (1)), which is a significant difficulty for BSLs.

The main contributions of this paper are as follows. We propose an adaptable high-order
BSL with good stability to solve nonlinear advection–diffusion–dispersion equations. It is
possible to design a high-order departure traceback method, which simultaneously finds
the departure points for the three previous time steps in the reverse-flow direction. The
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departure traceback method combines the methods of classical collocation and error cor-
rection, which is called the deferred or defect correction in some literature. The proposed
departure traceback method is A-stable, verified by plotting, and determining stability
function limits. Also, we use the third-order backward differentiation formula (BDF3) and
fourth-order finite difference schemes for diffusion–dispersion problem discretization in
the temporal and spatial domains, respectively. Moreover, the constrained interpolation
profile (CIP) method [26] is used to evaluate function values at non-grid points. Several
numerical experiments demonstrate that the proposed scheme provides third-order accu-
racy in both temporal and spatial for nonlinear advection–diffusion or –dispersion prob-
lems. In terms of computational costs, the proposed scheme is more efficient compared
with current methods, including third-order AB (AB3) and fourth-order AM (AM4) [15],
since it is not an iterative approach. The proposed scheme allows a more massive time step,
which has a particularly significant impact on stiffer initial conditions of smaller viscosity.

The remainder of this paper is structured as follows. Section 2 provides temporal and
spatial semi-discretization systems to solve a diffusion–dispersion problem (3). Section 3
designs the departure traceback method to find particle traces along characteristic curves
in the reverse time direction by solving the nonlinear initial value problem (IVP) and dis-
cusses the stability of the proposed method. Section 4 provides several numerical exam-
ples to demonstrate the robustness and adaptability of the proposed scheme as well as the
physical behaviors of Burgers-type equations. Finally, Sect. 5 summarizes and concludes
the paper.

2 Semi-discretization system of diffusion–dispersion problem
This section provides the implementation of the temporal and spatial discretization
method to obtain a semi-discretization system for (3). We find approximate solutions u
and u at t = tm+1 on each spatial grid point by assuming that the approximate values uk

i and
uk

i,j of u(tk , xi) and u(tk , xi,j) for k ≤ m and particle departure points x∗
i,j(tm–κ ), κ = 0, 1, 2,

along the characteristic curve arriving at the grid point at target time t = tm+1 have al-
ready been calculated at all grid points where a finite set of mesh points {xi} or {xi,j},
(i = 1, 2, . . . , Jx, j = 1, 2, . . . , Jy) is equally spaced.

For the two-dimensional (2D) case, we first evaluate (3) at (t, x) = (tm+1, xi,j) and then
apply BDF3 to approximate the material derivative on the left side of (3). Then we obtain
the Helmholtz equation

u(tm+1, xi,j) – ν̄�u(tm+1, xi,j) – μ̄∇3u(tm+1, xi,j) = gm+1
i,j (u) + O

(
h4) (4)

with

gm+1
i,j (u) :=

18u(tm, x∗
i,j(tm)) – 9u(tm–1, x∗

i,j(tm–1)) + 2u(tm–2, x∗
i,j(tm–2))

11
,

where ν̄ = ν 6h
11 and μ̄ = μ 6h

11 for a uniform temporal step size h.
The one-dimensional (1D) Helmholtz equation can be obtained in the same way as the

2D Helmholtz equation.
To obtain a semi-discretization system for (4), we use finite difference weight matrices

((17) and (18)) for diffusion (or Laplace) and dispersion terms in (3), respectively. We set
∇3 = ∂3

∂x3 and ∇3 = ∂3

∂x3 + ∂3

∂y3 for description simplicity and obtain the following systems
depending on the problem dimensionality.
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• 1D problems

LUm+1 = gm+1 + ν̄bm+1
2 + μ̄bm+1

3 , L =
(
Ix – ν̄D̂(2) – μ̄D̂(3)),

Um+1 =
[
um+1

1 , um+1
2 , . . . , um+1

Ĵx

]T ,

gm+1 =
[
gm+1(x1), gm+1(x2), . . . , gm+1(x̂Jx )

]T ,

(5)

where bm+1
2 and bm+1

3 are the vectors induced from the boundary conditions.
• 2D problems

LUm+1 = gm+1(u) + ν̄bm+1
2 + μ̄bm+1

3 , LVm+1 = gm+1(v) + ν̄bm+1
2 + μ̄bm+1

3

L =
(
Iy ⊗ Ix – ν̄

(
Iy ⊗ D̂(2)

x + D̂(2)
y ⊗ Ix

)
– μ̄
(
Iy ⊗ D̂(3)

x + D̂(3)
y ⊗ Ix

))
,

Um+1 =
{

Um+1, V m+1},

Um+1 =
[
um+1

1,1 , um+1
2,1 , . . . , um+1

Ĵy ,1 , um+1
1,2 , . . . , um+1

Ĵy ,2 , . . . , um+1
1,̂Jx

, . . . , um+1
Ĵy ,̂Jx

]T ,

V m+1 =
[
vm+1

1,1 , vm+1
2,1 , . . . , vm+1

Ĵy ,1 , vm+1
1,2 , . . . , vm+1

Ĵy ,2 , . . . , vm+1
1,̂Jx

, . . . , vm+1
Ĵy ,̂Jx

]T ,

gm+1 =
[
gm+1

1,1 , gm+1
2,1 , . . . , gm+1

Ĵy ,1 , gm+1
1,2 , . . . , gm+1

Ĵy ,2 , . . . , gm+1
1,̂Jx

, . . . , gm+1
Ĵy ,̂Jx

]T ,

(6)

where bm+1
2 and bm+1

3 are vectors induced from the boundary conditions; Ix and Iy are
identity matrices of size Ĵx = Jx – 1 and Ĵy = Jy – 1, respectively; and D̂(k)

x and D̂(k)
y are con-

structed from D(k)
x and D(k)

y (k = 2, 3) using interior elements only. (See Appendix A for
more details.)

Approximate values for particle departure points x∗(tm–κ ), (κ = 0, 1, 2) along the char-
acteristic curve arriving at the grid point at target time t = tm+1 are required to obtain
full discretization systems for (5) and (6), which is discussed in Sect. 3. Moreover, since
x∗

i,j(tm–κ ), (κ = 0, 1, 2) may not coincide with the grid points, an appropriate interpolation
scheme is also required.

3 High-order A-stable departure traceback scheme for nonlinear IVP (2)
3.1 Proposed departure traceback scheme
This section develops the proposed third-order composite scheme without iteration to
solve the strongly nonlinear IVP (2) by combining error correction [28, 30] and classical
collocation methods. Let x∗

i,j(t) be the solution for the following IVP:

⎧
⎨

⎩

dx∗
i,j(t)
dt = u(t, x∗

i,j(t)), t ∈ [tm–2, tm+1),

x∗
i,j(tm+1) = xi,j,

(7)

where xi,j is an arbitrary grid point and u is the solution of the model problem (1).
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To find the departure points by solving (2), we first consider the perturbed asymptoti-
cally first-order ordinary differential system

ψ ′
i,j(t) = F

(
t,ψ i,j(t)

)
+ O
(
ψ2

i,j(t)
)
, t ≤ tm+1,

F
(
t,ψ i,j(t)

)
:= Ji,j(t)ψ i,j(t) + wi,j(t), wi,j(t) := u

(
t, yi,j(t)

)
– um

i,j ,

Ji,j(t) :=

[
ux(t, yi,j(t)) uy(t, yi,j(t))
vx(t, yi,j(t)) vy(t, yi,j(t))

]
(8)

with initial value ψ i,j(tm+1) = 02,1, where 0r,s denotes the zero matrix of size r × s, and yi,j(t)
is a qth-order approximating polynomial for x∗

i,j(t) obtained by solving (7) that satisfies

ψ i,j(t) = x∗
i,j(t) – yi,j(t) = O

(
hq+1).

We choose the first-order polygon yi,j defined as

yi,j(t) := xi,j + (t – tm+1)um
i,j , um

i,j =
[
um

i,j , vm
i,j
]T , (9)

which allows the proposed method to attain up to fourth-order accuracy eventually.

Remark 1 To construct higher-order methods, yi,j(t) can be chosen as an explicit second-
order polynomial,

yi,j(t) := xi,j + (t – tm+1)
(
2um

i,j – um–1
i,j
)

+
(t – tm+1)2

2h
(
um

i,j – um–1
i,j
)

+ O
(
h3),

which implies that the proposed method could achieve sixth-order accuracy. To maintain
fourth-order and above temporal accuracy overall, a stable method for fourth-order and
above must be employed rather than BDf3 to discretize the total time derivative.

The proposed method is then completed by developing a method to solve equation (8)
with initial condition ψ i,j(tm+1) = 02,1 on [tm–2, tm+1]. By applying (22) with (23) to (8),

Ψ = ĥ

⎛

⎜
⎝

⎡

⎢
⎣

19
72 – 5

72
1

72
4
9

1
9 0

3
8

3
8

1
8

⎤

⎥
⎦⊗ I2

⎞

⎟
⎠F + ĥ

⎡

⎢
⎣

1
8
1
9
1
8

⎤

⎥
⎦⊗F

(
tm+1,ψ i,j(tm+1)

)
+ O
(
h4), (10)

where Ψ = [[ψm
i,j]T , [ψm–1

i,j ]T , [ψm–2
i,j ]T ]T ; ψm–κ

i,j (κ = 0, 1, 2) is an approximation of ψ i,j(tm–κ );
F := [F (tm,ψ i,j(tm))T ,F (tm–1,ψ i,j(tm–1))T ,F (tm–2,ψ i,j(tm–2))T ]T , ĥ := –3h and I2 is the
identity matrix of size 2. However, since F (tm+1,ψ i,j(tm+1)) contains the unknown solu-
tion u for (1) at time t = tm+1 to be obtained, an approximation tool is required. Therefore,
we use extrapolation to find

Ψ = ĥ

⎛

⎜
⎝

⎡

⎢
⎣

19
72 – 5

72
1

72
4
9

1
9 0

3
8

3
8

1
8

⎤

⎥
⎦⊗ I2

⎞

⎟
⎠F + ĥ

⎡

⎢
⎣

1
8
1
9
1
8

⎤

⎥
⎦⊗ μm+1

p + O
(
h2+p), p = 1, 2, (11)
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where

F
(
tm+1,ψ i,j(tm+1)

)
= μm+1

p + O
(
h2+p),

μm+1
1 := 2Um

i,j – 3Um–1
i,j + Um–2

i,j , μm+1
2 := 3Um

i,j – 6Um–1
i,j + 4Um–2

i,j – Um–3
i,j .

We proceed by simplifying (11), and expressing in matrix form

AΨ = B, (12)

A =

⎡

⎢
⎣

24I + 19hJm –5hJm hJm

32hJm 24I + 8hJm 02,2

27hJm 27hJm 24I + 9hJm

⎤

⎥
⎦ ,

B = –h

⎡

⎢
⎣

19wi,j(tm) – 5wi,j(tm–1) + wi,j(tm–2) + 9μm+1
k

32wi,j(tm) + 8wi,j(tm–1) + 8μm+1
k

27wi,j(tm) + 27wi,j(tm–1) + 9wi,j(tm–2) + 9μm+1
k

⎤

⎥
⎦ ,

where I is the 2 × 2 identity matrix. Finally, by combining (9) with (12) and truncating the
asymptotic error termO(h2+p), the approximation x∗,m–κ

i,j of the three departure points can
be approximated as follows:

x∗
i,j(tm–κ ) = x∗,m–κ

i,j + O
(
h2+p),

x∗,m–κ
i,j := yi,j(tm–κ ) + ψm–κ

i,j , κ = 0, 1, 2.
(13)

3.2 Linear stability of the proposed departure traceback scheme
In this subsection, to examine the stability of the proposed departure traceback scheme,
the scheme is applied to the Dahlquist problem dx∗(t)

dt = λx∗(t) with initial x∗(tm+1) = x∗,m+1

and an eigenvalue λ. For each departure position at the previous time steps t = tm–κ

(κ = 0, 1, 2), stability functions of the proposed departure traceback scheme hold in the
following theorem.

Theorem 1 The three departure points of the proposed departure traceback scheme (13)
are all A-stable schemes.

Proof The linear stability functions of the three departure points described in (13) hold
in the following:

x∗,m = Sm(z)x∗,m+1, Sm(z) =
(
12 – 6z – z2 + z3)/S(z),

x∗,m–1 = Sm–1(z)x∗,m+1, Sm–1(z) =
(
12 + 6z – z2 – z3)/S(z),

x∗,m–2 = Sm–2(z)x∗,m+1, Sm–2(z) =
(
12 + 18z + 11z2 + 3z3)/S(z),

(14)

whereS(z) = 12–18z+11z2 –3z3 and z = –λh. Additionally, the stability regions R(Sm–κ ) :=
{z ∈C | |Sm–κ (z)| < 1} (κ = 0, 1, 2) are plotted in Fig. 1. Since the regions of absolute stabil-
ity R(Sm–κ ) contain the left half plane {z ∈ C | R(Sm–κ )(z) < 0}, one can confirm that the
proposed scheme is A-stable. �
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Figure 1 Regions of absolute stability

Figure 2 Verification of numerical temporal convergence for the four considered methods for Example 4.1

Remark that μm+1
p (p = 1, 2) in (11) or (12) does not affect the linear stability of the pro-

posed departure traceback scheme, since u(t, x∗(t)) = λx∗(t) and its Jacobian is λ. As shown
numerically in Fig. 2, the approximation order of μm+1

p affects the temporal accuracy of the
overall algorithm.

Moreover, the existing departure traceback schemes that will be compared with our
method in the next section have the stability functions [15]

• AB3: x∗,m–κ = Sm–κ
AB3 (z)x∗,m+1 (κ = 0, 1, 2) with Sm

AB3(z) = 6+2z
6–4z+z2 , Sm–1

AB3 (z) = 6+8z+5z2

6–4z+z2 ,
Sm–2

AB3 (z) = 6+14z+16z2

6–4z+z2 .
• AM4: x∗,m–κ = Sm–κ

AM4(z)x∗,m+1 (κ = 0, 1, 2) with Sm
AM4(z) = 24–6z–7z2

24–30z+11z2 ,
Sm–1

AM4(z) = 4+18z–z2–6z3

24–30z+11z2 , Sm–2
AM4(z) = 24+42z+29z2–30z3

24–30z+11z2 .

Remark 2 Note that while all stability functions of the proposed method are A-stable, the
stability functions of AB3 and AM4 are neither A-stable nor L-stable at t = tm–κ , κ = 1, 2.
The impoverished stability constrains the choice of time step size h, when the problem
has small viscosity, hence losing the advantages of the BSL.

4 Numerical experiments of advection–diffusion or –dispersion equation
To assess the efficiency of the proposed method, we simulate six examples. To measure
the accuracy, we calculate the computational errors using the maximum norm, L2 norm
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and relative L2 norm, respectively, defined by

E∞(tk) =
∥
∥uk(xi) – uk

i
∥
∥∞, E2(tk) =

(

�x
∑

i

∣
∣uk(xi) – uk

i
∣
∣2
)1/2

,

ER2(tk) =
(∑

i

∣
∣uk(xi) – uk

i
∣
∣2
)1/2

/
(∑

i

∣
∣uk(xi)

∣
∣2
)1/2

,

where uk(xi) is the exact solution at t = tk and each grid point xi and uk
i is an approxima-

tion. E∞(tk) and ER2(tk) are similarly defined for the 2D case. The numerical convergence
for the proposed method, when the exact solution of the problem is available, is calculated
as

rate := log2
(
Ek

�τ /Ek
�τ
2

)
,

where Ek represents E∞(tk) or ER2(tk) and �τ represents h or �x, respectively.
For convenience, we label the proposed departure traceback schemes and current

schemes as follows.
• EAC3: Proposed method (13) with μm+1

1 in (11)
• EAC4: Proposed method (13) with μm+1

2 in (11)
• AB3: Third-order Adams–Bashforth method in [15]
• AM4: Fourth-order Adams–Moulton method in [15].

Remark 3 To find departure points x∗
i,j(t) at three previous time levels t = tm–κ (κ = 0, 1, 2)

arriving on the grid points at target t = tm+1, AB3 and AM4 are implicit schemes in our
BSL, since they simultaneously find the departure points by solving the strongly nonlinear
IVP (2) with initial x∗

i,j(tm+1) = xi,j in the reverse direction to time. Therefore, an iteration
method, such as the Newton-like iteration scheme, is required for the current departure
traceback schemes. We employed the fixed iteration with maximum iteration iter = 20 and
tolerance tol = 10–7, considering computational costs.

4.1 Linear advection equation
This subsection provides experimental results to demonstrate convergence for the pro-
posed BSL for a linear advection problem. To do this, we consider the linear advection
problem

∂

∂t
ρ(t, x) + v̄(t, x) · ∇ρ(t, x) = 0, x ∈ (–6, 6)2, 0 < t ≤ 1,

ρ(0, x) = exp
(
–‖x‖2),

(15)

where v̄(t, x) := 1
2 x tan(t) is a known velocity, and the analytical solution of (15) is ρ(t, x) =

exp(–‖x‖2 cos(t)), ‖x‖2 = x2 + y2. Using the semi-Lagrangian formulation, we rewrite (15)
as ρT (t, x) = 0, along the characteristic curve x∗(t; x, s) satisfying dx∗(t;x,s)

dt = v̄(t, x), which
is a different type from the equation discussed previously. Specifically, the distribution
function ρ is constant along the characteristic curve, i.e., ρ(tm+1, xi,j) = ρ(tm, x∗

i,j(tm)), and
hence, we only need the departure point x∗

i,j(t) at t = tm.
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Table 1 Computational costs cpu to obtain the results in Fig. 2 at t = 1.0

h 2–3 2–4 2–5 2–6 2–7 2–8 2–9

EAC3 2.632 6.751 15.016 31.522 64.257 129.938 272.247
EAC4 2.816 6.774 15.122 31.687 65.195 131.261 273.875
AB3 1.889 4.381 9.327 19.668 39.724 81.652 160.135
AM4 2.023 4.772 10.171 21.252 43.359 88.768 180.081

To verify the temporal convergence order of each method, we measure E∞ and ER2 and
check the computational cost (cpu) for a fixed spatial resolution Jx = Jy = 12×100 by vary-
ing the temporal step size h from 2–3 to 2–9. The results (the errors versus temporal step
size h with a logarithmic scale based on 10) are plotted in Fig. 2 and illustrated in Ta-
ble 1. The figure shows that the EAC3 and AB3 exhibit third-order convergence rates and
EAC4 and AM4 have fourth-order convergence rates. However, EAC3 and EAC4 have
greater computational costs than AB3 and AM4, since EAC3 and EAC4 simultaneously
compute all three departure points with high accuracy by solving the linear system (12),
whereas AB3 and AM4 are designed to calculate with good stability only at t = tm. These
results seem that AB3 and AM4 are more efficient than the proposed methods for linear
hyperbolic-type problems.

4.2 1D Burgers’ equation
This section investigates the performance of the proposed method combined with BDF3
for the nonlinear advection–diffusion problem and demonstrates its superiority compared
with AB3 and AM4. As an illustrative example, we consider a 1D Burgers’ equation

ut + uux = νuxx, x ∈ [0, 1], t > 0 (16)

with the following initial condition u(0, x) = 2νπ sin(πx)
σ+cos(πx) , x ∈ [0, 1] and the Dirichlet boundary

condition. The analytic solution for this example is given as [32, 35]

u(t, x) =
2νπ exp(–π2νt) sin(πx)
σ + exp(–π2νt) cos(πx)

,

where σ > 1 is a parameter determining the shape of the initial function, and σ and stiffness
are inversely proportional.

We first numerically investigate temporal convergence for the four methods by measur-
ing the errors E∞ and ER2 for the smooth initial condition with σ = 100 and ν = 0.1. The
experiment is conducted by varying the time step h from 2–3 to 2–7 with spatial resolu-
tion Jx = 400, as shown in Table 2. All four methods, EAC3, EAC4, AB3, and AM4, com-
bined with BDF3 achieve third-order time convergence. To check spatial convergence for
the proposed method, simulation is performed until final time tf = 1.0 for various spatial
resolutions Jx from 23 to 27 with h = 1/4000 as shown in Table 3. The proposed EAC3
and EAC4 achieve at least third-order spatial accuracy. To demonstrate the superiority of
EAC3, ER2 and cpu are obtained via the three methods, EAC3, AB3 and AM4, by using the
time step size h = 1/100, 1/200, 1/400, and 1/800 and the spatial resolution Jx = 1000 until
t = 1.0; we display the cpu versus ER2 in Fig. 3. The figure clearly shows that EAC3 signif-
icantly outperforms the other methods, particularly as σ reduces (i.e., increasing initial
stiffness or flow velocity). The initial condition becomes steeper and the solution speed
increases as σ decreases from 100 to 1.2. Additionally, we measure the E∞(t) and E2(t) by
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Table 2 Temporal convergence rates for Example 4.2 with fixed spatial resolution Jx = 400

h σ = 100, ν = 0.1

EAC3 AB3

E∞(t) ratet ER2(t) ratet cpu E∞(t) ratet ER2(t) ratet cpu

2–3 8.74× 10–7 – 3.71× 10–4 – 0.07 8.70× 10–7 – 3.71× 10–4 – 0.14

2–4 1.24× 10–7 2.82 5.26× 10–5 2.82 0.17 1.23× 10–7 2.82 5.25× 10–5 2.82 0.31

2–5 1.62× 10–8 2.93 6.91× 10–6 2.93 0.34 1.61× 10–8 2.93 6.89× 10–6 2.93 0.65

2–6 2.08× 10–9 2.97 8.84× 10–7 2.97 0.74 2.06× 10–9 2.97 8.78× 10–7 2.97 1.20

2–7 2.62× 10–10 2.98 1.12× 10–7 2.98 1.38 2.64× 10–10 2.97 1.11× 10–7 2.99 2.38

h EAC4 AM4

E∞(t) ratet ER2(t) ratet cpu E∞(t) ratet ER2(t) ratet cpu

2–3 7.14× 10–7 – 3.03× 10–4 – 0.08 7.09× 10–7 – 3.03× 10–4 – 0.15

2–4 1.14× 10–7 2.64 4.87× 10–5 2.64 0.17 1.14× 10–7 2.63 4.87× 10–5 2.64 0.38

2–5 1.57× 10–8 2.87 6.67× 10–6 2.87 0.34 1.61× 10–8 2.83 6.80× 10–6 2.84 0.87

2–6 2.04× 10–9 2.94 8.69× 10–7 2.94 0.76 2.33× 10–9 2.79 9.64× 10–7 2.82 1.75

2–7 2.60× 10–10 2.97 1.11× 10–7 2.97 1.45 4.72× 10–10 2.30 2.04× 10–7 2.24 3.72

Table 3 Spatial convergence rates for the proposed methods for Example 4.2 with fixed spatial
resolution h = 1/4000

Jx σ = 100, ν = 0.1

EAC3 EAC4

E∞(t) ratet ER2(t) ratet cpu E∞(t) ratet ER2(t) ratet cpu

23 8.11× 10–4 – 8.97× 10–4 – 0.72 8.10× 10–4 – 8.97× 10–4 – 0.71
24 1.33× 10–4 2.61 1.32× 10–4 2.77 1.34 1.33× 10–4 2.61 1.32× 10–4 2.77 1.34
25 9.97× 10–6 3.73 9.97× 10–6 3.73 2.64 9.97× 10–6 3.73 9.96× 10–6 3.73 2.65
26 6.72× 10–7 3.89 6.71× 10–7 3.89 6.11 6.71× 10–7 3.89 6.71× 10–7 3.89 6.17
27 7.69× 10–8 3.13 7.69× 10–8 3.13 12.80 7.69× 10–8 3.13 7.69× 10–8 3.13 13.01

Figure 3 Accuracy and computational efficiency for Example 4.2 with (a) σ = 100, (b) σ = 2, and (c) σ = 1.2

EAC3 and other existing methods introduced in [29, 35]. The results are listed in Table 4
and show that EAC3 is more accurate than the compared methods presented in [29, 35].

4.3 Coupled Burgers’ equations
As the third test problem, the coupled Burgers’ equations are considered on the domain
[–20, 20] defined as

⎧
⎨

⎩

ut – uxx – 2uux + (uv)x = 0,

vt – vxx – 2vvx + (uv)x = 0,
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Table 4 Comparison of E∞(t) and E2(t) errors of EAC3 to the existing methods for Example 4.2 with
h = 0.01 and ν = 0.005, σ = 100 at t = 1.0

Jx EAC3 Tamsir [35] Mittal [29]

E∞(t) E2(t) E∞(t) E2(t) E∞(t) E2(t)

10 8.461× 10–8 1.416× 10–8 1.467× 10–7 6.330× 10–8 4.88× 10–7 3.455× 10–7

20 6.038× 10–9 9.009× 10–10 3.029× 10–8 1.014× 10–8 1.431× 10–7 1.012× 10–7

40 4.251× 10–10 4.654× 10–11 3.956× 10–9 1.207× 10–9 5.668× 10–8 4.003× 10–8

80 5.328× 10–11 4.149× 10–12 8.861× 10–11 1.322× 10–10 3.499× 10–8 4.002× 10–8

Table 5 Numerical accuracy of EAC3 for Example 4.3 at t = 1.0

h =�x u v cpu

E∞(t) rate ER2(t) rate E∞(t) rate ER2(t) rate

2–3 6.73× 10–4 – 1.65× 10–3 – 7.16× 10–4 – 1.73× 10–3 – 0.010
2–4 9.41× 10–5 2.84 2.35× 10–4 2.81 1.00× 10–4 2.84 2.46× 10–4 2.81 0.011
2–5 1.24× 10–5 2.92 3.15× 10–5 2.90 1.32× 10–5 2.92 3.30× 10–5 2.90 0.047
2–6 1.59× 10–6 2.96 4.05× 10–6 2.96 1.70× 10–6 2.96 4.25× 10–6 2.96 0.563
2–7 2.02× 10–7 2.98 5.14× 10–7 2.98 2.15× 10–7 2.98 5.39× 10–7 2.98 5.050

Table 6 Comparison of accuracy of three methods for different time steps in Example 4.3

t u

EAC3 AB3 AM4

E∞(t) ER2(t) E∞(t) ER2(t) E∞(t) ER2(t)

0.5 2.76× 10–7 3.93× 10–7 1.91× 10–6 2.83× 10–6 4.74× 10–3 7.50× 10–3

1.0 2.01× 10–7 5.13× 10–7 1.40× 10–6 3.69× 10–6 7.40× 10–3 1.87× 10–2

2.0 6.67× 10–8 4.81× 10–7 5.45× 10–7 4.01× 10–6 5.14× 10–3 3.32× 10–2

3.0 1.86× 10–8 3.71× 10–7 1.97× 10–7 3.95× 10–6 2.46× 10–3 4.09× 10–2

t v

EAC3 AB3 AM4

E∞(t) ER2(t) E∞(t) ER2(t) E∞(t) ER2(t)

0.5 2.89× 10–7 4.10× 10–7 1.89× 10–6 2.82× 10–6 4.74× 10–3 7.50× 10–3

1.0 2.14× 10–7 5.38× 10–7 1.40× 10–6 3.70× 10–6 7.40× 10–3 1.87× 10–6

2.0 7.07× 10–8 5.08× 10–7 5.48× 10–7 4.04× 10–6 5.14× 10–3 3.32× 10–2

3.0 1.99× 10–8 3.97× 10–7 1.98× 10–7 3.98× 10–6 2.46× 10–3 4.09× 10–2

where we consider the exact solution to be [4, 22, 24]

u1(t, x) = u2(t, x) = exp(–t) sin(x), x ∈ [–π ,π ], t > 0.

Boundary and initial conditions are as used for the exact solution.
To demonstrate the robustness and superiority of the proposed method, we numeri-

cally estimate the convergence order of EAC3 and cpu. We measure convergence rates for
both solutions u and v simultaneously at t = 1.0 for the same temporal and spatial step
sizes h = �x from 2–3 to 2–7. As shown in Table 5, EAC3 clearly exhibits the expected
third-order convergence rate. To demonstrate the accuracy and superiority of EAC3, we
implement the experiment of the example and compare the numerical results obtained by
EAC3, AB3, and AM4. We compare the errors, E∞ and ER2, obtained by the three meth-
ods for different time levels t = 0.5, 1.0, 2.0, and 3.0 with h = 2–7 and Jx = 1024. The results
are listed in Table 6 and Fig. 4. EAC3 exhibits significantly superior accuracy, showing
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Figure 4 (a) Approximate and exact solution behaviors for different time steps, and (b) comparison of cpu for
the three departure traceback schemes from Table 6

Table 7 Numerical accuracy for Example 4.4 using EAC3 with h = 0.1 and Jx = 20 on [–10, 10] for
various values of ε, ν and η

ε ν η E∞(t) ER2(t)

t = 0.3 t = 0.6 t = 0.9 t = 0.3 t = 0.6 t = 0.9

1.0 0.1 1.0 9.11× 10–17 3.52× 10–15 3.39× 10–14 9.75× 10–15 2.26× 10–13 2.09× 10–12

0.1 0.1 3.23× 10–10 2.09× 10–9 3.95× 10–9 4.86× 10–9 3.03× 10–8 5.56× 10–8

0.1 0.01 3.12× 10–4 2.12× 10–3 4.31× 10–3 2.89× 10–4 1.85× 10–3 3.63× 10–3

0.1 0.1 1.0 9.02× 10–16 3.49× 10–14 3.37× 10–13 9.62× 10–15 2.24× 10–13 2.08× 10–12

0.1 0.1 3.23× 10–9 2.09× 10–8 3.95× 10–8 4.86× 10–9 3.30× 10–8 5.56× 10–8

0.1 0.01 6.49× 10–4 4.42× 10–3 8.98× 10–3 2.89× 10–4 1.85× 10–3 3.63× 10–3

excellent agreement with the exact solutions and slightly superior computational costs
compared with AB3 and AM4 (see Fig. 4(b)).

4.4 KdV–Burgers’ equation
This section investigates the adaptability of the proposed method for the problem with
dispersive flow. Consider the following KdV–Burgers equation:

ut + εuux – νuxx + ηuxxx = 0, x ∈ [xL, xR]

with the exact solitary wave solution as given by ([25])

u(t, x) = a0
(
9 – 6 tanh

(
a1(x – a2t)

)
– 3 tanh2(a1(x – a2t)

))
,

where a0 = ν2

25εη
, a1 = ν

10η
, a2 = 6ν2

25η
; ε, and ν and η are arbitrary constants. The KdV–

Burgers’ equation applies to studying weak effects of dispersion, dissipation, and nonlin-
earity in waves propagating in a liquid-filled elastic tube [34].

To investigate the accuracy and efficiency of the proposed method, we solve the problem
with fixed sparse grid sizes h = 0.1 and Jx = 10 by varying ε, ν , and η, as shown in Table 7.
We measure errors E∞ and ER2 at t = 0.3, 0.6, and 0.9, and the numerical solutions show
very good agreement with the exact solutions. We observe the graphical representation of
the time-progressive evolution for the traveling solution with small μ = 0.01, 0.001. Hence,
we employ h = 0.02, Jx = 800 and h = 0.01, Jx = 1000 as shown in Fig. 5. The figure shows
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Figure 5 Graphical representation of the time-progressive evolution for traveling solution with (a) μ = 0.01,
h = 0.02, Jx = 800 and (b) μ = 0.001, h = 0.01, Jx = 1000 during t ≤ 10

Table 8 Convergence rates of EAC3 for Example 4.5 at t = 0.5 and t = 1.0 with ν = 0.1

h =�x
=�y

t = 0.5 t = 1.0

E∞(t) rate ER2(t) rate cpu E∞(t) rate ER2(t) rate cpu

1/50 1.89× 10–3 – 4.08× 10–4 – 0.039 3.87× 10–4 – 4.91× 10–5 – 0.073
1/100 3.02× 10–4 2.64 6.58× 10–5 2.63 0.255 6.40× 10–5 2.60 7.04× 10–6 2.80 0.512
1/200 4.21× 10–5 2.84 9.18× 10–6 2.84 2.097 9.13× 10–6 2.81 9.65× 10–7 2.87 4.147
1/400 5.64× 10–6 2.90 1.31× 10–6 2.81 22.033 1.20× 10–6 2.93 1.28× 10–8 2.92 41.431

that EAC3 works well providing good performance for the traveling solution with small
μ = 0.01 and 0.001.

4.5 2D Burgers’ equation
In this subsection, to observe numerical accuracy in 2D nonlinear advection–diffusion
equations, we perform the test problem using the 2D unsteady Burgers’ equation,

ut + u(ux + uy) = ν�u, x ∈ [–0.5, 0.5]2,

with the analytic solution from [37]

u(t, x) =
1
2

– tanh

(
x + y – t

2ν

)

, x = (x, y).

Initial and boundary conditions are taken directly from the analytic solution.
We first examine the accuracy of EAC3 for ν = 0.1 by varying the same time step and

space grid sizes, h = �x = �y from 1/50 to 1/400 for two different time levels. As shown
in Table 8, EAC3 provides third-order convergence.

We also observe the behaviors of the numerical solutions obtained by EAC3 for different
viscosities ν = 0.1, 0.01, and 0.001 at t = 1.0, 2.0, and 3.0 using the time step, and spatial
grid sizes h = �x = �y = 0.01, 0.002, and 0.0005 are used. Figure 6 shows that EAC3 has
good performance and works well for small viscosity coefficients. Finally, by comparing the
errors and computational cost cpu with the results of AB3, we demonstrate the efficiency
of the proposed method at two different time levels t = 0.05 and 1.0. The results displayed
in Table 9 show that the proposed method EAC3 provides more accurate solutions with
lower computational cost than AB3, clearly indicating that EAC3 is more efficient than
AB3.
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Figure 6 Time evolution of the numerical solution with (a) ν = 0.1, h =�x =�y = 0.01; (b) ν = 0.01,
h =�x =�y = 0.002; (c) ν = 0.001, h =�x =�y = 0.0005

Table 9 Comparison of numerical results from EAC3 and AB3 for Example 4.5

ν h Jx = Jy EAC3 AB3

E∞(0.05) ER2(0.05) cpu E∞(0.05) ER2(0.05) cpu

1.0 0.005 40 4.92× 10–10 4.89× 10–10 0.012 1.66× 10–8 1.38× 10–8 0.014
0.1 0.0025 80 1.85× 10–6 7.59× 10–7 0.066 3.45× 10–5 1.50× 10–6 0.079
0.01 0.00125 320 5.11× 10–4 6.96× 10–5 2.156 1.10× 10–3 1.33× 10–4 2.913

ν h Jx = Jy EAC3 AB3

E∞(1.0) ER2(1.0) cpu E∞(1.0) ER2(1.0) cpu

1.0 0.005 40 3.26× 10–9 1.74× 10–9 0.182 4.09× 10–8 2.05× 10–8 0.225
0.1 0.0025 160 1.16× 10–6 1.11× 10–7 5.124 4.52× 10–6 4.61× 10–7 6.428
0.01 0.00125 320 6.86× 10–5 7.52× 10–7 47.232 1.83× 10–4 1.16× 10–6 47.937

4.6 System of Burgers’ equations
As the last test problem, consider the system of 2D Burgers’ equations:

ut(t, x) + J u(t, x) – ν�u(t, x) = 0, x ∈ [0, 1]2

with analytic solution [19, 25, 35, 38]

u(t, x) =
3
4

–
1

4(1 + exp( 4y–4x–t
32ν

))
, v(t, x) =

3
4

+
1

4(1 + exp( 4y–4x–t
32ν

))
.

To observe the behaviors of the numerical solutions, the graphical results of the time
evolution for the numerical solutions obtained by EAC3 are observed for small viscos-
ity ν = 0.0001 at three different time levels t = 1.0, 2.0, and 3.0 with h = 0.001 and �x =
�y = 1200. The results depicted in Fig. 7 show good performance with small viscosity
ν = 0.0001.

To investigate the accuracy and efficiency of EAC3, we measure the errors of u, v, and
cpu for different viscosities ν = 1.0, 0.1, 0.01, and 0.005 for various h and Jx = Jy at t = 0.5
and 2.0. Table 10 shows that the numerical solutions of EAC3 exhibit very good agreement
with the exact solutions for various viscosity coefficients.

5 Conclusions
In this paper, an adaptable and stable BSL was developed to solve advection–diffusion–
dispersion problems induced from fluid dynamics by introducing a high-order depar-
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Figure 7 Time evolution of the solution (a) u (b) v with ν = 0.0001, h = 0.001, Jx = Jy = 1200 for Example 4.6

Table 10 Numerical accuracy of Example 4.6 using EAC3 with different parameters

ν h Jx = Jy u v cpu

E∞(0.5) ER2(0.5) E∞(0.5) ER2(0.5)

1.0 0.1 20 8.11× 10–6 3.57× 10–6 8.11× 10–6 2.54× 10–6 0.005
0.1 0.025 80 5.58× 10–5 1.41× 10–5 5.58× 10–5 9.81× 10–6 0.093
0.01 0.0125 160 6.74× 10–4 9.98× 10–5 6.74× 10–4 6.67× 10–5 0.755
0.005 0.00625 320 6.85× 10–4 6.89× 10–5 6.85× 10–4 4.59× 10–5 7.092

ν h Jx = Jy u v cpu

ER∞(2.0) ER2(2.0) ER∞(2.0) ER2(2.0)

1.0 0.1 20 8.17× 10–6 3.62× 10–6 8.17× 10–6 2.56× 10–6 0.011
0.1 0.025 80 5.35× 10–5 1.64× 10–5 5.35× 10–5 1.06× 10–5 0.441
0.01 0.0125 160 6.86× 10–4 2.12× 10–4 6.86× 10–4 1.18× 10–4 3.282
0.005 0.00625 320 6.86× 10–4 1.40× 10–4 6.86× 10–5 7.76× 10–5 28.964

ture scheme, which is a A-stable with up to fourth-order accuracy. In particular, the
scheme is designed to solve the strongly nonlinear IVP and to have high-order accu-
racy while having good stability for all approximation of the departure points at three
previous times. It is experimentally shown to be more suitable for solving advection–
diffusion–dispersion type problems than other conventional high-order departure trace-
back methods. Moreover, it is more efficient, compared with other methods, in that
the proposed method does not need an iterative technique that is required to solve the
strong nonlinear IVP. Through several numerical experiments, it was shown that the pro-
posed scheme is superior to the conventional high-order departure traceback schemes
and the latest solvers of Burgers’ equation, in terms of accuracy and computational
costs.

Appendix A: Finite difference method for space discretization
To implement the proposed BSL, we require fourth-order finite difference formulas
of order k (k = 1, 2, 3) to approximate a function’s partial derivatives. Therefore, this
appendix introduces fourth-order finite difference matrices of size (Jx + 1) × (Jx + 1)
from the discrete partial derivative operators for the Dirichlet boundary condition
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[16]

D(1)
x =

1
12�x

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

–25 48 –36 16 –3 · · ·
–3 –10 18 –6 1
1 –8 0 8 –1

. . . . . . . . . . . .
1 –8 0 8 –1

–1 6 –18 10 3
· · · 3 –16 36 –48 25

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

D(2)
x :=

1
12�x2

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

45 –154 214 –156 61 –10
10 –15 –4 14 –6 1
–1 16 –30 16 –1

. . . . . . . . . . . . . . .
–1 16 –30 16 –1

1 –6 14 –4 –15 10
–10 61 –156 214 –154 45

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (17)

and

D(3)
x =

1
8�x3

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

–49 232 –461 496 –307 104 –15 · · ·
–15 56 –83 64 –29 8 –1
–1 –8 35 –48 29 –8 1
1 –8 13 0 –13 8 –1

. . . . . . . . . . . . . . . . . .
1 –8 13 0 –13 8 –1

–1 8 –29 48 –35 8 1
1 –8 29 –64 83 –56 15

· · · 15 –104 307 –496 461 –232 49

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (18)

where the matrix elements were obtained from MATHEMATICA. Using these finite dif-
ference matrices [16], partial derivatives ∂k

∂xk fi or ∂k

∂xk fi,j (k = 1, 2, 3) of a given function f can
be approximated as follows.

1D case

∂k

∂xk fi =
(
D(k)

x f
)

i + O
(
�x4),

2D case

∂k

∂xk fi,j =
(
D(k)

x F
)

i,j + O
(
�x4),

∂k

∂yk fi,j =
(

F
(
D(k)

y
)T)

i,j + O
(
�y4),

where fi = f (xi); fi,j = f (xi,j); f = (fi)(Jx+1)×1 and F = (fi,j)(Jx+1)×(Jy+1); �x and �y are uniform
spatial grid sizes along the x- and y-directions, respectively; T denotes matrix transpo-
sition; and (a)i and (A)i,j denote the ith and (i, j)th components of vector a and matrix A,
respectively.
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Appendix B: Collocation method for equidistant collocation nodes
This section reviews classical one-step collocation as a solver of the IVP,
⎧
⎨

⎩

φ′(t) = f(t,φ(t)), t ∈ (tm, tm+1],

φ(tm) = φm,
(19)

where f is assumed to satisfy the conditions guaranteeing the existence of a unique solu-
tion.

Suppose that we have an approximation to the solution for (19) at point tm for a set of
equally spaced points on the integration interval ts = t0 < t1 < · · · < tM = tf , where we set
tm = ts + mh (m = 0, 1, 2, . . . , M) and h = (tf – ts)/M. We employed the classical collocation
method [18] to obtain the approximation ϕ(tm+1) for φ(tm+1). To design the fourth-order
scheme in the BSL, we used equidistant collocation nodes tm,j := tm + cjh (j = 0, 1, 2, 3) with
cj = j

3 . Consider the Lagrange form of the interpolating polynomial,

φ′(t) =
3∑

k=0

φ′(tm,k)Lk(ξ ) + R(ξ ),

Lk(ξ ) =
3∏

j=0,j �=k

ξ – cj

ck – cj
, R(ξ ) := φ′[tm,0, . . . , tm,3]

3∏

j=0

(ξ – cj),

(20)

for some t = tm + ξh (0 ≤ ξ ≤ 1) and divided difference φ′[tm,0, . . . , tm,3].
By integrating and evaluating (20) at the collocation points,

φ(tm,j) = φ(tm) + h
3∑

k=0

f(tm,k)
∫ cj

0
Lk(η) dη + h

∫ cj

0
R(η) dη. (21)

By truncating the last term in (21), we obtain a four-stage implicit collocation method (or
implicit Runge–Kutta method),

ϕ(tm+1) = ϕ(tm) + h
3∑

k=0

bkKm,k , Km,k = f

(

tm,k ,ϕ(tm) + h
3∑

j=0

akjKm,j

)

(22)

with Butcher tableau

c0 a00 a01 a02 a03

c1 a10 a11 a12 a13

c2 a20 a21 a22 a23

c3 a30 a31 a32 a33

b0 b1 b2 b3

=

0 0 0 0 0
1
3

1
8

19
72 – 5

72
1

72
2
3

1
9

4
9

1
9 0

1 1
8

3
8

3
8

1
8

1
8

3
8

3
8

1
8

, (23)

where

ajk :=
∫ cj

0
Lk(η) dη, bk =

∫ 1

0
Lk(η) dη, j, k = 0, 1, 2, 3.

We remark that both the stage and the convergence orders of the collocation method (22)
are four, which can be easily checked (see [18] for details).
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