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Abstract
In this paper, a nonautonomous reaction-diffusion predator-prey model with
modified Leslie–Gower Holling-II schemes and a prey refuge is proposed. Applying
the comparison theory of differential equation, sufficient average criteria on the
permanence of solutions and the existence of the positive periodic solutions are
established. Moreover, the existence region of the positive periodic solutions is an
invariant region dependent on t. Then, constructing a suitable Lyapunov function, we
obtain sufficient conditions to guarantee the global asymptotic stability of the
positive periodic solutions. Finally, we do some numerical simulations to verify our
main results and investigate the effect of prey refuge on the dynamics of the system.
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1 Introduction
In the past two decades, population biology has been greatly developed [3, 6, 10, 11, 20, 26].
One important aspect of population biology is the predator’s functional response [23],
which is the key to describing the average feeding rate of a predator. A very popular preda-
tor’s functional response is the Holling-II type, which has the following form [15]:

p(x) =
cx

1 + ax
, (1)

where x represents the population density of prey, and c and a are all positive constants
that represent the capture rate and handling time, respectively. Up to now, predator-prey
models with Holling-II functional response have been investigated extensively [3, 6, 8, 13,
18, 20, 22, 24, 26, 28]. In 1948, Leslie [7] proposed the following famous Leslie predator-
prey system:

⎧
⎨

⎩

dx
dt = x(a – bx) – p(x)y,
dy
dt = y(c – d y

x ),
(2)
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where d y
x is known as the Leslie–Gower term, which is based on the assumption that the

carrying capacity of the predator’s environment is proportional to the number of prey.
Moreover, the Leslie–Gower term measures the loss in the predator population due to
rarity (per capita y

x ) of its favorite food. In the case of severe scarcity, y can switch over
to other populations but its growth will be limited by the fact that its most favorite food
is not available in abundance. That is to say, x = 0 will cause some singularity. In order to
avoid this case, Aziz-Alaoui [1] proposed adding a positive constant k to the denominator.
Hence, the second equation of (2) becomes dy

dt = x(c – dy
x+k ). When p(x) is taken as (1),

system (2) becomes the famous and popular predator-prey model with modified Leslie–
Gower Holling-II schemes:

⎧
⎨

⎩

dx
dt = x(r1 – bx) – cxy

x+k1
,

dy
dt = y(r2 – dy

x+k2
).

(3)

Aziz-Alaqui and Daher [2] investigated model (3) and obtained the boundedness of so-
lutions and the existence of an attracting set. Moreover, they obtained the global stability
of the coexisting interior equilibrium. Nindjina et al. [14] incorporated the time delay into
model (3) and obtained the permanence of the system, asymptotical stability of the posi-
tive equilibrium. Moreover, generalization and in-depth study of model (3) can be found
in many references, such as [3, 6, 20, 26].

However, in fact, since most prey have refuges, it is difficult for predators to catch them.
Hence, it is necessary to incorporate the prey refuge into the predator-prey system. As one
of the hot topics in biological mathematics, the predator-prey model with prey refuges has
attracted the attention of many scholars at home and abroad [3, 6, 20, 22, 26]. Zhang et
al. [26] investigated a prey-predator model incorporating a prey refuge and the fear effect
and found that prey refuge has great impact on the persistence of the predator. Moreover,
Wang et al. [20] also proposed a prey-predator model incorporating a prey refuge and
the fear effect and concluded that the prey refuge is beneficial to the coexistence of the
prey and the predator, and with the increase of the level of the prey refuge, the positive
equilibrium may change from stable spiral sink to unstable spiral source to stable spiral
sink.

The rhythm of life on earth is shaped by seasonal changes in the environment. Plants
and animals show profound annual cycles in physiology, health, morphology, behavior,
and demography in response to environmental cues [17]. We note that any biological or
environmental parameters are naturally subject to fluctuation in time. For example, when
winter comes the wild goose will fly to the south to seek a better habitat, whereas they
do not migrate in other seasons. For another example, in the Pacific Northwest, Larim-
ichthys polyactis cross over deep water during the winter and migrate to the coast during
the spring; then, 3–6 months after spawning, they scatter offshore and return to the depths
of the sea during late autumn [12]. Considering the important roles that seasonal environ-
mental factors play in the dynamics of plant and animal species dynamics, it is necessary
and essential to take models with periodic parameters into consideration such as in Cush-
ing [5].

Based on the above consideration, many nonautonomous predator-prey models with
modified Leslie–Gower Holling-II schemes have been proposed to investigate the effect
of the periodic environment on the dynamics of population [13, 22, 28]. Zhu and Wang
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[28] proposed the periodic predator-prey model with modified Leslie–Gower Holling-II
schemes and obtained the existence and global attractivity of the positive periodic solu-
tions. Xie et al. [22] extended the periodic system with a prey refuge and obtained a set of
sufficient conditions which ensure the permanence of the system. By constructing a suit-
able Lyapunov function, they also investigated the stability property of the system. Nie et
al. [13] proposed a nonautonomous modified Leslie–Gower Holling-II schemes with state
dependent impulsive. By using the Poincareé map, some conditions for the existence and
stability of semi-trivial solution and positive periodic solutions were obtained.

As we know, ODE(ordinary differential equation) models are relatively simple and easy
to deal with, but they ignore the effect of the spatial heterogeneity and movements of in-
dividuals, and of course cannot exhibit spatial patterns of the population. To study the
impact of spatial distribution and movements of individuals on the population dynamics,
many reaction-diffusion models with modified Leslie–Gower and Holling-type II schemes
have been proposed [3, 4, 6, 19, 25, 27]. In aforementioned PDE (partial differential equa-
tion) models, they all are autonomous PDE models, i.e., the parameters of the PDE mod-
els are positive constants independent of t. However, as discussed above, seasonality or
any other periodic change of environmental conditions is very important for population
dynamics. Moreover, the existing PDE models are mainly focused on the autonomous
cases. In consideration of these factors, we incorporated the periodicity into the reaction-
diffusion model, especially the diffusion parameters, and proposed the following model:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂P(t,x)
∂t = d1(t)�P(t, x) + P(t, x)[a1(t) – b1(t)P(t, x) – c1(t)(1–m(t))Q(t,x)

P(t,x)+k1(t) ],

x ∈ Ω , t > 0,
∂Q(t,x)

∂t = d2(t)�Q(t, x) + Q(t, x)[a2(t) – c2(t)Q(t,x)
(1–m(t))P(t,x)+k2(t) ], x ∈ Ω , t > 0,

P(0, x) = P0(x) > 0, Q(0, x) = Q0(x) > 0, x ∈ Ω̄ ,
∂P(t,x)

∂n = ∂Q(t,x)
∂n = 0, x ∈ ∂Ω , t > 0,

(4)

where P(t, x) and Q(t, x) represent the prey and the predator densities at location x and
time t, respectively; di(t)(i = 1, 2) denotes diffusion coefficients at time t of the prey and
predator, respectively; Ω is a bounded domain of Rn; n is the outward unit normal vector
of the boundary ∂Ω ; P0(x) and Q0(x) are the initial values of the prey and predator at
location x and they are continuous functions of x; ai(t)(i = 1, 2) denotes the growth rates
of the prey and predator at time t, respectively. b1(t) measures the strength of competition
among individuals of prey. c1(t) is the maximum value which per capita reduction rate of
prey P can attain; c2(t) has a similar meaning to c1(t); k1(t) (respectively, k2(t)) measures
the extent to which environment provides protection to prey P (respectively, to predator
Q); 0 < m(t) < 1 represents the protection rates of the prey P.

Our purpose in this paper is to investigate the dynamic behaviors of model (4). Applying
the comparison theory of differential equation, sufficient average criteria on the perma-
nence of solutions and the existence of the positive periodic solutions are established.
Moreover, the existence region of the positive periodic solutions is an invariant region de-
pendent on t. Finally, constructing a suitable Lyapunov function, we obtain the sufficient
conditions to guarantee the global asymptotic stability of the positive periodic solutions.

The outline of the work is as follows. In Sect. 2, we study the permanence of solutions
and the existence of the positive periodic solutions of the corresponding ODE system. In



Luo et al. Advances in Difference Equations        (2020) 2020:106 Page 4 of 16

Sect. 3, we mainly discuss the global asymptotic stability of the positive periodic solutions
for system (4). In Sect. 4, we give some number simulations to verify our theoretical anal-
ysis results. Finally, we give a brief conclusion in Sect. 5.

2 Analysis of the corresponding ODE system
In this section, we mainly investigate the corresponding ODE system of system (4). Suf-
ficient average criteria on the permanence of solutions and the existence of the positive
periodic solutions are established. Moreover, the existence region of the positive periodic
solutions is an invariant region dependent on t, which is different from the previous results
in Xie et al. [22].

2.1 Permanence of the ODE system
For a continuous T-periodic function g(t), we denote its integral average by

[
g(t)

]
=

1
T

∫ T

0
g(t) dt.

From system (4), we obtain that the corresponding ODE system is as follows:

⎧
⎨

⎩

dP(t)
dt = P(t)[a1(t) – b1(t)P(t) – c1(t)(1–m(t))Q(t)

P(t)+k1(t) ],
dQ(t)

dt = Q(t)[a2(t) – c2(t)Q(t)
(1–m(t))P(t)+k2(t) ].

(5)

To obtain the permanence of system (5), we need the following lemma.

Lemma 1 Assume that r1(t) and r2(t) are continuous and T-periodic functions, r2(t) > 0
and [r1(t)] > 0, then the logistic equation

dx
dt

= x(t)
(
r1(t) – r2(t)x(t)

)
(6)

admits a unique positive T-periodic solution x∗(t). Moreover, x∗(t) is globally attractive.
That is to say, if x(t) is any other positive solution of system (6), which yields that

lim
t→∞

∣
∣x(t) – x∗(t)

∣
∣ = 0.

Based on Lemma 1, we investigate the permanence of system (5). In system (5), we as-
sume that [a1(t)] > 0 and [a2(t)] > 0. Let P̂(t) be a positive T-periodic solution of the fol-
lowing logistic equation:

du
dt

= u(t)
(
a1(t) – b1(t)u(t)

)
(7)

and Q̂(t) be a positive T-periodic solution of the following logistic equation:

dv
dt

= v(t)
(

a2(t) –
c2(t)v(t)

(1 – m(t))P̂(t) + k2(t)

)

. (8)
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Theorem 1 If

[
a1(t)

]
>

[
c1(t)(1 – m(t)Q̂(t))

k1(t)

]

(9)

holds, then for any positive solution (P(t), Q(t)) of system (5), there exists t̃ > 0 such that

P̌(t) ≤ P(t) ≤ P̂(t), Q̌(t) ≤ Q(t) ≤ Q̂(t) for t > t̃,

where P̌(t) is a positive T-periodic solution of the following logistic equation:

du
dt

= u(t)
[(

a1(t) –
c1(t)(1 – m(t))Q̂(t)

k1(t)

)

– b1(t)u(t)
]

(10)

and Q̌(t) is a positive T-periodic solution of the following logistic equation:

dv
dt

= v(t)
(

a2(t) –
c2(t)v(t)

(1 – m(t))P̌(t) + k2(t)

)

. (11)

Proof Let (P(t), Q(t)) be a positive solution of (5). From the first equation of system (5),
we have

dP(t)
dt

≤ P(t)
(
a1(t) – b1(t)u(t)

)
. (12)

From [a1(t)] > 0 and Lemma 1, for all positive solutions of equation (7), we have

lim
t→∞

∣
∣u(t) – P̂(t)

∣
∣ = 0.

From the comparison theorem of ordinary differential equations, we can obtain that there
exists t0 > 0 such that

P(t) ≤ P̂(t) for all t > t0. (13)

As a consequence, from the second equation of system (5), we can obtain that

dQ(t)
dt

≤ Q(t)
(

a2(t) –
c2(t)Q(t)

(1 – m(t))P̂(t) + k2(t)

)

(14)

for t > t0. From [a2(t)] > 0 and Lemma 1, for all positive solutions of equation (8), we have

lim
t→∞

∣
∣v(t) – Q̂(t)

∣
∣ = 0.

From the comparison theorem of ordinary differential equations, we can obtain that there
exists t1 > 0 such that

Q(t) ≤ Q̂(t) for all t > t1. (15)
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From system (15) and the first equation of system (5), we can obtain that

dP(t)
dt

≥ P(t)
[(

a1(t) –
c1(t)(1 – m(t))Q̂(t)

k1(t)

)

– b1(t)P(t)
]

for all t > t1. (16)

From equation (9) and the comparison theorem, we can obtain that there exists t2 > t1

such that

P(t) ≥ P̌(t) for all t > t2. (17)

From equation (17) and the comparison theorem, we can obtain that

dQ(t)
dt

≥ Q(t)
(

a2(t) –
c2(t)Q(t)

(1 – m(t))P̌(t) + k2(t)

)

for all t > t2. (18)

With the same argument as above, there exists t̃ > t2 such that

Q(t) ≥ Q̌(t) for all t > t̃. (19)

Hence, the proof of Theorem 1 is completed. �

2.2 The existence of the periodic solutions for ODE system
In this subsection, we mainly discuss the existence of the periodic solutions for ODE sys-
tem. By the Brouwer fixed-point theorem, we obtain that the ODE system has at least a
positive T-periodic solution. Different from previous results, the existence region of the
positive periodic solutions is an invariant region dependent on t.

Theorem 2 Suppose that (9) holds, then system (5) has at least a positive T-periodic solu-
tion (P∗(t), Q∗(t)) such that

P̌(t) ≤ P∗(t) ≤ P̂(t), Q̌(t) ≤ Q∗(t) ≤ Q̂(t), t ∈ [0, T],

where the periodic functions P̌(t), P̂(t), Q̌(t), Q̂(t) are defined in the previous theorem.

Proof Define

M =
[
P̌(0), P̂(0)

] × [
Q̌(0), Q̂(0)

]
,

and suppose that (P(t), Q(t)) is a solution to system (5) with the initial condition (P(0),
Q(0)) ∈ M. Since P(0) ≤ P̂(0) and

dP(t)
dt

≤ P(t)
(
a1(t) – b1(t)P(t)

)
, (20)

we deduce that P(t) ≤ P̂(t) for all t > 0. Repeating these arguments as in Theorem 1, we
can state

P̌(0) = P̌(T) ≤ P(T) ≤ P̂(T) = P̂(0), Q̌(0) = Q̌(T) ≤ Q(T) ≤ Q̂(T) = Q̂(0), (21)
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thus

(
P(T), Q(T)

) ∈ M.

Consider the map

G : M → M, G(x, y) =
(
P(T), Q(T)

)
,

where (P(t), Q(t)) is the solution of system (5) with the initial condition P(0) = x, Q(0) = y.
By the previous argument, we get

G(x, y) ∈ M,

so G is well defined. Since G is continuous, the Brouwer fixed-point theorem ensures the
existence of a point (P̃, Q̃) ∈ M such that

G(P̃, Q̃) = (P̃, Q̃).

By construction, the solution (P∗(t), Q∗(t)) with initial condition (P̃, Q̃) verifies

(
P∗(0), Q∗(0)

)
=

(
P∗(T), Q∗(T)

)
.

The properties of periodic differential equations guarantee that (P∗(t), Q∗(t)) is the
searched periodic solution to system (5). The proof of Theorem 2 is completed. �

3 Analysis of the diffusion system
In this section, we mainly discuss the reaction-diffusion predator-prey model (4). Accord-
ing to Theorems 1 and 2, we can obtain an invariant and attractive region for the solutions
of system (4). Moreover, we obtain the global stability of the solution of system (4). Before
giving our main results, we first give the following lemma.

Lemma 2 Suppose that a(t), b(t), k(t) are continuous, T-periodic functions with [a(t)] >
0, b(t) > 0 and k(t) > 0, then the unique positive solution to

⎧
⎪⎪⎨

⎪⎪⎩

∂w(t,x)
∂t = k(t)�w(t, x) + w(t, x)(a(t) – b(t)w(t, x)), x ∈ Ω , t > 0,

w(t + T , x) = w(t, x) > 0, x ∈ Ω̄ , t ∈ R+,
∂w(t,x)

∂n = 0, x ∈ ∂Ω , t > 0,

(22)

is the positive T-periodic solution w∗(t) to the logistic equation

du
dt

= u
(
a(t) – b(t)u

)
.

Moreover, for any positive solution w(t, x) to (22) with homogeneous Neumann conditions
and w(0, x) = w0(x) ∈ C2(Ω) ∩ C(Ω), one has

lim
t→∞

∣
∣w(t, x) – w∗(t)

∣
∣ = 0 uniformly w.r.t. x ∈ Ω .
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Consider the reaction-diffusion predator-prey model (4) and assume that d1(t), d2(t),
b1(t), c1(t), c2(t), k1(t), k2(t) are all positive functions, [a1(t)] > 0, [a2(t)] > 0 and P0(x),
Q0(x) ∈ C2(Ω) ∩ C(Ω). The presence of an invariant region is shown below.

Theorem 3 Under the assumptions and notations of Theorem 2, the region

D(t) :=
[
P̌(t), P̂(t)

] × [
Q̌(t), Q̂(t)

]
(t ≥ 0)

is invariant and attractive for system (4).
(a) If (P(x, t), Q(x, t)) is a positive solution of system (4) with (P0(x), Q0(x)) ∈ D(0) for

every x ∈ Ω , then (P(x, t), Q(x, t)) ∈ D(t) for every t > 0 and x ∈ Ω .
(b) If (P(x, t), Q(x, t)) is a positive solution of system (4), there exists t̄ > 0 such that

(P(x, t), Q(x, t)) ∈ D(t) for every t > t̄ and x ∈ Ω .

Proof Assume that P0(x) = P(0, x) ≤ P̂(0) for every x ∈ Ω . Since P̂(t) is a positive periodic
solution to

dP(t)
dt

= P(t)
(
a1(t) – b1(t)P(t)

)
, (23)

and it satisfies the equation
⎧
⎨

⎩

∂P(t,x)
∂t = d1(t)�P(t, x) + P(t, x)(a1(t) – b1(t)P(t, x)), x ∈ Ω , t > 0,

∂P(t,x)
∂n = 0, x ∈ ∂Ω , t > 0.

(24)

Hence, according to the comparison theorem for PDE [9], we get P(x, t) ≤ P̂(t) for all t > 0
and x ∈ Ω . Assume that maxx∈Ω P(0, x) < P̂(0) and denote by P(t) the solution to the logistic
equation

⎧
⎨

⎩

dP(t)
dt ≤ P(t)(a1(t) – b1(t)P(t)),

P(0) = maxx∈Ω̄ P(0, x).
(25)

By applying the comparison theorem for PDE [9], we have that P(t, x) ≤ P(t) for all t > 0
and x ∈ Ω . On the other hand, taking Theorem 2 into account, there exists t0 > 0 such that
P(t) ≤ P̂(t) for all t > t0. Consequently, for t ≥ t0 and x ∈ Ω ,

P(t, x) ≤ P(t) ≤ P̂(t).

Similarly, we can prove all the remaining parts of the statement. The proof of Theorem 3
is completed. �

For the global stability of the positive solutions of system (4), we transform system (4)
into a differential system in which the periodic solution becomes the origin.

Lemma 3 Let (P∗(t), Q∗(t)) be a positive periodic solution to system (5). If (P(t, x), Q(t, x))
is a solution to (4), by applying the substitution

P(t, x) =
P(t, x)
P∗(t)

– 1, Q(t, x) =
Q(t, x)
Q∗(t)

– 1, (26)
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system (4) turns into

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂S(t,x)
∂t

= d1(t)�S + (1 + S)[(–b1(t)P∗(t) – c1(t)(1–m(t))2Q∗(t)
P∗(t)(θ (t)–m(t))[(1–m(t))S+θ (t)–m(t)] )S

– c1(t)(1–m(t))Q∗(t)I
P∗(t)[(1–m(t))S+θ (t)–m(t)] ], x ∈ Ω , t > 0,

∂I(t,x)
∂t = d2(t)�I + (1+I)c2(t)Q∗(t)

P∗(t) [ (1–m(t))S
[(1–m(t))S+ϕ(t)–m(t)](ϕ(t)–m(t))

– I
(1–m(t))S+ϕ(t)–m(t) ], x ∈ Ω , t > 0,

S(0, x) = S0(x) > –1, I(0, x) = I0(x) > –1, x ∈ Ω̄ ,
∂S(t,x)

∂n = ∂I(t,x)
∂n = 0, x ∈ ∂Ω , t > 0,

(27)

where

θ (t) =
k1(t)
P∗(t)

+ 1, ϕ(t) =
k2(t)
P∗(t)

+ 1,

S0(x) =
P(0, x)
P∗(0)

– 1, I0(x) =
Q(0, x)
Q∗(0)

– 1.
(28)

Proof From (26) and the initial and boundary conditions in system (4), we can easily obtain
the initial and boundary conditions (28). Moreover, we notice that

∂S
∂t

=
1

P∗(t)

[

d1(t)�P(t, x) + P(t, x)
[

a1(t) – b1(t) –
c1(t)(1 – m(t))Q(t, x)

P(t, x) + k1(t)

]]

–
P(t, x)
P∗(t)

[

a1(t) – b1(t)P∗(t) –
c1(t)(1 – m(t))Q∗(t)

(1 – m(t))P∗(t) + k1(t)

]

. (29)

In the same way, we can obtain the second equation of system (27). The proof of Lemma 3
is completed. �

According to Theorem 3 and Lemma 3, we can obtain the following result.

Lemma 4 Assume that (9) holds and denote by (P(x, t), Q(x, t)) and (P∗(t), Q∗(t)) a solu-
tion of (4) and a positive periodic solution of (5), respectively. Then (S(x, t), I(x, t)) ∈ D̂(t) =
[Š(t), Ŝ(t)] × [Ǐ(t), Î(t)] for all t > t̃ and x ∈ Ω , where

Š(t) =
P̌(t)
P∗(t)

– 1, Ŝ(t) =
P̂(t)
P∗(t)

– 1, Ǐ(t) =
Q̌(t)
Q∗(t)

– 1, Î(t) =
Q̂(t)
Q∗(t)

– 1.

Next, we begin to discuss the global stability of system (4). According to Lemma 3, once
the global stability of the solutions of system (27) is obtained, as a consequence, the global
stability of system (4) can be obtained. For convenience, we define

γ (t, S) =
c2(t)Q∗(t)

P∗(t)[(1 – m(t))S + ϕ(t) – m(t)]

(

b1(t)P∗(t)

–
c1(t)(1 – m(t))2Q∗(t)

P∗(t)(θ (t) – m(t))[(1 – m(t))S + θ (t) – m(t)]

)

–
(Q∗(t))2(1 – m(t))2

4(P∗(t))2

[
c1(t)

(1 – m(t))S + θ (t) – m(t)



Luo et al. Advances in Difference Equations        (2020) 2020:106 Page 10 of 16

–
c2(t)

[(1 – m(t))S + ϕ(t) – m(t)](ϕ(t) – m(t))

]

, (30)

where t > 0, S ∈ [Š(t), Ŝ(t)].

Theorem 4 Let (P∗(t), Q∗(t)) be the positive periodic solutions of system (5). And assume
that (9) and γ (t, S) > 0 hold. Then the positive period solution (P(t, x), Q(t, x)) of system
(4) is globally asymptotically stable; in other words, (P(t, x), Q(t, x)) attracts every positive
solution of system (4).

Proof Let (P(t, x), Q(t, x)) be a positive solution of system (4). Choose a Lyapunov function
as follows:

V (t) =
∫

Ω

L
(
S(t, x), I(t, x)

)
dx,

where

L
(
S(t, x), I(t, x)

)
=

∫ S+1

1

(

1 –
1
ξ

)

dξ +
∫ I+1

1

(

1 –
1
η

)

dη.

Straightforward computations yield that

dV (t)
dt

=
∫

Ω

LS
(
S(t, x), I(t, x)

)
St + LI

(
S(t, x), I(t, x)

)
It dx

=
∫

Ω

(
S

S + 1
d1(t)�S +

I
I + 1

d2(t)�I
)

dx

+
∫

Ω

{
S

S + 1
(1 + S)

[(

–b1(t)P∗(t)

–
c1(t)(1 – m(t))2Q∗(t)

P∗(t)(θ (t) – m(t))[(1 – m(t))S + θ (t) – m(t)]

)

S

–
c1(t)(1 – m(t))Q∗(t)I

P∗(t)[(1 – m(t))S + θ (t) – m(t)]

]

+
I

I + 1
(1 + I)c2(t)Q∗(t)

P∗(t)

×
[

(1 – m(t))S
[(1 – m(t))S + ϕ(t) – m(t)](ϕ(t) – m(t))

–
I

(1 – m(t))S + ϕ(t) – m(t)

]}

dx

= V1(t) + V2(t), (31)

where

V1(t) =
∫

Ω

(
S

S + 1
d1(t)�S +

I
I + 1

d2(t)�I
)

dx

= –
∫

Ω

(

d1(t)
|∇S|2

(S + 1)2 + d2(t)
|∇I|2

(I + 1)2

)

dx ≤ 0 (32)

and

V2(t) =
∫

Ω

{
S

S + 1
(1 + S)

[(

–b1(t)P∗(t)
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–
c1(t)(1 – m(t))2Q∗(t)

P∗(t)(θ (t) – m(t))[(1 – m(t))S + θ (t) – m(t)

)

S

–
c1(t)(1 – m(t))Q∗(t)I

P∗(t)[(1 – m(t))S + θ (t) – m(t)]

]

+
I

I + 1
(1 + I)c2(t)Q∗(t)

P∗(t)

×
[

(1 – m(t))S
[(1 – m(t))S + (ϕ(t) – m(t))](ϕ(t) – m(t))

–
I

(1 – m(t))S + (ϕ(t) – m(t))

]}

dx

=
∫

Ω

–
[

(b1(t)P∗(t) –
c1(t)(1 – m(t))2Q∗(t)

P∗(t)(θ (t) – m(t))[(1 – m(t))S + θ (t) – m(t)]

]

S2

+
Q∗(t)(1 – m(t))

P∗(t)

×
[

c1(t)
(1 – m(t))S + ϕ(t) – m(t)

–
c2(t)

[(1 – m(t))S + ϕ(t) – m(t)](ϕ(t) – m(t))

]

SI

–
c2(t)Q∗(t)

P∗(t)[(1 – m(t))S + ϕ(t) – m(t)]
I2}dx

=
∫

Ω

(

S I
)

(
A11 A12

A21 A22

)(
S
I

)

dx, (33)

where

A11 = –
(

b1(t)P∗(t) –
c1(t)(1 – m(t))2Q∗(t)

P∗(t)(θ (t) – m(t))[(1 – m(t))S + θ (t) – m(t)]

)

,

A12 = A21 =
Q∗(t)(1 – m(t))

2P∗(t)

[
c1(t)

(1 – m(t))S + θ (t) – m(t)

–
c2(t)

[(1 – m(t))S + ϕ(t) – m(t)](ϕ(t) – m(t))

]

,

A22 =
c2(t)Q∗(t)

P∗(t)[(1 – m(t))S + ϕ(t) – m(t)]
.

(34)

It can be seen that if γ (t, S) > 0, the matrix

(
A11 A12

A21 A22

)

is negative definite. In addition, taking into account that (S, I) belongs to the compact
region D̂(t), there exists ρ > 0 such that

γ (S, I) ≤ –ρ
(
S2 + I2). (35)

Hence, from (35) we can obtain that

dV
dt

≤ –ρ

∫

Ω

(
S2 + I2)dx. (36)
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Integrating (36) from t̄ to t, we can obtain that

ρ

∫ t

t̄
dξ

(∫

Ω

(
S2 + I2)dx

)

≤ V (t̄) – V (t) < V (t̄) < +∞.

Thus

∫ ∞

t̄
dξ

(∫

Ω

(
S2 + I2)dx

)

< +∞.

By Lemma 2.1 [21], we obtain that

lim
t→∞

∥
∥S(t, ·)∥∥L2(Ω) = 0 = lim

t→∞
∥
∥I(t, ·)∥∥L2(Ω) = 0. (37)

Using standard arguments [16], we get our statement. Indeed, let p > max{n, 2}, then the
Sobolev inequality yields that

∣
∣S(t, x)

∣
∣P ≤

∫

Ω

∣
∣S(t, ·)∣∣P dx +

∫

Ω

∣
∣∇S(t, ·)∣∣P dx

≤ e1

∫

Ω

∣
∣S(t, ·)∣∣2 dx + e2

∫

Ω

∣
∣∇S(t, ·)∣∣2 dx for (x, t) ∈ Ω̄ × R+. (38)

Moreover,

lim
t→∞

∫

Ω

∣
∣∇S(t, ·)∣∣2 dx = 0,

in fact, multiplying the first equation in (28) by S and integrating over Ω , there exists e3 > 0
such that

d1(t)
∫

Ω

∣
∣∇S(t, ·)∣∣2 dx ≤ –

1
2

d
dt

∫

Ω

S2 dx + e3

∫

Ω

(
S2 + I2)dx. (39)

From (37), (38), and (39), it follows that limt→∞ |S(t, x)| = 0 uniformly w.r.t.x ∈ Ω . Arguing
in the same way, limt→∞ |I(t, x)| = 0 uniformly w.r.t.x ∈ Ω . Going back to P(x, t), Q(x, t)
through (26), we conclude

lim
t→∞

∣
∣P(t, x) – P∗(t)

∣
∣ = 0 = lim

t→∞
∣
∣Q(t, x) – Q∗(t)

∣
∣ uniformly w.r.t.x ∈ Ω . �

4 Numerical simulations
In this section, we do some numerical simulations to verify our analysis results. More-
over, we do some simulations to investigate the effect of the prey refuge. Firstly, we give
Example 1 to illustrate the existence of the periodic solutions for an ODE system, and the
existence region of the positive periodic solutions is an invariant region dependent on t.
Then, we give Example 2 to illustrate the existence of the positive periodic solutions for
PDE system (4) and their global asymptotic stability.

Example 1 For system (4), we take the parameters as shown in Table 1.
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Table 1 Values of the parameters

Symbol Value Reference Symbol Value Reference

a1(t) 5 + sin(t) [28] k1(t) 6 [28]
b1(t) 2 – sin(t) [28] a2(t) 0.4 + 0.1 sin(t) [28]
c1(t) 0.6 + 0.1 sin(t) [28] c2(t) 0.4 + 0.1 sin(t) [28]
m(t) 0.1 [22] k2(t) 3 [28]

Figure 1 The periodic solution (P∗(t),Q∗(t)) with initial values P(0) = 7, Q(0) = 3. (a)–(b): the densities of prey
P∗(t) and predator Q∗(t)

Then system (5) becomes

⎧
⎨

⎩

dP(t)
dt = P(t)[5 + sin(t) – (2 – sin(t))P(t) – (0.6+0.1 sin(t))0.9×Q(t)

P(t)+6 ],
dQ(t)

dt = Q(t)[0.4 + 0.1 sin(t) – (0.4+0.1 sin(t))Q(t)
0.9×P(t)+3 ].

(40)

From Lemma 1 and Theorem 1, we can obtain that

P̂(t) =
P(0) × exp(5t – cos(t) + 1)

1 + P(0) × ∫ t
0 [(2 – sin(s)) × exp(5s – cos(s) + 1)] ds

,

Q̂(t) =
Q(0) × exp(0.4t – 0.1 cos(t) + 0.1)

1 + Q(0) × ∫ t
0 [ 0.4+0.1×sin(s)

0.8×P̂(s)+3
× exp(0.4s – 0.1 cos(s) + 0.1)] ds

,

P̌(t) =
P(0) × exp(

∫ t
0 (5 + sin(s) – (0.6+0.1 sin(s))0.9×Q̂(s)

6 ) ds)

1 + P(0) × ∫ t
0 [(2 – sin(s)) × exp(

∫ s
0 (5 + sin(τ ) – (0.6+0.1 sin(τ ))0.9×Q̂(τ )

6 ) dτ )] ds
,

Q̌(t) =
Q(0) × exp(0.4t – 0.1 cos(t) + 0.1)

1 + P(0) × ∫ t
0 [ 0.4+0.1×sin(s)

0.8×P̌(s)+3
× exp(0.4s – 0.1 cos(s) + 0.1)] ds

.

Moreover, we obtain that [a1(t)] = 31.4159 > 6.7458 = [ c1(t)((1–m(t))Q̂(t)
k1(t) ] when P(0) =

7, Q(0) = 3. Hence, system (40) has a positive 2π-periodic solution (P∗(t), Q∗(t)) (see
Fig. 1). However, our major goal is to investigate the existence of the periodic solutions of
system (4) and their global asymptotic stability. Hence, we give Example 2.

Example 2 For system (4), we take the parameters d1(t) = 0.9 + 0.5 sin(t), d2(t) = 0.7 +
0.5 sin(t), and P0(x) = 7 + 0.2 sin(x), Q0(x) = 3 + 0.2 sin(x). And the other parameters are
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Figure 2 The periodic solution (P(t, x),Q(t, x)) with initial values P(0, x) = 7 + 0.2 sin(x), Q(0) = 3 + 0.2 sin(x).
(a)–(b): the densities of prey P(t, x) and predator Q(t, x)

Figure 3 The periodic solution (P(t, x),Q(t, x)) with initial values P(0, x) = 10 + 0.2 sin(x), Q(0) = 6 + 0.2 sin(x).
(a)–(b): the densities of prey P(t, x) and predator Q(t, x)

taken as in Table 1. Then system (4) becomes the following system:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂P(t,x)
∂t = (0.9 + 0.5 sin(t)) × �P(t, x) + P(t, x)[5 + sin(t) – (2 – sin(t))P(t, x)

– (0.6+0.1 sin(t))0.9×Q(t,x)
P(t,x)+6 ], x ∈ Ω , t > 0,

∂Q(t,x)
∂t = (0.7 + 0.5 sin(t)) × �Q(t, x) + Q(t, x)[0.4 + 0.1 sin(t)

– (0.4+0.1 sin(t))Q(t,x)
0.9×P(t,x)+3 ], x ∈ Ω , t > 0,

P(0, x) = 7 + 0.2 sin(x) > 0, Q(0, x) = 3 + 0.2 sin(x) > 0, x ∈ Ω̄ ,
∂P(t,x)

∂n = ∂Q(t,x)
∂n = 0, x ∈ ∂Ω , t > 0.

(41)

At the same time, we can easily verify that conditions (9) and (30) hold. In order to
verify the global stability of the positive periodic solutions, we keep other parameters un-
changed and take the initial value functions P(0, x) = 7 + 0.2 sin(x), Q(0, x) = 3 + 0.2 sin(x)
and P(0, x) = 10 + 0.2 sin(x), Q(0, x) = 6 + 0.2 sin(x), respectively. And we obtain Figs. 2 and
3 accordingly, which proves the global stability of the positive periodic solutions.

However, as we can see, conditions (9) and (30) both have the prey refuge m(t). And
changing the prey refuge m(t) will change conditions (9) and (30). Hence, it is necessary
to investigate the effect of the prey refuge m(t) on the dynamic of the system. In Example 2,
we keep other parameters unchanged and increase m(t) = 0.5, we obtain Fig. 4. Contrast-
ing Fig. 3 and Fig. 4, we can find that the number of the prey P(t, x) will increase when we
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Figure 4 The periodic solution (P(t, x),Q(t, x)) with initial values P(0, x) = 10 + 0.2 sin(x), Q(0) = 6 + 0.2 sin(x).
(a)–(b): the densities of prey P(t, x) and predator Q(t, x)

increase the prey refuge m(t), and the number of the predator Q(t, x) will decrease when
we increase the prey refuge m(t).

5 Conclusions
In this paper, we propose and study a nonautonomous reaction-diffusion predator-prey
model with modified Leslie–Gower Holling-II schemes and a prey refuge. We first study
the corresponding ODE model and obtain the sufficient average criteria on the perma-
nence of solutions and the existence of the positive periodic solutions by the comparison
theory of differential equation. Moreover, the existence region of the positive periodic so-
lutions is an invariant region dependent on t, which is different from the previous results.
Finally, constructing a suitable Lyapunov function, we obtain the sufficient conditions to
guarantee the global asymptotic stability of the positive periodic solutions.

In order to verify our analysis results, we do some numerical simulations. As the the-
ory analysis indicates, when conditions (9) and (30) hold, the positive periodic solutions
will be globally asymptotically stable. At the same time, we verify these results by Figs. 2
and 3. From the biological background, condition (9) implies that the prey refuge has a
positive effect on the persistence of the system; that is to say, the predators have difficulty
in catching the prey species with the increase in prey refuge, and this directly increases
the survival possibility of the prey species. In order to investigate the effect of the prey
refuge, we do the number simulations and obtain Fig. 4. Contrasting Fig. 3 and Fig. 4, we
can easily verify the biological meaning of prey refuge.

However, in this paper, we just investigated the positive periodic solutions dependent on
t under the homogeneous Neumann conditions. Whether the positive periodic solutions
dependent on location x exist or not and whether they are globally asymptotically stable
are all open problems that need to be investigated in the future.
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