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Abstract
In this research work, the finite-time synchronization and adaptive finite-time
synchronization criterion of graph theory perspective fractional-order coupled
discontinuous neural networks (FCDNNs) are investigated under two different control
strategies. By utilizing differential inclusion theory, Filippov framework, suitable
Lyapunov functional, and graph theory approach, several sufficient criteria based on
discontinuous state feedback control protocol and discontinuous adaptive feedback
control protocol are established for ensuring the finite-time synchronization and
adaptive finite-time synchronization of FCDNNs. Finally, two numerical cases illustrate
the efficiency of the proposed finite-time synchronization results.

Keywords: Discontinuous fractional-order neural networks; Coupled systems; Finite
time synchronization

1 Introduction and modeling
In recent times, differential equation and fractional differential equation models have
found their applications in a variety of fields including biology [1–6], physics [7–10], engi-
neering [11–14], mathematics [15–18], information technology, and so on [19–27]. They
are also one of the most rudimentary tools for neural networks. They were first and fore-
most conferred by de Leibnitz and Gottfried Wilhelm Leibnitz in 1695 (see [28, 29]). Cur-
rently fractional-order calculus (FOC) has been considered predominantly due to its ex-
tensive applications in several fields, for instance, biology, control, optics, viscoelasticity,
and signal processing (see [30–34]). As is known, FOC is an expansion of conventional
integer-order calculus. At present, fractional-order differential techniques are employed
widely to explore the dynamical behaviors of the networks, especially neural networks
(NNs) and complex networks (CNs) (see [35–38]). The fractional-order differential sys-
tems possess unlimited memory property and more degrees of freedom in contrast to the
conventional integer-order differential systems, which is the main benefit of the FOC. As
a consequence of these benefits, some researchers have shown their keen interest to in-
tegrate the FOC into NNs to make fractional-order neural networks (FONNs) models.
Among others, the dynamical behaviors of FONNs have already become a hot research
topic, and lots of scientific results have been well published in the literature (see [39–43]).
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Synchronization, which defines the dynamical behaviors of coupled systems achieving
the same spatial state at the same time, has become an important research topic, and it
has been successfully applied in image processing, secure communication, optimization,
and so on. The synchronization is majorly segregated into two classifications based on
the existing synchronization results and convergence time such as infinite-time synchro-
nization (IFTS), exponential synchronization, lag synchronization, asymptotical synchro-
nization and Mittag-Leffler synchronization, and finite-time synchronization (FTS). Gen-
erally, asymptotic synchronization reaches an infinite time, it becomes infinite synchro-
nization. In realistic engineering applications, humans continuously like to obtain syn-
chronization in a finite convergence time, which is known as FTS. Moreover, time delays
are inevitable in nearly all dynamical systems including neural network, chemical pro-
cess, and nuclear reactors, which may lead to system oscillation, instability behaviors, and
divergence because of the limited switching speed of amplifier circuits (see [44–48]). In
recent decades, an increasing interest in the field of finite-time synchronization criterion
of FONNs with time delays has attracted many scientific communities, which has given
rise to some meaningful and significant outcomes (see [49–51]).

During the last decades, complex dynamical networks (CDNs) have obtained the atten-
tion of many researchers owing to their wide application in diverse areas like global eco-
nomic markets, traffic control networks, communication networks, and synchronization
results have been discussed in the existing literature (see [37, 38, 52, 53]). Coupled neural
networks (CONNs) can be recognized as a significant improvement of complex dynamical
networks [54, 55]. In CONNs, the coupling term depends on the following perspectives:
(1) The relation and control between at least two neurons (see [56, 57]); (2) The amount of
information that transfers from one neuron to another neuron (see [58]); (3) The complex
structure between at least two neurons (see [59]). CONNs have been applied in numer-
ous fields like harmonic oscillation generation, image encryption, and classification (see
[60, 61]). In recent years, some significant related results of the fractional-order CONNs
can be witnessed in the previous literature (see [62, 63]). Even though there exist numer-
ous fractional-order CONNs, so far, most of them have considered the case of continuous
neuron activations only. But in general, signal transmission between neurons and signal
output of neuron are all discontinuous. The activation functions of CONNs are not gen-
erally continuous. As a result, the classical solution for fractional-order differential equa-
tions is not suitable to consider FCDNNs. Thus the investigation of FCDNNs is significant
and much more challenging. Unfortunately, according to our literature survey, no one has
investigated the FTS and adaptive FTS criterion of graph theory perspective FCDNNs.
This situation stimulates the interest towards the further investigation for FCDNNs.

Motivated by the above conversation, we aim to analyze the FTS and adaptive FTS crite-
rion of graph theory perspective FCDNNs with time delays using graph theory techniques.
The main novelty of this research work is outlined in detail as follows:

1. For the first time the algebraic graph theory technique is incorporated into FTS and
adaptive FTS criterion of FCDNNs with time delays.

2. These theoretical results and techniques can be extended to FTS of fractional-order
CONNs and fractional-order discontinuous neural networks.

3. Two kinds of different control strategies, such as discontinuous state feedback
control and discontinuous adaptive feedback control, are designed respectively to
achieve the FTS and adaptive FTS of a class of FCDNNs.
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4. By using the discontinuous FONNs results, coupling terms are added to
discontinuous FONNs, and these results are established by using graph theoretical
concepts.

5. Moreover, the proposed results in this paper are also still valid for FTS and adaptive
FTS criterion for both integer-order and fractional-order CONNs with continuous
activations, respectively, and these results do not exist in the previous works of
literature.

Section 2 contains basic results on a graph-theoretical concept, fractional-order cal-
culus, and formulations for FCDNNs systems. Section 3 is formulated for two different
control strategies. Here we also derive sufficient criteria for the FTS and adaptive FTS cri-
terion of FCDNNs based on algebraic graph theory techniques. Two numerical cases with
simulations are established to demonstrate the efficiency of the obtained synchronization
results in Sect. 4. At last, Sect. 5 terminates with conclusions.

2 Basic knowledge and model description
In this section, some basic concepts of graph theoretical results, fractional-order calculus,
problem statement, and some necessary assumptions are given.

A directed graph G = (V ,E) consists of vertices or nodes V = {1, 2, . . . , N} and a set E
of arcs (k, l) leading from kth node to lth node. A directed path D is a subgraph of G
with distinct vertices {1, 2, . . . , p} such that its set of arcs is {(kx, kx+1) : x = 1, 2, . . . , p – 1}. If
the first and last nodes are similar, D is a directed cycle. A graph is strongly connected if
there exists a directed path from k to l in G . A graph G with weight matrix A = (ajk)N×N

is represented as (G, A), here ajk > 0 equals the weight of arc (j, k) if it exists, and zero
otherwise. The Laplacian matrix of (G, A) is described as follows:

L = (ljk)N×N =

⎧
⎨

⎩

–ajk if j �= k,
∑

j �=p ajp if j = k.

Lemma 2.1 ([64]) Let the kth diagonal element of cofactor of the Laplacian matrix of (G, A)
be represented by γk and assume n ≥ 2. Then the following relationship holds:

N∑

k,l

γkaklΩkl(qk , ql) =
∑

B∈B
W(B)

∑

(i,m)∈E(AB)

Ωm,i(qm, qi),

where Ωki(qk , qi), k, i ∈ {1, 2, . . . , N} are arbitrary functions, B denotes the set of all spanning
unicyclic graphs of (G, A), W(B) and AB respectively the weights and directed cycle of B.
Moreover, γk > 0 if (G, A) is strongly connected for k ∈ {1, 2, . . . , N}.

In order to describe our system, some basic definitions and important lemmas with re-
spect to fractional-order calculus are presented.

Definition 2.2 ([29, 65]) The fractional-order integral of q(t) is described as follows:

D–hq(t) =
1

Γ (h)

∫ t

0
(t – ς )h–1y(ς ) dς ,

where h > 0 and Γ (·) is the gamma function.
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Definition 2.3 ([29, 65]) The Caputo fractional integral of q(t) is described as follows:

Dhq(t) =

⎧
⎨

⎩

D–(n–h)( dn

dtn q(t)) if h ∈ (n – 1, n),

( dn

dtn q(t)) if h = n,

where h ∈R
+, n ∈ Z

+.

In this paper, we consider an array of fractional-order coupled discontinuous neural net-
works (FCDNNs) consisting of N identical nodes with each isolated node network being
an n-dimensional dynamical system, which is presented by

Dhpk(t) = –Upk(t) + Vf
(
pk(t)

)

+ Wf
(
pk(t – τ )

)
+

N∑

l=1

aklE
(
ql(t) – qk(t)

)
+ yk(t), (1)

in which k = 1, 2, . . . , N , N is the total number of nodes in the networks, Dh signifies the
Caputo fractional-order derivative with order 0 < h < 1, pk(t) = (pk1(t), pk2(t), . . . , pkn(t))T is
the state vector of the kth dynamical node, U = diag{u1, . . . , un} is the self inhibition, yk(t) =
(yk1(t), yk2(t), . . . , ykn(t))T is the control inputs, f (pk(t)) = (f1(pk1(t)), . . . , fn(pkn(t)))T signifies
activation functions of the neurons at time t, τ is a positive constant, and V = [vkl]n×n

and W = [wkl]n×n represent the connection weights of the kth neuron to lth neuron, E =
diag{e1, . . . , en} represents the inner coupling matrices between two nodes k and l at the
time t, and A = (akl)N×N is the topological structure of the networks (1), in which akl is
defined as follows: if there are links from node k to node l (k �= l), then akl > 0, otherwise
akl = 0, and we assume that akk = 0, k ∈ {1, 2, . . . , N}.

Let q(t) be an isolated node, the dynamics of which is given by

Dhq(t) = –Uq(t) + Vf
(
q(t)

)
+ Wf

(
q(t – τ )

)
. (2)

Since the neuron activation function f (·) is a discontinuous function, the traditional solu-
tions are not suitable to considered system (1) and (2). To this conclusion, we introduce
the concept of Filippov solution (see [66]).

Our main aim is to solve the synchronization problem of FCDNNs. Before that, we make
the following definitions, assumptions, and lemmas.

Definition 2.4 A vector-valued function p(t) is said to be a Filippov solution for frac-
tional differential systems Dhp(t) = f (t, p), and it is defined on a degenerate interval I ⊆R.
The Filippov solution for fractional differential systems with initial values p(0) = p0 is ab-
solutely continuous on any compact subinterval [t1, t2] of I and for almost all t ∈ I . In
addition, p(0) = p0 and functional differential inclusions

Dhp(t) ∈ F(t, p),

where F(t, p) is the set-valued map of f (t, p), hold.
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Suppose that the neuron activation function f (·) satisfies the following conditions.
Assumption [H1]. For every k = 1, 2, . . . , n, suppose that the discontinuous activations

fk : R → R are bounded and continuous functions except on a finite number of jump dis-
continuities σι on every bounded interval. Furthermore, there exist left limits fk(σ –

ι ) and
right limits fk(σ +

ι ), respectively.
Based on Definition 2.4, if the activation function satisfies Assumption [H1], one can

obtain that

F
[
pk(t)

]
= c̃o

[
f
(
pk(t)

)]
=
(
c̃o
[
fk1
(
pk1(t)

)]
, . . . , c̃o

[
fkn
(
pkn(t)

)])T and

c̃o
[
fl
(
pkl(t)

)]
=
[
min

{
c̃o
[
fl
(
p–

kl(t)
)]

, c̃o
[
fl
(
p+

kl(t)
)]}

, max
{

c̃o
[
fl
(
p–

kl(t)
)]

, c̃o
[
fl
(
p+

kl(t)
)]}]

.

Assumption [H2]. For every k = 1, 2, . . . , N , l = 1, 2, . . . , n, there exist positive constants
bl, dl > 0 such that, for every pkl(t) ∈ R, ql(t) ∈ R, μ̃l(t) ∈ c̃o[fl(pkl(t))], and μl(t) ∈
c̃o[fl(ql(t))], the following inequality holds:

∣
∣μ̃kl(t) – μl(t)

∣
∣≤ bl

∣
∣pkl(t) – ql(t)

∣
∣ + dl.

Furthermore, 0 ∈ c̃o[fl(0)].
Define the error signal: αk(t) = pk(t) – q(t), then the synchronization error system can

be obtained from (1) and (2) as follows:

Dhαk(t) = –Uαk(t) + VΨ
(
αk(t)

)

+ WΨ
(
αk(t – τ )

)
+

N∑

l=1

aklE
(
αl(t) – αk(t)

)
+ yk(t), (3)

where Ψ (αk(t)) = f (pk(t)) – f (q(t)), k = 1, 2, . . . , N . Let the initial values of error system (3)
be given as

αk(t) = ψk(t) ∈ C
(
[–τ , 0],Rn), k = 1, 2, . . . , N ,

where C([–τ , 0],Rn) represents the set of all continuous differential functions from [–τ , 0]
into R

n.

Definition 2.5 FCDNNs (1) is said to be finite-time synchronized with isolated networks
(2) if there exists a settling time t1 > 0, which is a real number if

lim
t→t1

∥
∥pk(t) – q(t)

∥
∥ = 0 and

∥
∥pk(t) – q(t)

∥
∥ = 0 for t > t1, k ∈ {1, 2, . . . , N}.

Lemma 2.6 ([67]) Let q(t) ∈R
n be a continuously derivable vector-valued function, then

Dh{qT (t)q(t)
}≤ 2qT (t)

{
Dhq(t)

}
, h ∈ (0, 1).

Lemma 2.7 ([68]) If Φ1, . . . ,Φn ≥ 0, 0 < ϑ < ε, then the following inequality is established:

[ n∑

i=1

Φε
i

] 1
ε

≤
[ n∑

i=1

Φϑ
i

] 1
ϑ

.
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Lemma 2.8 ([52]) Assume that the positive definite function X(t) is a continuous function,
and it satisfies the following differential inequality:

DhX(t) ≤ –δXν(t),

where δ > 0, 0 < ν < h are all constants. Then X(t) satisfies the following differential in-
equality:

Xh–ν(t) ≤ Xh–ν(t0) –
δΓ (1 + h – ν)(t – t0)h

Γ (1 + h)Γ (1 – ν)
, t ∈ [t0, t1],

and X(t) = 0,∀t ≥ t1, where t1 is denoted by

t1 = t0 +
[

Γ (1 + h)Γ (1 – ν)Xh–ν(t0)
δΓ (1 + h – ν)

] 1
h

.

Remark 2.9 In [69, 70], the authors demonstrated the synchronization criterion of dis-
continuous fractional-order neural networks by using state feedback control law. The
global synchronization criterion of FOCDNs by using graph theory techniques was an-
alyzed in [53]. In [62, 63], the authors investigated the synchronization criterion of FO-
CONNs by using the LMI technique and Kronecker product technique. Besides, it is help-
ful for us to demonstrate our required finite-time synchronization and adaptive finite-
time synchronization criterion from the results obtained in the aforementioned references
[53, 62, 63, 69, 70].

3 Main results
In this section, we demonstrate the finite-time synchronization and adaptive finite-time
synchronization criterion of FCDNNs (1) and the isolated networks (2) by using graph
theory techniques, discontinuous state feedback control, and discontinuous adaptive feed-
back control.

3.1 Finite-time synchronization under discontinuous state feedback control
First, we design discontinuous feedback control protocol as follows:

yk(t) = –βαk(t) – ζ
∥
∥αk(t – τ )

∥
∥

1 sign
(
αk(t)

)

– η sign
(
αk(t)

)
– ξ sign

(
αk(t)

)∣
∣αk(t)

∣
∣θ , (4)

where 0 < θ < 1, β > 0, ζ > 0,η > 0, ξ > 0 are control gains, they are properly selected in
the following main theorem. According to the Filippov framework, FCDNNs (3) can be
written as follows:

Dhαk(t) ∈ –Uαk(t) + V c̃o
{
Ψ
(
αk(t)

)}
+ W c̃o

{
Ψ
(
αk(t – τ )

)}

+
N∑

l=1

aklE
(
αl(t) – αk(t)

)
– βαk(t)

– ζ
∥
∥αk(t – τ )

∥
∥

1c̃o
(
sign

(
αk(t)

))
– ηc̃o

(
sign

(
αk(t)

))
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– ξ c̃o
(
sign

(
αk(t)

))∣
∣αk(t)

∣
∣θ

⊆ –Uαk(t) + V
[
c̃o
(
pk(t)

)
– c̃o

(
q(t)

)]

+ W
[
c̃o
(
pk(t – τ )

)
– c̃o

(
q(t – τ )

)]

+
N∑

l=1

aklE
(
αl(t) – αk(t)

)

– βαk(t) – ζ
∥
∥αk(t – τ )

∥
∥

1c̃o
(
sign

(
αk(t)

))

– ηc̃o
(
sign

(
αk(t)

))
– ξ c̃o

(
sign

(
αk(t)

))∣
∣αk(t)

∣
∣θ . (5)

Then there exist a measurable function μ̃k(t) ∈ c̃o[f (pk(t))] and μ(t) ∈ c̃o[f (q(t))] for a.e.
t ∈ [–τ , t1] such that

Dhαk(t) = –Uαk(t) + V
[
μ̃k(t) – μ(t)

]

+ W
[
μ̃k(t – τ ) – μ(t – τ )

]
+

N∑

l=1

aklE
(
αl(t) – αk(t)

)

– βαk(t) – ζ
∥
∥αk(t – τ )

∥
∥

1 SIGN
(
αk(t)

)

– η SIGN
(
αk(t)

)
– ξ SIGN

(
αk(t – τ )

)∣
∣αk(t)

∣
∣θ , (6)

where SIGN(αk(t)) = [SIGN(αk1(t)), . . . , SIGN(αkn(t))]T with

SIGN(α) =

⎧
⎪⎪⎨

⎪⎪⎩

–1, α < 0,

[–1, 1], α = 0,

1, α > 0.

Before starting the finite-time synchronization results, we introduce the following nota-
tions: bmax = max1≤l≤n bl , dmax = max1≤l≤n dl , vmax = max1≤l,j≤n |vlj|, wmax = max1≤l,j≤n |wlj|,
and γ̂min = min1≤k≤N γk .

Theorem 3.1 Suppose that Assumptions [H1]–[H3] hold. Then FCDNNs (1) and the iso-
lated networks (2) are finite-time synchronized under the discontinuous feedback control
protocol (4), if

β > Λmin(U) – nbmaxvmax, (7)

ζ > bmaxwmax, (8)

η > ndmax
(
vmax + wmax

)
. (9)

Furthermore, the settling time is evaluated as follows:

t1 = t0 +
[

Γ (1 + h)Γ ( 1–θ
2 )X 2h–1–θ

2 (t0)
δΓ ( 2h+1–θ

2 )

] 1
h

,

where δ = ξ2 θ+1
2 γ̂

1–θ
2

min , X(t0) =
∑N

k=1
γk
2 αT

k (t0)αk(t0), γk signifies the cofactor of the ith diago-
nal elements of L, and Λmin(U) signifies the minimal eigenvalue of U .
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Proof For the FCDNNs error system (6), construct the following Lyapunov functional:

X(t) =
N∑

k=1

γk

2
αT

k (t)αk(t). (10)

Since (G, A) is strongly connected, by using Lemma 2.1, we get that γk > 0 for k ∈
{1, 2, . . . , N}. According to Lemma 2.6, one can get

DhX(t) ≤
N∑

k=1

γkα
T
k (t)Dh{αk(t)

}

=
N∑

k=1

γkα
T
k (t)

[

–Uαk(t) + V
[
μ̃k(t) – μ(t)

]

+ W
[
μ̃k(t – τ ) – μ(t – τ )

]
+

N∑

l=1

aklE
(
αl(t) – αk(t)

)

– βαk(t) – ζ
∥
∥αk(t – τ )

∥
∥

1 SIGN
(
αk(t)

)

– η SIGN
(
αk(t)

)
– ξ SIGN

(
αk(t)

)∣
∣αk(t)

∣
∣θ
]

. (11)

Based on Assumption [H2], one has

N∑

k=1

γkα
T
k (t)V

[
μ̃k(t) – μ(t)

]
=

N∑

k=1

n∑

l=1

n∑

j=1

γkαkl(t)vlj
[
μ̃kj(t) – μj(t)

]

≤
N∑

k=1

n∑

l=1

n∑

j=1

γk
∣
∣αkl(t)

∣
∣|vlj|

∣
∣μ̃kj(t) – μj(t)

∣
∣

≤
N∑

k=1

n∑

l=1

n∑

j=1

γk
∣
∣αkl(t)

∣
∣|vlj|

[
bj
∣
∣αkj(t)

∣
∣ + dj

]

≤ bmaxvmax
N∑

k=1

n∑

l=1

n∑

j=1

γk
∣
∣αkl(t)

∣
∣
∣
∣αkj(t)

∣
∣

+ vmax
N∑

k=1

n∑

l=1

n∑

j=1

γk
∣
∣αkl(t)

∣
∣dj

≤ nbmaxvmax
N∑

k=1

γkα
T
k (t)αk(t)

+ nvmaxdmax
N∑

k=1

γk
∥
∥αk(t)

∥
∥

1. (12)

Similar to (12), one has

N∑

k=1

γkα
T
k (t)W

[
μ̃k(t – τ ) – μ(t – τ )

]
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=
N∑

k=1

n∑

l=1

n∑

j=1

γkαkl(t)wlj
[
μ̃kj(t – τ ) – μj(t – τ )

]

≤
N∑

k=1

n∑

l=1

n∑

j=1

γk
∣
∣αkl(t)

∣
∣|wlj|

∣
∣μ̃kj(t – τ ) – μj(t – τ )

∣
∣

≤
N∑

k=1

n∑

l=1

n∑

j=1

γk
∣
∣αkl(t)

∣
∣|wlj|

[
bj
∣
∣αkj(t – τ )

∣
∣ + dj

]

≤ bmaxwmax
N∑

k=1

n∑

l=1

n∑

j=1

γk
∣
∣αkl(t)

∣
∣
∣
∣αkj(t – τ )

∣
∣

+ ndmaxwmax
N∑

k=1

n∑

l=1

γk
∣
∣αkl(t)

∣
∣

≤ bmaxwmax
N∑

k=1

γk
∥
∥αk(t)

∥
∥

1

∥
∥αk(t – τ )

∥
∥

1

+ ndmaxwmax
N∑

k=1

γk
∥
∥αk(t)

∥
∥

1. (13)

From Eqs. (11)–(13), one has

DhX(t) ≤ –
[
Λmin(U) + β – nbmaxvmax

]
N∑

k=1

γkα
T
k (t)αk(t)

–
[
ζ – bmaxwmax

]
N∑

k=1

γk
∥
∥αk(t)

∥
∥

1

∥
∥αk(t – τ )

∥
∥

1

–
[
η – ndmax

(
vmax + wmax

)]
N∑

k=1

γk
∥
∥αk(t)

∥
∥

1

+
N∑

k=1

N∑

l=1

γkα
T
k (t)aklE

(
αl(t) – αk(t)

)

– ξ

N∑

k=1

n∑

l=1

γk
∣
∣αkl(t)

∣
∣θ+1. (14)

Next, our aim is to prove

N∑

k=1

N∑

l=1

γkα
T
k (t)aklE

(
αl(t) – αk(t)

)
– ξ

N∑

k=1

n∑

l=1

γk
∣
∣αkl(t)

∣
∣θ+1 ≤ –δX

1+θ
2 (t). (15)

On the one side, we show that

N∑

k=1

N∑

l=1

γkα
T
k (t)aklE

(
αl(t) – αk(t)

)≤ 0. (16)
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To this conclusion, let α̃k(t) =
√

Eαk(t), then we can obtain from Lemma 2.1 that

N∑

k=1

N∑

l=1

γkα
T
k (t)aklE

(
αl(t) – αk(t)

)

=
N∑

k=1

N∑

l=1

γkaklα̃
T
k (t)

(
α̃l(t) – α̃k(t)

)

≤ 1
2

N∑

k=1

N∑

l=1

γkakl
(
α̃T

l (t)α̃l(t) – α̃T
k (t)α̃k(t)

)

=
1
2
∑

B∈B
W(B)

∑

(i,m)∈E(AB)

(
α̃T

i (t)α̃i(t) – α̃T
m(t)α̃m(t)

)
. (17)

For any directed cycle AB, the set E(AB) can be regarded as

E(AB) =
{

(kx, kx+1)/x = 1, 2, . . . , p – 1, p ≤ N , kp = k1
}

. (18)

It follows from (18) that

∑

(i,m)∈E(AB)

(
α̃T

i (t)α̃i(t) – α̃T
m(t)α̃m(t)

)

= α̃T
k1 (t)α̃k1 (t) – α̃T

k2 (t)α̃k2 (t)

+ α̃T
k2 (t)α̃k2 (t) – α̃T

k3 (t)α̃k3 (t)

+ α̃T
k3 (t)α̃k3 (t) – · · ·

+ α̃T
kp–1 (t)α̃kp–1 (t) – α̃T

kp (t)α̃kp (t)

+ α̃T
kp (t)α̃kp (t) – α̃T

k1 (t)α̃k1 (t)

= 0. (19)

From (17) and (19), one obtains

N∑

k=1

N∑

l=1

γkα
T
k (t)aklE

(
αl(t) – αk(t)

)≤ 0. (20)

On the other side, we show that

–ξ

N∑

k=1

n∑

l=1

γk
∣
∣αkl(t)

∣
∣θ+1 ≤ –δX

1+θ
2 (t). (21)

According to Lemma 2.7, one obtains

–
N∑

k=1

n∑

l=1

γk
∣
∣αkl(t)

∣
∣θ+1 = –

N∑

k=1

n∑

l=1

[
γ

2
1+θ

k
∣
∣αkl(t)

∣
∣2
] θ+1

2

≤ –
N∑

k=1

n∑

l=1

[

2γ
1–θ
1+θ

k
γk|αkl(t)|2

2

] θ+1
2
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≤ –2
θ+1

2
(
γ̂

1–θ
1+θ

min

) 1+θ
2

[ N∑

k=1

n∑

l=1

γk

2
∣
∣αkl(t)

∣
∣2
] θ+1

2

= –2
θ+1

2 γ̂
1–θ

2
min X

θ+1
2 (t). (22)

From (22), we have

–ξ

N∑

k=1

n∑

l=1

γk
∣
∣αkl(t)

∣
∣θ+1 ≤ –δX

1+θ
2 (t). (23)

It follows from (14), (20), and (23) that

DhX(t) ≤ –δX
1+θ

2 (t). (24)

According to Lemma 2.8, one has

X
2h–θ–1

2 (t) ≤ X
2h–θ–1

2 (t0) –
δΓ ( 2h+1–θ

2 )(t – t0)h

Γ (1 + h)Γ ( 1–θ
2 )

, t ∈ [t0, t1],

and X(t) = 0,∀t ≥ t1, where t1 is denoted by

t1 = t0 +
[

Γ (1 + h)Γ ( 1–θ
2 )X 2h–1–θ

2 (t0)
δΓ ( 2h+1–θ

2 )

] 1
h

.

Based on Definition 2.5, FCDNNs (1) and the isolated networks (2) are finite-time syn-
chronized under the discontinuous feedback control protocol (4).

The following kinds of fractional-order coupled neural networks (FCNNs) are also a
very interesting problem. The following assumption is needed to derive the FTS criterion
of FCNNs with continuous activations. �

Assumption [H4]. For every k = 1, 2, . . . , N , l = 1, 2, . . . , n, there exist positive constants
bl > 0 such that, for every pkl(t) ∈R, ql(t) ∈R, the following inequality holds:

∣
∣fkl(t) – ql(t)

∣
∣≤ bl

∣
∣pkl(t) – ql(t)

∣
∣.

Corollary 3.2 Suppose that Assumption [H4] and conditions (7) and (8) of Theorem 3.1
hold. Then FCDNNs (1) and the isolated networks (2) with continuous activations are
finite-time synchronized under the following feedback control protocol:

yk(t) = –βαk(t) – ζ
∥
∥αk(t – τ )

∥
∥

1 sign
(
αk(t)

)
– ξ sign

(
αk(t)

)∣
∣αk(t)

∣
∣θ ,

where 0 < θ < 1, β > 0, ζ > 0, ξ > 0 are control gains, and γk signifies the cofactor of the ith
diagonal elements of L.

Proof The proof of the corollary is similar to that of Theorem 3.1. Hence the proof is
omitted here. �
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3.2 Finite-time synchronization under discontinuous adaptive feedback control
Next, we design discontinuous adaptive feedback control protocol as follows:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

yk(t) = –βk(t)αk(t) – ζ‖αk(t – τ )‖1 sign(αk(t))

– (ξk(t) + η) sign(αk(t))

Dhβk(t) = λ|αk(t)|2 – φ sign[βk(t) – β] + � |αk (t)|
[βk (t)–β]

Dhξk(t) = μ|αk(t)| – σ sgn(ξk(t) – χ ),

(25)

where ζ > 0,η > 0,λ > 0,μ > 0,σ > 0,β > 0,� > 0,χ > 0 are all constants, βk(t) and ξk(t) are
adaptive control gains. According to the Filippov framework and set-valued map analysis,
FCDNNs (3) can be written as follows:

Dhαk(t) ∈ –Uαk(t) + V c̃o
{
Ψ
(
αk(t)

)}
+ W c̃o

{
Ψ
(
αk(t – τ )

)}

+
N∑

l=1

aklE
(
αl(t) – αk(t)

)
– ζ
∥
∥αk(t – τ )

∥
∥

1c̃o
(
sign

(
αk(t)

))

– βk(t)αk(t) –
(
ξk(t) + η

)
c̃o
(
sign

(
αk(t)

))

⊆ –Uαk(t) + V
[
c̃o
(
pk(t)

)
– c̃o

(
q(t)

)]

+ W
[
c̃o
(
pk(t – τ )

)
– c̃o

(
q(t – τ )

)]

+
N∑

l=1

aklE
(
αl(t) – αk(t)

)
– βk(t)αk(t)

– ζ
∥
∥αk(t – τ )

∥
∥

1c̃o
(
sign

(
αk(t)

))

–
(
ξk(t) + η

)(
sign

(
αk(t)

))
. (26)

Then there exist a measurable function μ̃k(t) ∈ c̃o[f (pk(t))] and μ(t) ∈ c̃o[f (q(t))] for a.e.
t ∈ [–τ , t1] such that

Dhαk(t) = –Uαk(t) + V
[
μ̃k(t) – μ(t)

]
+ W

[
μ̃k(t – τ ) – μ(t – τ )

]

+
N∑

l=1

aklE
(
αl(t) – αk(t)

)
– βk(t)αk(t)

– ζ
∥
∥αk(t – τ )

∥
∥

1 SIGN
(
αk(t)

)
–
(
ξk(t) + η

)(
SIGN

(
αk(t)

))
. (27)

Theorem 3.3 Suppose that Assumptions [H1]–[H3] and conditions (7)–(9) of Theorem 3.1
hold. Then FCDNNs (1) and the isolated networks (2) are finite-time synchronized under
the discontinuous adaptive feedback control protocol (25), if

χ = 1 +
�

λ
. (28)

Furthermore, the settling time is evaluated as follows:

t1 = t0 +
[X 1

2 (t0)Γ (1 + h)Γ ( 1
2 )

δΓ ( 2h+1
2 )

] 1
h

,
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where

X(t0) =
N∑

k=1

γk

2
αT

k (t0)αk(t0) +
N∑

k=1

γk

2λ

[
βk(t0) – β

]2 +
N∑

k=1

γk

2μ

[
ξk(t0) – χ

]2,

δ =
√

2 min

{

min{√γk}, min

{√
γkφ√
λ

}

, min

{√
γkσ√
μ

}}

,

and γk signifies the cofactor of the ith diagonal elements of L.

Proof For the FCDNNs error system (6), construct the following Lyapunov functional:

X(t) =
N∑

k=1

γk

2
αT

k (t)αk(t) +
N∑

k=1

γk

2λ

[
βk(t) – β

]2 +
N∑

k=1

γk

2μ

[
ξk(t) – χ

]2. (29)

Since (G, A) is strongly connected, by using Lemma 2.1 that γk > 0 for k ∈ {1, 2, . . . , N}, and
Lemma 2.6, one can get

DhX(t) ≤
N∑

k=1

γkα
T
k (t)Dh{αk(t)

}

+
N∑

k=1

γk

λ

[
βk(t) – β

]
Dhβk(t) +

N∑

k=1

γk

μ

[
ξk(t) – χ

]
Dhξk(t)

=
N∑

k=1

γkα
T
k (t)

[

–Uαk(t) + V
[
μ̃k(t) – μ(t)

]

+ W
[
μ̃k(t – τ ) – μ(t – τ )

]
+

N∑

l=1

aklE
(
αl(t) – αk(t)

)

– βk(t)αk(t) – ζ
∥
∥αk(t – τ )

∥
∥

1 SIGN
(
αk(t)

)

–
(
ξk(t) + η

)(
SIGN

(
αk(t)

))
]

+
N∑

k=1

γk

λ

[
βk(t) – β

]

×
[

λ
∣
∣αk(t)

∣
∣2 – φ sign

[
βk(t) – β

]
+

� |αk(t)|
[βk(t) – β]

]

+
N∑

k=1

γk

μ

[
ξk(t) – χ

][
μ
∣
∣αk(t)

∣
∣ – σ sgn

(
ξk(t) – χ

)]
. (30)

By using Theorem 3.1, Eq. (12), and Eq. (10), one has

DhX(t) ≤ –
[
Λmin(U) – nbmaxvmax

]
N∑

k=1

γkα
T
k (t)αk(t)

–
[
ζ – bmaxwmax

]
N∑

k=1

γk
∥
∥αk(t)

∥
∥

1

∥
∥αk(t – τ )

∥
∥

1

–
[
η – ndmax

(
vmax + wmax

)]
N∑

k=1

γk
∥
∥αk(t)

∥
∥

1
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–
N∑

k=1

γkβk(t)
∣
∣αk(t)

∣
∣2 –

N∑

k=1

γkξk(t)
∣
∣αk(t)

∣
∣

+
N∑

k=1

γk
[
βk(t) – β

]∣
∣αk(t)

∣
∣2 –

N∑

k=1

γk|βk(t) – β|φ
λ

+
N∑

k=1

γk|αk(t)|�
λ

–
N∑

k=1

γk|ξk(t) – χ |σ
μ

+
N∑

k=1

γk
[
ξk(t) – χ

]∣
∣αk(t)

∣
∣

≤ –
[
Λmin(U) + β – nbmaxvmax

]
X(t)

–
[
ζ – bmaxwmax

]
N∑

k=1

γk
∥
∥αk(t)

∥
∥

1

∥
∥αk(t – τ )

∥
∥

1

–
[
η – ndmax

(
vmax + wmax

)]
N∑

k=1

γk
∥
∥αk(t)

∥
∥

1

+
N∑

k=1

γk

[
�

λ
– χ

]
∣
∣αk(t)

∣
∣ –

N∑

k=1

γk|βk(t) – β|φ
λ

–
N∑

k=1

γk|ξk(t) – χ |σ
μ

. (31)

By virtue of Lemma 2.7, we obtain

√
√
√
√

N∑

k=1

γk

(
1
2
∣
∣αk(t)

∣
∣2 +

1
2λ

[
βk(t) – β

]2 +
1

2μ

[
ξk(t) – χ

]2
)

≤
N∑

k=1

√
γk

(
1√
2

∣
∣αk(t)

∣
∣ +

1√
2λ

[
βk(t) – β

]
+

1√
2μ

[
ξk(t) – χ

]
)

. (32)

Then, from Eq. (7)–Eq. (9), Eq. (20), and Eq. (30)–Eq. (31), we can obtain

DhX(t) ≤ –
N∑

k=1

γk

[

χ –
�

λ

]
∣
∣αk(t)

∣
∣

–
N∑

k=1

γk|βk(t) – β|φ
λ

–
N∑

k=1

γk|ξk(t) – χ |σ
μ

≤ –2

[ N∑

k=1

γk

2
∣
∣αk(t)

∣
∣ +

N∑

k=1

γk|βk(t) – β|φ
2λ

+
N∑

k=1

γk|ξk(t) – χ |σ
2μ

]

≤ –δX
1
2 (t). (33)

According to Lemma 2.8, one has

X
2h–1

2 (t) ≤ X
1
2 (t0) –

δΓ ( 2h+1
2 )(t – t0)h

Γ (1 + h)Γ ( 1
2 )

, t ∈ [t0, t1].
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The settling time t1 is estimated by

t1 = t0 +
[X 1

2 (t0)Γ (1 + h)Γ ( 1
2 )

δΓ ( 2h+1
2 )

] 1
h

.

Based on Definition 2.5, FCDNNs (1) and the isolated networks (2) are synchronized in
finite time under the discontinuous adaptive feedback control protocol (25). �

Corollary 3.4 Suppose that Assumption [H4] and conditions (7), (8), and (28) of Theo-
rem 3.3 hold. Then system (1) and the isolated networks (2) with continuous activations
are finite-time synchronized under the following adaptive feedback control protocol:

⎧
⎪⎪⎨

⎪⎪⎩

yk(t) = –βk(t)αk(t) – ζ‖αk(t – τ )‖1 sign(αk(t)) – ξk(t) sign(αk(t)),

Dhβk(t) = λ|αk(t)|2 – φ sign[βk(t) – β] + � |αk (t)|
[βk (t)–β]

Dhξk(t) = μ|αk(t)| – σ sgn(ξk(t) – χ ),

(34)

where ζ > 0,λ > 0,μ > 0,σ > 0,β > 0,� > 0,χ > 0 are all constants, βk(t) and ξk(t) are
adaptive control gains, and γk signifies the cofactor of the ith diagonal elements of L.

Proof The proof of the corollary is similar to that of Theorem 3.3. Hence the proof is
omitted here. �

Remark 3.5 It is the first time that the finite-time synchronization and adaptive finite-time
synchronization criterion of FCDNNs have been investigated. In this paper, fractional or-
der, discontinuations neuron activation, graph theory techniques, and coupling terms are
taken into consideration, and their results are very complicated and not easy to calculate.
The main innovation of this paper is to extend and to overcome this complication. Hence
our proposed models are more general and advanced.

4 Computer simulations
Here, two numerical cases are given to illustrate the efficiency of the proposed finite-time
synchronization results.

Example 4.1 Consider a class of FCDNNs on a directed graph G consisting of six identical
nodes with every isolated node network being a 2-dimensional dynamical system, which
is characterized by

Dhpk(t) = –Upk(t) + Vf
(
pk(t)

)
+ Wf

(
pk(t – τ )

)

+
6∑

l=1

aklE
(
ql(t) – qk(t)

)
+ yk(t) (35)

with the isolated networks

Dhpk(t) = –Upk(t) + Vf
(
pk(t)

)
+ Wf

(
pk(t – τ )

)
, (36)
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Figure 1 A directed graphG consisting of 6
identical nodes

where k = 1, 2, 3, 4, 5, 6, h = 0.98, let U = diag{12, 12}, τ = 2.5, E = diag{1, 1}, and

V =

[
0.5 2.8
1.4 –1.3

]

, W =

[
0.6 1
1.3 –1.5

]

.

From Fig. 1, we can see that the coupling matrix A and the corresponding Laplacian
matrix L(G, A), respectively, are given as follows:

A =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 0 0 1 0
1 0 0 0 0 1
0 1 0 0 0 1
0 0 1 0 0 0
0 0 0 1 0 1
0 0 0 1 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, L(G, A) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0 0 –1 0
–1 2 0 0 0 –1
0 –1 2 0 0 –1
0 0 –1 1 0 0
0 0 0 –1 2 –1
0 0 0 –1 0 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

The discontinuous neuron activation is selected as f (p) = 0.5 + sign(p). Then one can ob-
tain that bmax = 1, dmax = 0.5. The initial conditions are chosen as follows:

p1(0) =
(
p11(0), p12(0)

)T = (4, –4)T ,

p2(0) =
(
p21(0), p22(0)

)T = (2.5, –2.5)T ,

p3(0) =
(
p31(0), p32(0)

)T = (1.3, –3.5)T ,

p4(0) =
(
p41(0), p42(0)

)T = (1.25, –1.2)T ,

p5(0) =
(
p51(0), p52(0)

)T = (–4.25, 3.25)T ,

p6(0) =
(
p61(0), p62(0)

)T = (2.7, –4.8)T ,

q(0) =
(
q1(0), q2(0)

)T = (2.5, –4.5)T .

By simple calculation, we get γ1 = 2,γ2 = 2,γ3 = 4,γ4 = 2,γ5 = 1,γ6 = 9. The discontinu-
ous feedback control protocol is designed by

yk(t) = –14αk(t) – 3
∥
∥αk(t – τ )

∥
∥

1 sign
(
αk(t)

)

– 6 sign
(
αk(t)

)
– 0.6 sign

(
αk(t)

)∣
∣αk(t)

∣
∣0.6 (37)
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Figure 2 The state trajectories of q1(t) vs. pk1(t) for
k = 1, 2, 3, 4, 5, 6 with control (37)

for k = 1, 2, 3, 4, 5, 6. According to Theorem 3.1, it is simple to check

14 = β > Λmin(U) – nbmaxvmax = 6.4,

3 = ζ > bmaxwmax = 1.5,

6 = η > ndmax
(
vmax + wmax

)
= 4.3,

and all the conditions of Theorem 3.1 hold. Therefore, FCDNNs (35) and the isolated net-
works (36) are finite-time synchronized under the discontinuous feedback control proto-
col (37).

Furthermore, the settling time is evaluated as follows:

[H]t1 = t0 +
[

Γ (1 + h)Γ ( 1–θ
2 )X 2h–1–θ

2 (t0)
δΓ ( 2h+1–θ

2 )

] 1
h

= 0 +
[

Γ (1 + 0.98)Γ ( 1–0.7
2 )X

2(0.98)–1–0.9
2 (0)

1.0815 × Γ ( 2(0.98)+1–0.7
2 )

] 1
0.98

=
[

Γ (1.98)Γ (0.15)(18.595)0.13

1.0815 × Γ (1.13)

] 1
0.98

= 8.916.

Figures 2–5 demonstrate the numerical simulation results, which confirms the obtained
theoretical findings. Figure 2 and Fig. 3 display the time response of considered systems
(35) and (36) with control input (37), respectively, while the time response of synchroniza-
tion errors αk1(t) and αk2(t) is displayed in Fig. 4 and Fig. 5, respectively.

Example 4.2 Consider a class of FCDNNs on directed graph G consisting of four identical
nodes characterized by the following form:

Dhpk(t) = –Upk(t) + Vf
(
pk(t)

)

+ Wf
(
pk(t – τ )

)
+

4∑

l=1

aklE
(
ql(t) – qk(t)

)
+ yk(t) (38)
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Figure 3 The state trajectories of q2(t) vs. pk2(t) for
k = 1, 2, 3, 4, 5, 6 with control (37)

Figure 4 The change processes of synchronization
errors with control (37)

Figure 5 The change processes of synchronization
errors with control (37)

with the isolated networks

Dhpk(t) = –Upk(t) + Vf
(
pk(t)

)
+ Wf

(
pk(t – τ )

)
, (39)

where k = 1, 2, 3, 4, h = 0.98, let U = diag{10, 10}, τ = 1.5, E = diag{1, 1}, and

V =

[
1.4 –0.4

–2.2 1.2

]

, W =

[
1 1

–1 1.5

]

.



Pratap et al. Advances in Difference Equations         (2020) 2020:97 Page 19 of 24

Figure 6 A directed graphG consisting of 4
identical nodes

Figure 7 The state trajectories of q1(t) vs. pk1(t) for
k = 1, 2, 3, 4 with control (40)

From Fig. 6, we can see that the coupling matrix A and the corresponding Laplacian
matrix L(G, A), respectively, are given as follows:

A =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 0 0 1 0
1 0 0 0 0 1
0 1 0 0 0 1
0 0 1 0 0 0
0 0 0 1 0 1
0 0 0 1 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, L(G, A) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0 0 –1 0
–1 2 0 0 0 –1
0 –1 2 0 0 –1
0 0 –1 1 0 0
0 0 0 –1 2 –1
0 0 0 –1 0 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

The discontinuous neuron activation is chosen as f (p) = 0.1 + sign(p). Then one can obtain
that bmax = 1.75, dmax = 0.2. The initial conditions of systems (38) and (39) are: p1(0) =
(2.5, 2.5), p2(0) = (1.75, 2.5)T , p3(0) = (1.2, 1.5)T , p4(0) = (0.25, 2)T , q(0) = (3, 3)T .

By simple calculation, we get γ1 = 2,γ2 = 4,γ3 = 2,γ4 = 1. The discontinuous adaptive
feedback control protocol is designed by

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

yk(t) = –βk(t)αk(t) – 3‖αk(t – τ )‖1 sign(αk(t))

– (ξk(t) + 2) sign(αk(t)),

Dhβk(t) = |αk(t)|2 – 0.5 sign[βk(t) – 2.5] + 0.004|αk (t)|
[βk (t)–β]

Dhξk(t) = 0.95|αk(t)| – σ sgn(ξk(t) – 1.004)

(40)
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Figure 8 The state trajectories of q2(t) vs. pk2(t) for
k = 1, 2, 3, 4 with control (40)

Figure 9 The change processes of synchronization
errors with control (40)

for k = 1, 2, 3, 4. According to Theorem 3.3, it is simple to check

2.5 = β > Λmin(U) – nbmaxvmax = 2.3,

3 = ζ > bmaxwmax = 2.625,

2 = η > ndmax
(
vmax + wmax

)
= 1.48,

and all the conditions of Theorem 3.3 are satisfied. Therefore, FCDNNs (38) and the iso-
lated networks (39) are finite-time synchronized under the discontinuous adaptive feed-
back control protocol (40). Next, we take the initial values of the discontinuous adap-
tive feedback control protocol (40) as follows: β1(0) = (0.02, 0.03)T , β2(0) = (0.03, 0.01)T ,
β3(0) = (0.02, 0.01)T , β4(0) = (0.01, 0.02)T , ξ1(0) = (0.05, 0.03)T , ξ2(0) = (0.04, 0.03)T , ξ3(0) =
(0.03, 0.04)T , and ξ4(0) = (0.02, 0.01)T .

Furthermore, the settling time is evaluated as follows:

t1 = t1 = t0 +
[X 1

2 (t0)Γ (1 + h)Γ ( 1
2 )

δΓ ( 2h+1
2 )

] 1
h

.

= 0 +
[√

76.945 × Γ (1 + 0.98)
√

π

1.414 × Γ ( 2(0.98)+1
2 )

] 1
0.98

= 12.95.
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Figure 10 The change processes of synchronization
errors with control (40)

Figure 11 The evolutions of the control gains
βk(t) (k = 1, 2, 3, 4) of controller (40)

Figure 12 The evolutions of the control gains ξk (t)
(k = 1, 2, 3, 4) of controller (40)

Figures 6–12 demonstrate the numerical simulation results, which confirms the accu-
racy of the theoretical results. Figure 7 and Fig. 8 show the state trajectories of considered
systems (38) and (39) respectively. Figures 9–10 present the evaluations of synchroniza-
tion errors between FCDNNs (38) and isolated networks (39) under the controller (40).
Figure 11–12 demonstrate the adaptive feedback control gains (40), which shows that the
adaptive control gains may go to some positive constants.
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5 Conclusions
In this research paper, we have examined the finite-time synchronization and adaptive
finite-time synchronization for graph theory perspective FCDNNs. By employing differ-
ential inclusion theory, Filippov framework, and designed discontinuous controllers, sev-
eral finite-time synchronization criteria are established based on the graph theory ap-
proach. Numerical computer simulations are given to illustrate the accuracy of the pro-
posed finite-time synchronization results. Our future work will be focused on finite-time
synchronization criterion for graph theory perspective FCDNNs with coupling delays and
impulses.
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