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Abstract
We consider the second-order rational difference equation

xn+1 = γ + δ
xn
x2n–1

,

where γ , δ are positive real numbers and the initial conditions x–1 and x0 are positive
real numbers. Boundedness along with global attractivity and Neimark–Sacker
bifurcation results are established. Furthermore, we give an asymptotic
approximation of the invariant curve near the equilibrium point.
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1 Introduction and preliminaries
In this paper we consider the following second-order rational difference equation, where
we introduce the quadratic term into the denominator

xn+1 = γ + δ
xn

x2
n–1

, n = 0, 1, . . . . (1)

We assume that γ , δ > 0 and initial conditions x–1, x0 are positive real numbers. It is con-
venient to introduce the change of variable

yn =
xn

γ
. (2)

This change of variable transforms Eq. (1) into the equation

xn+1 = 1 + p
xn

x2
n–1

, n = 0, 1, . . . , (3)

where p = δ/γ 2 > 0.
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The linear rational version of Eq. (3),

xn+1 = a +
xn

xn–1
, n = 0, 1, . . . , (4)

was considered in [1], where the authors proved that the unique positive equilibrium x̄ =
a + 1 is globally asymptotically stable. In [2], the authors investigated Eq. (4) but with
quadratic terms in both the numerator and denominator. More precisely, they considered
the following equation:

xn+1 = a +
x2

n
x2

n–1
, n = 0, 1, . . . . (5)

They proved that the unique positive equilibrium x̄ = a + 1 is globally asymptotically stable
if a >

√
2. Also, they computed the direction of the Neimark–Sacker bifurcation. We can

see that the introduction of quadratic terms into Eq. (4) changes the character of local
stability and, consequently, the global dynamics as well.

An elementary calculation shows that Eq. (3) has the unique positive equilibrium point

x̄ = (
√

4p + 1 + 1)/2. (6)

In this paper we prove that the parameter space splits into three regions given by p <
2, p > 2, and p = 2. By using a result from [3], we obtain a global result in the case p ≤
1+

√
2

2 . We conjecture that the equilibrium point (6) is globally asymptotically stable for
p < 2. To obtain a sequence of invariant and attractive sets that contain all solutions in the
case 1 < p < ∞, we use the technique that is similar to those used in [4, 5] and [6]. This
technique is a special case of the so-called Kobayashi metric mentioned in [6]. Namely, we
construct a one-parameter family St of compact sets invariant for all t such that t0(p) ≤
t < ∞, for some t0(p) > x̄. Figure 1 shows a typical set St . The boundary consists of four
linear segments P1P2, P2P3, P3P4, P4P5 and the curve C51, which is the part of a parabola
joining the points P1 and P5. By using such a construction, it can be shown that any image
of a bounded subset of R2 under the map T is contained in a T-invariant compact set, see

Figure 1 The boundary of a set St (solid) and its image T (∂St ) (dashed)
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[1, 7, 8]. In the case p = 2, Neimark–Sacker bifurcation occurs, and we approximate the
invariant curve near the positive equilibrium point. For the case p > 2, it is easy to see that
the equilibrium point (6) is a repeller.

The paper is structured as follows. In Sect. 2, a local analysis of the positive equilibrium
is performed. In Sect. 3 we present some results about semicycle character of solutions of
Eq. (3). Section 4 contains the global stability analysis of the positive equilibrium in the
case p ≤ 1+

√
2

2 . A proof of boundedness of solutions of Eq. (3) for 1 < p < ∞ is presented in
Sect. 5. Section 6 gives a reduction to the Birkhoff normal form and computation of the
coefficients of the Neimark–Sacker bifurcation and the asymptotic approximation of the
invariant curve near the positive equilibrium point of Eq. (3).

2 Linearized stability
In this section, we perform a local stability analysis of the positive equilibrium of Eq. (3).

Set

f (u, v) = 1 + p
u
v2

and observe that

fu(u, v) =
p
v2

and

fv(u, v) = –
2pu
v3 .

If x̄ denotes an equilibrium point of Eq. (3), then the linearized equation associated with
Eq. (3) about the equilibrium point x̄ is

zn+1 = pzn + qzn–1,

where

p = fu(x̄, x̄) and q = fv(x̄, x̄). (7)

Now, the linearized equation of Eq. (3) at the equilibrium point x̄ = 1
2 (

√
4p + 1 + 1) has the

following form:

zn+1 =
p
x̄2 zn –

2p
x̄2 zn–1, n = 0, 1, . . . . (8)

The characteristic equation associated with Eq. (8) is given by

λ2 –
p
x̄2 λ +

2p
x̄2 = 0. (9)

By using Theorem 1.1.1 in [1] it is easy to see that the following linearized stability result
holds:
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Theorem 1 Assume p > 0. Then the equilibrium point x̄ = 1
2 (

√
4p + 1 + 1) of (3) is

(i) Locally asymptotically stable if p < 2.
(ii) A repeller if and only if p > 2.

(iii) A non-hyperbolic equilibrium if and only if p = 2.

3 Semicycle analysis
In this section, we present some results about the semicycle character of solutions of
Eq. (3). See [1, 9] for more about semicycle analysis.

Consider the following second order difference equation:

xn+1 = xnh(xn, xn–1), n = 0, 1, . . . . (10)

The following result holds.

Theorem 2 Assume
(i) h ∈ [(0,∞) × (0,∞), (0,∞)];

(ii) xh(x, y) is increasing in x and decreasing in y;
(iii) h(x, y) is decreasing in each argument;
(iv) xh(x, x) is decreasing in x;
(v) The equation

xn+1 = xnh(xn, xn–1), n = 0, 1, . . . ,

has a unique positive equilibrium x̄.
Then the following holds:

(i) If xN–1 < x̄ ≤ xN (respectively, xN ≤ x̄ < xN–1), then x̄ ≤ xN+1 (respectively, xN+1 ≤ x̄).
(ii) If x̄ ≤ xN–1, xN (respectively, xN , xN–1 ≤ x̄), then xN+1 ≤ xN (respectively, xN+1 ≥ xN ).

Moreover, except in the case xN–1 = xN = x̄, the inequalities are strict. Furthermore, if
xN ≤ xN–1 (respectively, xN–1 ≤ xN ) then xN+1 < x̄ (respectively, x̄ < xN+1).

(iii) If x̄ ≤ xN–1, xN , xN+1 (respectively, xN , xN–1, xN+1 ≤ x̄), then xN+2 ≤ x̄ (respectively,
x̄ ≤ xN+2).

(iv) Except possibly for the first semicycle, every semicycle contains two or three terms.
(v) The extreme in each semicycle occurs at either the first or the second term.

Proof We only give the proof for positive semicycles whose terms are not equal to the
equilibrium x̄. The proof for negative semicycles is similar and will be omitted. The proof
for the trivial semicycle is obvious.

(i) Assume that N ≥ 0 is such that xN–1 < x̄ ≤ xN . Then, by using assumption (iv), we
have

xN+1 = xN h(xN , xN–1) > x̄f (x̄, x̄) = x̄,

so xN+1 is also in the same semicyle.
(ii) Assume that N ≥ 0 such that x̄ ≤ xN–1, xN . Then (iii) implies

xN+1 = xN h(xN , xN–1) < xN h(x̄, x̄) = xN .
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Assume that xN ≤ xN–1 then (iii) and (iv) imply

xN+1 = xN h(xN , xN–1) ≤ xN h(xN , xN ) < x̄h(x̄, x̄) = x̄.

(iii) Assume that N ≥ 0 such that x̄ ≤ xN–1, xN , xN+1. Then by statement (ii), we have
xN+1 ≤ xN . Now, assumptions (ii) and (iv) imply

xN+2 = xN+1h(xN+1, xN ) ≤ xN+1h(xN+1, xN+1) < x̄h(x̄, x̄) = x̄.

The rest of the proof follows from (i)–(iii). �

It is obvious that Eq. (3) can be rewritten in the following form:

xn+1 = xn

(
1
xn

+
p

x2
n–1

)
. (11)

Set

h(xn, xn–1) =
1
xn

+
p

x2
n–1

.

It is easy to see that this function h satisfies all the conditions of Theorem 2, which implies
that all statements hold. Now, we have the following corollary of Theorem 2.

Corollary 1 Assume that p > 0. Then for Eq. (3) the following holds true:
(i) Except possibly for the first semicycle, every semicycle contains two or three terms.

(ii) The extreme in each semicycle occurs at either the first or the second term.
(iii) Every nontrivial solution is strictly oscillatory about the equilibrium x̄.
(iv) Equation (3) does not have any period 2 or period 3 point in (0, +∞).

4 Global asymptotic stability analysis
The following lemma details an invariant interval of Eq. (3).

Lemma 1 Equation (3) possesses an invariant interval only if 0 < p < 1. The interval
[1, 1

1–p ] is an invariant and attractive set.

Proof Assume that interval [L, U], 0 < L < U is an invariant interval. Then by using the
monotonicity of function f , for u, v ∈ [L, U], we have

L < f (L, U) ≤ f (u, v) < f (U , L) ≤ U

which is equivalent to

U
(
p – L2) + L2 ≤ 0 and (L – 1)U2 – Lp ≤ 0.

It is easy to see that

1
2

L
(
L + 1 –

√
(L – 1)(L + 3)

)
< 1
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for 1 < L < 3
2 , hence 0 < p < 1. Straightforward calculations show that [1, 1

1–p ] is an invariant
and attractive set. �

Notice that Lemma 1 implies that Eq. (3) does not posses an invariant and attractive set
for p > 1. Also, it is easy to see that in the interval [1, 1

1–p ] we can apply Theorem 1.4.5 (see
Sect. 1.4. of the monograph [1] or paper [10]) and obtain an attractivity result. Since an
invariant interval does not exist for p > 1, it is not possible to obtain an attractivity result
by applying Theorem 1.4.5.

Because of the above discussion, we apply Lemma 3.3 and Theorem 2.1 in [3] to ob-
tain a global attractivity result of Eq. (3) for p ≤ 1+

√
2

2 . For this purpose, we substitute the
following equation:

xn = 1 + p
xn–1

x2
n–2

into Eq. (3) and get

xn+1 = 1 +
p

x2
n–1

+
p2

x2
n–2xn–1

. (12)

Observe now that every solution of Eq. (3) is also a solution of Eq. (12), with initial values
x–2, x–1 and x0 = 1 + p x0

x2
–1

.

Remark 1 Notice that every solution of Eq. (12) satisfies the following inequality:

1 ≤ xn ≤ 1 + p + p2, n = 1, 2, . . . , for p > 0,

which implies that every solution of Eq. (3) is bounded.

Observe also that Eq. (12) is of the form xn+1 = g(xn–2, xn–1) where

g(x, y) = 1 +
p
y2 +

p2

x2y
.

Set

G(x) = g(x, x) = 1 +
p
x2 +

p2

x3 =
p2 + px + x3

x3 . (13)

Notice that equations (3) and (12) have the same unique positive equilibrium x̄ =
1
2 (

√
4p + 1 + 1). Hence, to prove the global attractivity of equilibrium point x̄ of Eq. (3), it

is sufficient to prove the global attractivity of x̄ of Eq. (12). The following theorem holds.

Theorem 3 Assume that p ≤ 1+
√

2
2 . Then the unique positive equilibrium of (3) is globally

asymptotically stable.

Proof First, computing the first-order partial derivatives of g , it is easy to see that

∂g
∂x

(x, y) < 0 and
∂g
∂y

(x, y) < 0, for all x, y > 0.
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From

G′(x̄) = –
16p(3p +

√
4p + 1 + 1)

(
√

4p + 1 + 1)4

we have G′(x̄) ≥ –1 if p ≤ 1+
√

2
2 . The Schwarzian derivative,

SG(x) =
G′′′(x)
G′(x)

–
3
2

(
G′′(x)
G′(x)

)2

,

is given by

SG(x) = –
6(6p2 + 4px + x2)

x2(3p + 2x)2 ,

and it is obvious that

SG(x) < 0, for all x ≥ 0.

Therefore, by Lemma 3.3 and Theorem 2.1 in [3], equilibrium x̄ is a global attractor of all
positive solutions of Eq. (12), and hence is also a global attractor of all positive solutions
of Eq. (3). �

5 Attractive set for solutions
In this section, we give a construction of a sequence of invariant and attractive sets that
contain all solutions. The main result of this section is Theorem 5 concerning attractive
sets for solutions of Eq. (3).

Throughout the section we shall assume the inequality

1 < p < ∞.

The change of variables un = xn–1 and vn = xn transforms Eq. (3) into the system of differ-
ence equations:

⎧
⎨

⎩
un+1 = vn,

vn+1 = 1 + p vn
u2

n
.

(14)

The map T corresponding to system (14) is given by

T

(
x
y

)

:=

(
y

1 + p y
x2

)

. (15)

It is obvious that T(R2
+) ⊂ (1,∞) × (1,∞) and T((1,∞) × (1,∞)) ⊂ (1,∞) × (1,∞), so

it is sufficient to consider the map T on the set K = (1,∞) × (1,∞). Let T = (T1, T2). The
equilibrium curves of T are the following sets:

C1 :=
{

(x, y) ∈K : T1(x, y) = x
}

and C2 :=
{

(x, y) ∈K : T2(x, y) = y
}

.
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It is easy to see that the equilibrium curves are as follows:

C1 :=
{

(x, y) ∈K : y = x
}

and C2 :=
{

(x, y) ∈K : x =
√

py
y – 1

}
.

Assume that t is any parameter such that t > x̄. Since x̄ > 1, we have t > 1. This implies
that assumption t > x̄ is equivalent to t2 – t – p > 0.

Now, consider the following five points, see Fig. 1:

P1 =
(√

pt
t – 1

, t
)

, P2 = (t, t), P3 =
(

t, 1 +
p
t

)
,

P4 =
(

1, 1 +
p
t2

)
, P5 =

(
1,

t – 1
p

)
.

Denote with 	ne the northeast partial ordering on R
2 whose nonnegative cone is the stan-

dard first quadrant {(u, v) : u, v ≥ 0}. That is, (u1, v1) 	ne (u2, v2) if and only if u1 ≤ u2 and
v1 ≤ v2, see [11]. The following lemma holds.

Lemma 2 The following statements hold true.
(i) P1 	ne P2, P3 	ne P2, P4 	ne P3, P4 	ne P5.

(ii) Assume that t3 – (p + 1)t2 – p2 > 0, then P5 	ne P1.

Proof Notice that P1 	ne P2 is equivalent with t2 – t – p > 0 which is true since t > x̄. Since
t > 1 and p > 1 it is obvious that P3 	ne P2, P4 	ne P3 and P5 	ne P1. Only, we have to check
that P4 	 P5. This is equivalent to

1 +
p
t2 ≤ t – 1

p
,

which is true if and only if t3 – t2(1 + p) – p2 ≥ 0. �

Denote by PiPj the line segment joining points Pi and Pj for 1 ≤ i, j ≤ 5, i 
= j.
Let

C51 :=
{(

x,
x2(t – 1)

p

)
: 1 ≤ x ≤

√
pt

t – 1

}

be the part of parabola

y =
x2(t – 1)

p

between P5 and P1.
Let St be set consisting of four line segments PiPj and curve C51, namely of

P1P2, P2P3, P3P4, P4P5,C51,

as in Fig. 1.
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To prove some properties of images of the line segments PiPj and curve C51, we shall
employ the resultant of two polynomials, see [12, 13]. Let f1(x) = anxn + an–1xn–1 + · · · +
a1x + a0 and g1(x) = bmxm + bm–1xm–1 + · · · + b1x + b0 be two polynomials of degrees n
and m, respectively. Their resultant Res(f1, g1) is the determinant of the (m + n) × (m + n)
Sylvester matrix given by

Syl(f1, g1) =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

an an–1 . . . a1 a0 0 . . . 0
0 an an–1 . . . a1 a0 . . . 0
...
0 . . . an an–1 an–2 . . . a1 a0

bm bm–1 . . . b1 b0 0 . . . 0
0 bm bn–1 . . . b1 b0 . . . 0
...
0 0 . . . bm bm–1 bm–2 . . . b0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

or

Res(f1, g1) = am
n bn

m

n∏

i=1

m∏

j=1

(αi – βj),

where αi, i = 1, 2, . . . , n and βj, j = 1, 2, . . . , m are the zeros of the polynomials f1(x) and g1(x),
respectively.

The following lemma holds.

Lemma 3 Let f1(x) and f2(x) be two polynomials of degrees n ≥ 1 and m ≥ 1, respectively.
Further, suppose that f1(x) and g1(x) each have exactly one positive root αn and βm. Assume
that an, bm > 0. Then (–1)n–1(αn – βm) > 0 if and only if res(f1, f2) > 0. Furthermore, assume
that res(f1, f2) > 0. If n is odd then f1(x) > 0 ⇒ f2(x) > 0 and if n is even then f2(x) > 0 ⇒
f1(x) > 0.

Proof Since αn is the only one positive root of f1(x), and βm is the only one positive root
of g1(x), we have

f1(x) = an(x – αn)f2(x), where f2(x) ≥ 0 ∀x > 0,

g1(x) = bm(x – βm)g2(x), where g2(x) ≥ 0 ∀x > 0,

where the leading coefficient of f2(x) and g2(x) is one. We have

Res(f1, g1) = am
n bn

m

n∏

i=1

m∏

j=1

(αi – βj)

= am
n bn

m

n∏

i=1

(αi – βm)g2(αi)
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= am
n bn

m

n∏

i=1

(αi – βm)
n∏

i=1

g2(αi)

= am
n bn

m(–1)n–1(αn – βm)f2(αn)
n∏

i=1

g2(αi).

This implies

Res(f1, g1) > 0 ⇔ (–1)n–1(αn – βm) > 0.

Assume that Res(f1, g1) > 0. Then from the previous conclusion, we have αn > βm. Since
an, bm > 0, we have that f2(x) > 0 ⇔ x > βm and f1(x) > 0 ⇔ x > αn, from which the proof
follows. �

Also, we shall need the following two lemmas.

Lemma 4 Assume that p > 1. The equation

t5 –
(
p2 + p + 1

)
t4 + 2pt3 – p

(
p2 + 2

)
t2 + p2t – p2 = 0

has exactly one positive root and two pairs of conjugate complex roots.

Proof Let

f̃ (t) = t5 –
(
p2 + p + 1

)
t4 + 2pt3 – p

(
p2 + 2

)
t2 + p2t – p2.

By the Descartes’ Rule of Signs, f̃ (t) = 0 has no negative roots. The following matrix, called
the discrimination matrix of f̃ (y) and f̃ ′(y), see [14], is actually the Sylvester matrix of f̃ (y)
and f̃ ′(y) with some permuted rows, and is given by

Discr(f̃ ) =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1 –B 2p –Ap p2 –p2 0 0 0 0
0 5 –4B 6p –2Ap p2 0 0 0 0
0 1 –B 2p –Ap p2 –p2 0 0 0
0 0 5 –4B 6p –2Ap p2 0 0 0
0 0 1 –B 2p –Ap p2 –p2 0 0
0 0 0 5 –4B 6p –2Ap p2 0 0
0 0 0 1 –B 2p –Ap p2 –p2 0
0 0 0 0 5 –4B 6p –2Ap p2 0
0 0 0 0 1 –B 2p –Ap p2 –p2

0 0 0 0 0 5 –4B 6p –2Ap p2

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

,

where A = p2 + 2 and B = p2 + p + 1. Let Dk denote the determinant of the submatrix
of Discr(f̃ ), formed by the first 2k rows and the first 2k columns, for k = 1, . . . , 5. So, by
straightforward calculation one can see that

D1(p) = 5,

D2(p) = 4
(
p4 + 2p3 + 3p2 – 3p + 1

)
,
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D3(p) = –p
(
8p8 + 24p7 + 64p6 + 77p5 + 76p4 + 100p3 – 24p2 + 80p + 16

)
,

D4(p) = –2p4(4p11 + 12p10 + 32p9 + 19p8 – 20p7 – 62p6 – 120p5

+ 70p4 – 246p3 + 178p2 – 160p – 32
)

D5(p) = p8(16p12 + 44p11 + 84p10 – 108p9 – 404p8 – 348p7 + 384p6

+ 1856p5 – 427p4 + 960p3

– 480p2 + 1536p + 256
)

One can see that D3(p) < 0. By using Theorem 1 in [14] for the polynomial D5(p), one can
see that D5 has five pairs of conjugate complex roots and two negative roots for p > 1, which
implies D5(p) > 0. Then the sign list of the sequence {D1(p), D2(p), D3(p), D4(p), D5(p)} is
given by

[
1, 1, –1, sign

(
D4(p)

)
, 1

]
, (16)

from which it follows that the number of sign changes of the revised sign list of the list
(16) is two. Now, the statement follows in view of Theorem 1 in [14]. �

Lemma 5 Assume that 1 < p < ∞. Let

P(1)
p (t) := t2 – t – p,

P(2)
p (t) := t3 – (p + 1)t2 – p2,

P(3)
p (t) := 2t3 – p2t2 – 2t2 + 2pt – 2p,

P(4)
p (t) := t5 –

(
p2 + p + 1

)
t4 + 2pt3 – p

(
p2 + 2

)
t2 + p2t – p2.

Then P(i)
p , 1, . . . , 4, have exactly one positive root and the following holds:

(i) P(2)
p (t) > 0 ⇒ P(1)

p (t) > 0;
(ii) P(4)

p (t) > 0 ⇒ P(3)
p (t) > 0;

(iii) P(4)
p (t) > 0 ⇒ P(2)

p (t) > 0.

Proof By Lemma 4, P(4)
p (t) has exactly one positive root. By the Descartes’ Rule of Signs,

P(1)
p (t) and P(2)

p (t) have exactly one positive root, and P(3)
p (t) has no negative root. The dis-

criminant of P(3)
p (t) is given by

g̃(p) := Dis
(
P(3)

p
)

= –4p
(
2p6 – p5 + 12p4 – 40p3 + 40p2 + 32p + 16

)
.

Since

g̃(u + 1) = –4(u + 1)
(
2u6 + 11u5 + 37u4 + 38u3 + 12u2 + 47u + 61

)

for u > 0, we have Dis(P(3)
p ) < 0 for p > 1. This implies that P(3)

p has one pair of conjugate
complex roots. Hence, P(3)

p (t) has exactly one positive root.
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The rest of the proof follows from the facts:

res
(
P(2)

p , P(1)
p

)
= 4p4 > 0 for p > 0;

res
(
P(4)

p , P(2)
p

)
= p6(p7 – p6 + p5 – 9p4 + 13p3 – 6p2 + 4p – 2

)
> 0 for p > 1;

res
(
P(4)

p , P(3)
p

)
= p7(p7 + 2p6 – 8p4 – 16p3 + 16p2 + 16p + 32

)
> 0 for p > 1,

which can be verified in a similar way and by using Lemma 3. �

Lemmas 6 and 7 given below detail the images of line segments PiPj and curve C51 under
the map T .

Lemma 6 Assume that 1 < p < ∞ < and P(2)
p (t) > 0 Then the following holds:

(i) T(P1P2) = P2P3;
(ii) T(P2P3) ⊂ P2P4 \ {P4};

(iii) T(C51) ⊂ P1P2 \ {P1}.

Proof
(i) Since P1P2 = {(1 – u)P1 + uP2 : 0 ≤ u ≤ 1}, we have

T(P1P2) =
{(

t,
pt

((1 – u)
√

pt
t–1 + tu)2

+ 1
)

: 0 ≤ u ≤ 1
}

= P2P3.

(ii) From P2P3 = {(1 – u)P2 + uP3 : 0 ≤ u ≤ 1} we have

T(P2P3) =
{(

pu
t

– tu + t + u,
p2u + pt(t + u – tu) + t3

t3

)
: 0 ≤ u ≤ 1

}

=
{

(x1(u), y1(u) : 0 ≤ u ≤ 1
}

.

Solving x1(u) = x for u, we obtain

u = –
t(t – x)

p – t2 + t
.

Substituting this into y = y1(u), we get

y =
px
t2 + 1.

So we obtain

T(P2P3) =
{(

x,
px
t2 + 1

)
: 1 +

p
t

≤ x ≤ t
}

.

Since

P3P4 =
{(

x,
px
t2 + 1

)
: 1 ≤ x ≤ t

}
and t2 – t – p > 0,

we obtain T(P2P3) ⊂ P3P4 \ {P4}.
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(iii) Since C51 = {(u, u2(t–1)
p ) : 1 ≤ u ≤

√
pt

t–1 }, we obtain

T(C51) =
{(

(t – 1)u2

p
, t

)
: 1 ≤ u ≤

√
pt

t – 1

}

=
{

(x2(u), y2(u) : 1 ≤ u ≤
√

pt
t – 1

}
.

Since x2(1) = ( t–1
p , t) and x2(

√
pt

t–1 ) = (t, t), we have that T(C51) ⊂ P1P2 \ {P1}. �

Lemma 7 Assume that 1 < p < ∞ and P(4)
p (t) > 0. Then the following holds:

(i) T(P3P4 \ {P3}) ⊂ int(St);
(ii) T(P4P5 \ {P5}) ⊂ int(St)

Proof From (ii) and (iii) of Lemma 5, we have 2t3 – p2t2 + 2pt – 2p – 2t2 > 0.
(i) From P3P4 = {(1 – u)P3 + uP4 : 0 ≤ u ≤ 1} we have

T(P3P4) =
{(

p(t + u – tu) + t2

t2 ,
p(p(t(–u) + t + u) + t2)

t2(t + u – tu)2 + 1
)

: 0 ≤ u ≤ 1
}

=
{(

x3(u), y3(u)
)

: 0 ≤ u ≤ 1
}

.

Solving x3(u) = x for u, we obtain

u =
t(p – tx + t)

p(t – 1)
.

Substituting this into y = y3(u), we get

y3(x) =
p3x

t4(x – 1)2 + 1.

So we obtain

T(P2P3) =
{(

x,
p3x

t4(x – 1)2 + 1
)

:
p
t2 + 1 ≤ x ≤ p

t
+ 1

}
.

It is easy to see

y′
3(x) = –

p3(x + 1)
t4(x – 1)3 and y′′

3(x) =
2p3(x + 2)
t4(x – 1)4 .

Since

y3

(
p
t2 + 1

)
= p

(
p
t2 + 1

)
+ 1,

to show T(P2P3) ⊂ P2P3 it is enough to prove

y3

(
p
t2 + 1

)
–

( p
t2 + 1)2(t – 1)

p
< 0.



Bešo et al. Advances in Difference Equations         (2020) 2020:19 Page 14 of 22

Since

y3

(
p
t2 + 1

)
–

( p
t2 + 1)2(t – 1)

p

=
p3t2 + p2t4 – p2t + p2 + pt4 – 2pt3 + 2pt2 – t5 + t4

pt4

= –
P(4)

p (t)
pt4 < 0,

we have T(P3P4) ⊂ St .
(ii) One can see that T(P4P5) = {(x, 1 + px) : p

t2 + 1 ≤ x ≤ t–1
p }. Since C51 is the graph of

an increasing, concave up function y = x2(t–1)
p , it is enough to show that its slope at

( p
t2 + 1, p( p

t2 + 1) + 1) is not smaller than the slope of the line equation y = 1 + px, i.e.,

2(t – 1)( p
t2 + 1)

p
– p =

2t3 – p2t2 + 2pt – 2p – 2t2

pt2 > 0,

which is true by relation (iii) of Lemma 6.
�

In the sequel let t0(p) be a unique positive root of the equation (see Lemma 4)

t5 –
(
p2 + p + 1

)
t4 + 2pt3 – p

(
p2 + 2

)
t2 + p2t – p2 = 0.

Lemma 8 details elementary properties of sets St . See Fig. 1.

Lemma 8 Assume that 1 < p < ∞.
(i) (x̄, x̄) ∈ St for t0(p) ≤ t < ∞.

(ii) If t0(p) < t′ < t < ∞, then St′ ⊂ int(St).
(iii) If (1,∞)2 = ∪{St : t0(p) ≤ t < ∞}.
(iv) For (x, y) /∈ St0(p) there exists t′ > t0(p) such that (x, y) ∈ ∂St′ .

Proof Statement (i) follows from the construction of the set St and the point P1 which
belongs to the equilibrium curve C2. Statement (ii) follows directly from the definition of
the set St and Lemmas 7, 6, and 2. Notice that the x-coordinate of the point P1 goes to
infinity as t approaches one. Then it is obvious that the union of the sets St covers the set
(1,∞)2, from which statement (iii) follows. Statement (iv) follows from (iii) and definition
of the set St . �

A set R is said to be invariant under the map T if T(R) ⊂ R.

Lemma 9 Assume that 1 < p < ∞. The set St is invariant if t0(p) ≤ t < ∞. Further T4(St) ⊂
int(St).

Proof It is very easy to see that the map T is 1 – 1 on (1,∞)2. From this and from the fact
that St contains the unique positive fixed point of T , it follows that to prove St is invariant,
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it suffices to show T(∂St) ⊂ St , which follows from Lemmas 6 and 7. The rest of the proof
follows from Lemmas 2 and 8. See Fig. 1. �

For A ⊂ R
2
+ let ω(A) denote the omega-limit of A under the map T , i.e., the set of all

accumulation points of all sequences {Tn(x)} for x ∈A.
Lemma 4, given below details the property of the omega limit set.

Theorem 4 Assume that 1 < p < ∞. Then ω((0,∞) × (0,∞)) ⊂ St0(p).

Proof Let (x, y) ∈ (0,∞) × (0,∞). Since T(x, y) ∈ (1,∞) × (1,∞), we have T(x, y) ∈ St for
some t > t0(p). By Lemma 9, Tn(x, y) ∈ St for n > 1 and Tn(x, y) has at least one accu-
mulation point (x1, y1). Suppose that (x1, y1) /∈ St0(p), then by (iv) of Lemma 8 there exists
t′ > t0(p) such that (x1, y1) ∈ ∂St′ . By continuity of T and by Lemma 9, Tn(x, y) ∈ int(St′ )
for all n sufficiently large. This is not possible since (x1, y1) is an accumulation point of
Tn(x, y). Hence, (x1, y1) ∈ St0(p). �

Now, we state Theorem 5 concerning the attractivity sets for solutions of Eq. (3). The
proof of Theorem 5 directly follows from Lemma 8 and Theorem 4.

Theorem 5 For all n sufficiently large, Tn(x, y) ∈ St0(p).

Based on numerical visualization, we pose the following conjecture. See Fig. 2.

Conjecture 1 The equilibrium point x̄ = 1
2 (

√
4p + 1 + 1) of Eq. (3) is globally asymptoti-

cally stable if 0 < p < 2.

6 Neimark–Sacker bifurcation
In this section we discuss the existence of Neimark–Sacker bifurcation (for more details
see [15–19]) for the unique positive equilibrium and compute asymptotic approximation
of the invariant curve near the positive equilibrium point of Eq. (3), according to the pro-
cedure given in [16].

Figure 2 Trajectory of the point (0.1, 0.2) and invariant set St for (a) p = 2.3 and t0(p) ≈ 8.27071561 (b) p = 10
and t0(p) ≈ 110.9025198



Bešo et al. Advances in Difference Equations         (2020) 2020:19 Page 16 of 22

If we make a change of variable yn = xn – x̄, then the transformed equation is given by

yn+1 = 1 + p
yn + x̄

(yn–1 + x̄)2 – x̄, n = 0, 1, . . . (17)

By using the substitution un = yn–1 and vn = yn, we write Eq. (3) in the equivalent form:

⎧
⎨

⎩
un+1 = vn,

vn+1 = 1 + p vn+x̄
(un+x̄)2 – x̄.

(18)

Let F be the corresponding map defined by

F

(
u
v

)

=

(
v

1 + p v+x̄
(u+x̄)2 – x̄

)

. (19)

It is easy to see that

F

(
u
v

)

= JF(0, 0)

(
u
v

)

+ G

(
u
v

)

, (20)

where

G

(
u
v

)

=

(
0

1 + p v+x̄
(u+x̄)2 + 2pu

x̄2 – pv
x̄2 – x̄

)

.

To study Neimark–Sacker bifurcation, we need the following lemma.

Lemma 10 If p = p0 = 2 then eigenvalues of Jacobian matrix of F at (0, 0) are μ and μ

where

μ =
1
4

(1 + i
√

15).

Moreover, μ satisfies the following:
(a) μk 
= 1 for k = 1, 2, 3, 4.
(b) d = d|μ(p)|

dp |p=p0 = 1
12 > 0.

(c) Eigenvectors associated to μ are

q =
(

1
4

(1 – i
√

15), 1
)T

and p =
(

2(
√

15 + i)√
15 – 15i

,
8

15 + i
√

15

)

such that Aq = μq, pA = μp, and pq = 1.

Proof The Jacobian matrix of F is given by

JF(u, v) =

(
0 1

– 2p(v+x̄)
(u+x̄)3

p
(u+x̄)2

)

. (21)
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The eigenvalues of (21)) are μ±(p) where

μ±(p) =
p ± √

p(p – 8x̄2)
2x̄2 . (22)

At (0, 0), JacF(u, v) has the form

JacF(0, 0) =

(
0 1

– 2p
x̄2

p
x̄2

)

. (23)

For p = p0 = 2, it is easy to see that x̄ = 2 and

A = JF(0, 0) =

(
0 1

–1 1
2

)

.

The eigenvalues of A are μ and μ where

μ =
1
4

(1 + i
√

15).

The eigenvectors corresponding to μ and μ are q and q where

q =
(

1
4

(1 – i
√

15), 1
)T

.

One can prove that |μ| = 1, μ2 = – 7
8 + i

√
15
8 , μ3 = – 11

16 – i 3
√

15
16 , μ4 = 17

32 – i 7
√

15
32 , from which

follows that μk 
= 1 for k = 1, 2, 3, 4.
From (22) we have

∣∣μ(p)
∣∣2 = μ(p)μ(p) =

2p
x̄2 =

8p
(
√

4p + 1 + 1)2 ,

from which we get

d
dp

∣∣μ(p)
∣∣ =

√
2

√
p(4p + 1)(

√
4p + 1 + 1)

,

which, by substituting p0 = 2, simplifies to

d|μ(p)|
dp

∣∣∣∣
p=p0

=
1

12
> 0.

It is easy to see that pA = μp and pq = 1. �

Theorem 6 Let

xn+1 = 1 + p
xn

x2
n–1

.

Assume that p = p0 = 2. Then there exists a neighborhood O of the equilibrium point (x̄, x̄) =
(2, 2) and sufficiently small parameter δ > 0 such that if |p – 2| < δ and x0, x–1 ∈ O, then



Bešo et al. Advances in Difference Equations         (2020) 2020:19 Page 18 of 22

ω-limit set of solutions of Eq. (3), with initial condition x0, x–1 is (x̄, x̄) if –δ < p – 2 < 0
and belongs to a closed invariant C1 curve Γ (p) encircling the equilibrium point (x̄, x̄) if
0 < p – 2 < δ. Furthermore, Γ (2) = {(2, 2)} and invariant curve Γ (p) can be approximated
by

(
u
v

)

≈
(

x̄
x̄

)

+
( 1

144 (72
√

p – 2(
√

15 sin(θ ) + cos(θ )) + (p – 2)(9
√

15 sin(2θ ) – 95 cos(2θ ) + 120))
1

36 (72
√

p – 2 cos(θ ) + (p – 2)(
√

15 sin(2θ ) + 25 cos(2θ ) + 30))

)
,

where θ ∈R.

Proof Let p = p0 + δ where δ is a sufficiently small parameter. From Lemma 10 we can
transform (18) into the normal form

zn+1 = μ(δ)zn + c(δ)z2
nz̄n + O

(|zn|4
)
.

In the polar coordinates it can be written as

(
rn+1

θn+1

)

=

(
|μ(δ)|rn + a(δ)r3

n + O(r4
n)

θn + arg μ(δ) + b(δ)r2
n + O(r3

n)

)

, (24)

where a(δ) = Re(c(δ)/μ(δ)) and b(δ) = Im(c(δ)/μ(δ)). Performing a Taylor expansion of the
coefficients of the first equation of (24) about δ = 0, we have

rn+1 = (1 + dδ)rn + a(0)r3
n + O

(
r4

n
)
.

Now, we compute a(0) using the following procedure from [16]. First, we compute K20,
K11 and K0,2 defined in [16]. Substituting p = p0 and x̄ into (20), we get

F0

(
u
v

)

= A

(
u
v

)

+ G0

(
u
v

)

, (25)

where

G0

(
u
v

)

=

(
0

2(v+2)
(u+2)2 + u – v

2 – 1

)

.

Hence, for p = p0 system (18) is equivalent to

(
un+1

vn+1

)

= A

(
un

vn

)

+ G0

(
un

vn

)

. (26)

Define the basis of R2 by Φ = (q, q̄), then we can represent (u, v) as

(
u
v

)

= Φ

(
z
z̄

)

= (qz + q̄z̄) =

(
1
4 (1 – i

√
15)z + 1

4 (1 + i
√

15)z̄
z̄ + z

)

.
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By using this, we have

G

(

Φ

(
z
z̄

))

=

(
0

1
4 (–2(z̄ + z) + (1 + i

√
15)z̄ – 128(z̄+z+2)

(–(
√

15–i)z̄+(
√

15+i)z+8i)2 – i
√

15z + z – 4)

)

. (27)

Let

G

(

Φ

(
z
z̄

))

=
1
2
(
g20z2 + 2g11zz̄ + g02z̄2) + O

(|z|3).

Then, we have

g20 =
∂2

∂z2 G

(

Φ

(
z
z̄

))∣∣∣∣
z=0

=

(
0

– 25–i
√

15
16

)

,

g11 =
∂2

∂z∂ z̄
G

(

Φ

(
z
z̄

))∣∣∣∣
z=0

=

(
0
5
4

)

,

g02 =
∂2

∂ z̄2 G

(

Φ

(
z
z̄

))∣∣∣∣
z=0

=

(
0

– 25+i
√

15
16

)

.

(28)

Let

K20 =
(
μ2I – A

)–1g20 =

(
– 95+9i

√
15

144
25–i

√
15

36

)

,

K11 = (I – A)–1g11 =

(
5
6
5
6

)

,

K02 =
(
μ̄2I – A

)–1g02 = K20,

(29)

and

G

(

Φ

(
z
z̄

)

+
1
2
(
K20z2 + 2K11zz̄ + K02z̄2)

)

=
1
2
(
g20z2 + 2g11zz̄ + g02z̄2)

+
1
6
(
g30z3 + 3g21z2z̄ + 3g12zz̄2 + g03z̄3) + O

(|z|4). (30)

Then, we have

g21 =
∂3

∂z2∂ z̄
G

(

Φ

(
z
z̄

)

+
1
2

K20z2 + K11zz̄ +
1
2

K02z̄2

)∣∣∣∣
z=0

=

(
0

– 1+3i
√

15
36

)

. (31)
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Consequently,

a(0) = Re

(
c(0)
μ

)

=
1
2

Re(pg21μ̄) = –
1

12
< 0. (32)

By Lemma 10, we know that

d =
d|μ(δ)|

dδ

∣∣∣∣
δ=0

=
d|μ(p)|

dp

∣∣∣∣
p=p0

=
1

12
> 0.

By the result in [16], we have an asymptotic approximation of the invariant curve as

(
u
v

)

≈
(

x̄
x̄

)

+ 2ρ0 Re
(
qeiθ ) + ρ2

0
(
Re

(
K20e2iθ) + K11

)
,

where

d =
d

dp
∣∣μ(p)

∣∣
∣∣∣∣
p=2

,

ρ0 =

√

–
d

a(0)
δ, θ ∈R.

Since ρ0 =
√

p – 2 for 0 < p – 2 < δ, where δ > 0 is a sufficiently small parameter, from the
previous calculation we have

(
u
v

)

≈
(

x̄
x̄

)

+
( 1

144 (72
√

p – 2(
√

15 sin(θ ) + cos(θ )) + (p – 2)(9
√

15 sin(2θ ) – 95 cos(2θ ) + 120))
1

36 (72
√

p – 2 cos(θ ) + (p – 2)(
√

15 sin(2θ ) + 25 cos(2θ ) + 30))

)
.

This completes the proof. �

7 Conclusion
In this paper, we investigated the stability of the following second-order rational differ-
ence equation, xn+1 = 1 + pxn/x2

n–1, n = 0, 1, . . . , with positive initial conditions and p > 0.
We showed that the parameter space splits into three regions: p < 2, p = 2, and p > 2. We
proved a global stability result for p ≤ (1 +

√
2)/2. Based on our numerical computations,

we conjectured that the unique positive equilibrium is globally asymptotically stable for
0 < p < 2. We proved boundedness of all solutions. In the case 1 < p < +∞, to prove the
existence of a sequence of invariant and attractive sets that contain all solutions, we con-
structed compact sets St which are invariant for all t such that t0(p) ≤ t < +∞ for some
t0(p) > x̄. In the case p = 2, we studied Neimark–Sacker bifurcations for the positive equi-
librium point. Also, we computed the approximation of the invariant curve near the posi-
tive equilibrium point. The positive equilibrium point is a repeller for p > 2. By numerical
computations, we confirmed our analytic results. See Figs. 3 and 4.
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Figure 3 (a) Trajectory (black) for p = 1.99. (b) Trajectory (black) and asymptotic approximated invariant curve
(red) for p = 2.01

Figure 4 Bifurcation diagrams in the p–x plane
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2. Khyat, T., Kulenović, M.R.S., Pilav, E.: The Naimarck–Sacker bifurcation of a certain difference equation. J.

Computational Analysis and Applications. 23(8) (2017)
3. El-Morshedy, H.A.: The global attractivity of difference equations of nonincreasing nonlinearities with applications.

Comput. Math. Appl. 45, 749–758 (2003)
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