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Abstract
This article mainly explores and applies a modified form of the analytical method,
namely the homotopy analysis transform method (HATM) for solving time-fractional
Cauchy reaction–diffusion equations (TFCRDEs). Then mainly we address the error
norms L2 and L∞ for a convergence study of the proposed method. We also find
existence, uniqueness and convergence in the analysis for TFCRDEs. The projected
method is illustrated by solving some numerical examples. The obtained numerical
solutions by the HATMmethod show that it is simple to employ. An excellent
conformity obtained between the solution got by the HATMmethod and the various
well-known results available in the current literature. Also the existence and
uniqueness of the solution have been demonstrated.

Keywords: Homotopy analysis transform method; Fractional Cauchy
reaction–diffusion equation; Mittag-Leffler function; Optimal value

1 Introduction
The beginning of fractional calculus is considered as 30 September 1695 when the deriva-
tive of arbitrary order was described by Leibniz [1]. After that many renowned mathe-
maticians have studied the application of the fractional derivative and fractional differen-
tial equations (FDEs); some of them were Liouville, Grunwald, Letnikov and Riemann [2].
A lot of significant phenomena are well described by FDEs in electromagnetics, acoustics,
viscoelasticity, electro chemistry and material science [3]. Moreover, some basic results
associated to solving FDEs may be found in [4–7].

Cauchy reaction–diffusion equations (CRDEs) explain a large multiplicity of nonlinear
systems in physics, chemistry, ecology, biology and engineering [8–12]. CRDEs are broadly
used in application models for spatial effects in ecology. The different types of CRDEs in
physics have been solved [13–15] by using a variety of kinds of analytical methods. In
recent times, Yildirim [16] used a homotopy perturbation method to find the solutions of
the CRDEs. In this paper, we consider the one-dimensional TFCRDEs as follows:

∂λw(x, t)
∂tλ

= D
∂2w(x, t)

∂x2 + r(x, t)w(x, t), 0 < λ ≤ 1, (x, t) ∈ Ω ⊂ R
2, (1.1)
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subject to the initial or boundary conditions

w(x, 0) = g(x), w(0, t) = f0(t),
∂w(0, t)

∂x
= f1(t), x, t ∈R, (1.2)

where w is the concentration, r is the reaction parameter and D > 0 is the diffusion coef-
ficient. The fractional derivative λ considered in this paper is in the sense of Caputo.

In this paper, we have applied HATM for solving linear and nonlinear TFCRDEs. The
HATM method provides excellent agreement between two powerful methods, one is the
most popular and useful homotopy analysis method (HAM) and the other one is the
Laplace transform method. The HAM was first proposed and applied by Liao in [17] to
solve lots of nonlinear problems. The HAM has been successfully applied by many re-
searchers for solving linear and nonlinear partial differential equations [18, 19].

But presently, concentration of diverse researchers is on finding the solution behavior of
different nonlinear equations by means of different methods jointed with Laplace trans-
form, among them the variation iteration transform method [20] and the homotopy analy-
sis transform method [21, 22]. The advantage of HATM over HAM is that it gives rapidly
convergent series solution only by taking a small number of terms and hence HATM is
very powerful and efficient in finding approximate solutions as well as analytical solutions
of many fractional physical models. Moreover, the analytical method of using the Laplace
transform and its inverse is shown in [23–25]. The other work related to this can be found
in [26–34]. The plan of this article is to find approximate analytical solutions of TFCRDEs
with the time derivative λ (0 < λ ≤ 1).

2 Existence and uniqueness
In this section, we establish the existence and uniqueness of a solution of differential equa-
tion (1.1). We first present a few necessary definitions.

The Mittag-Leffler function is defined by

Eλ(t) =
∞∑

k=0

tkλ

Γ (1 + λk)
. (2.1)

The Riemann–Liouville fractional integral of order λ > 0 is defined by

Iλf (t) =
1

Γ (λ)

∫ t

0
(t – s)λ–1f (s) ds, (2.2)

the fractional derivative of the function f of order λ > 0 is defined by

Dλ
t f (t) =

1
Γ (n – λ)

dn

dtn

∫ t

0
(t – s)n–λ–1f (s) ds, (2.3)

where Γ (λ) is the Gamma function.
The Laplace transform of the Riemann–Liouville fractional integral is defined as [1]

L
[
Iλf (t)

]
(s) = s–λF (s). (2.4)
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The Caputo fractional derivative of the function f of order λ > 0 is defined by

Dλ
t f (t) =

1
Γ (n – λ)

∫ t

0
tn–λ–1 dn

dtn f (t) dt. (2.5)

The Laplace transform of the Caputo fractional derivative is defined as [1]

L
[
Dλ

t f (t)
]
(s) = sλF (s) –

n–1∑

k=0

sλ–k–1f k(0), n – 1 < λ ≤ n, n ∈N. (2.6)

Define an operator A = D ∂2

∂x2 , with D(A) = {v ∈ H1
0 (0, 1) ∩ H2(0, 1) : v′′ ∈ L2(0, 1)}. The op-

erator A is the infinitesimal generator of an analytic semigroup {T(t) : t ≥ 0} and is self-
adjoint [35]. By introducing v(t)x = w(x, t) and γ (t)x = r(x, t), Eq. (1.1) can be written as

Dλ
t v = Av + γ (t)v. (2.7)

By a mild solution v of the above problem we mean that

v(t) = v0 +
1

Γ (λ)
A

∫ t

0

v(s)
(t – s)1–λ

ds +
1

Γ (λ)

∫ t

0

γ (s)v(s)
(t – s)1–λ

ds, (2.8)

provided
∫ t

0
v(s)

(t–s)1–λ ds ∈ D. The notation D is for the domain of the operator A equipped
with the graph norm ‖v‖D = ‖v‖ + ‖Av‖. It is not difficult to check that f (t, v) = γ (t)v
satisfies the Lipschitz condition. For any v1, v2 ∈ D(A), we have

∥∥f (t, v1) – f (t, v2)
∥∥ ≤ ∣∣γ (t)

∣∣‖v1 – v2‖ ≤ γ ∗‖v1 – v2‖,

where γ ∗ is the supremum of γ (t). So we need γ (t) to be continuous and bounded.
The spectrum of the operator A is discrete with eigenvalues μn = –n2D, n ∈ N, and the

eigenfunctions are of the form ψn(z) = ( 2
π

) 1
2 sin nz. Moreover, {ψn : n ∈ N} is an orthonor-

mal basis for X, and

T(t)v =
∞∑

n=1

e–n2Dt〈v,ψn〉ψn, v ∈ X, t > 0.

The above expression implies that {T(t), t ≥ 0} is a uniformly bounded compact semigroup
and R(μ, A) = (μI – A)–1 is a compact operator for all μ ∈ ρ(A). The integral equation

v(t) =
1

Γ (λ)

∫ t

0

Av(s)
(t – s)1–λ

ds, t ≥ 0,

has an associated resolvent operator {Sλ(t), t ≥ 0} on the space X = L2(0, 1). The resolvent
operator is given by

Sλ(t) =
1

2π i

∫

γθ

eμt(μλ – A
)–1 dμ, t > 0,

and S(0) = I . We have the parameter θ with π
2 < θ < π and the curve γθ = {reiθ : r ≥ 0} ∪

{re–iθ :r≥0}.
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Because (μI – A)–1 is compact, from the above representation one can deduce that
{Sλ(t) : t > 0} is a compact operator.

Theorem 2.1 Let γ ∈ Lp([0, T] : R+) for p = 1
λ

. If 1
Γ λ

sups∈[0,T](
∫ s

0
γ (t)

(s–t)1–α dt) < 1, then the
abstract Cauchy problem has a unique mild solution.

The proof is similar to Theorem 2.1 of [36].

3 Fundamental scheme of HATM
The fundamental scheme of HATM is discussed through the following TFCRDEs:

Dλ
t w(x, t) = DDxxw(x, t) + r(x, t)w(x, t),

0 < λ ≤ 1, (x, t) ∈ Ω ⊂ R2.
(3.1)

By a new methodology discussed in [21], applied to Eq. (3.1), we get the mth-order defor-
mation equation wm(x, t) and for m ≥ 1, at Mth order, we have

w(x, t) =
M∑

m=0

wm(x, t), (3.2)

for M → ∞, we get a precise approximation of the actual equation (3.1).
In this section, we study the convergence of HATM through the following theorem.

Theorem 3.1 As long as the series solution

w(x, t) = w0(x, t) +
∞∑

m=1

wm(x, t) (3.3)

converges, where wm(x, t) is governed by Eq. (3.1), it must be the exact solution of the
TFCRDEs in (3.1).

Proof If the series (3.3) converges, we can write

T(x, t) =
∞∑

m=0

wm(x, t) (3.4)

and

lim
m→∞ wm(x, t) = 0. (3.5)

We can verify that

n∑

m=1

[
wm(x, s) – ξmwm–1(x, s)

]
= lim

m→∞ wm(x, s) = 0. (3.6)

Taking the linear operator L on both sides in Eq. (3.6), we get

∞∑

m=1

L
[
wm(x, s) – ξmwm–1(x, s)

]
= L

[ ∞∑

m=1

wm(x, s) – ξmwm–1(x, s)

]
= 0. (3.7)
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Along this line, we obtain

∞∑

m=1

L
[
wm(x, s) – ξmwm–1(x, s)

]
= �H(x, s)

∞∑

m=1

Rm(�wm–1, x, s) = 0, (3.8)

since � �= 0 and H(x, s) �= 0, from Eq. (3.8) we have

∞∑

m=1

Rm(�wm–1, x, s) = 0, (3.9)

∞∑

m=1

Rm(�wm–1, x, s) =
∞∑

m=1

[
sλL[wm–1](s) – (1 – ξm)

n–1∑

k=0

sλ–k–1wk
m–1(x, 0)

– L[DDxxwm–1 + rwm–1](s)

]

= sλL

[ ∞∑

m=1

wm–1

]
(s) –

n–1∑

k=0

sλ–k–1wk
m–1(x, 0)

– L

[
DDxx

∞∑

m=1

wm–1 + r
∞∑

m=1

wm–1

]
(s)

= sλL
[
T(x, t)

]
(s) –

n–1∑

k=0

sλ–k–1Tk(x, 0)

– L
[
DDxx

[
T(x, t)

]
+ r(x, t)

[
T(x, t)

]]
(s)

= L
[
Dλ

t T(x, t)
]
(s) – L

[
DDxxT(x, t) + r(x, t)T(x, t)

]
(s).

Now from Eq. (3.9) we have

L
[
Dλ

t T(x, t)
]
(s) – L

[
DDxxT(x, t) + r(x, t)T(x, t)

]
(s) = 0. (3.10)

By taking the inverse Laplace transform in Eq. (3.10), we get the exact solution T(x, t). �

4 Function of HATM and mathematical results
Four examples of TFCRDEs are solved to exhibit the HATM method. In the whole arti-
cle, MATHEMATICA 7 software package has been used for the figures’ computational
processes.

Example 1 For the constant value of D = 1 and r = –1, Eq. (1.1) can be recast as the
Kolmogorov–Piskunov (KP) equation [16] as follows:

∂λw(x, t)
∂tλ

=
∂2w(x, t)

∂x2 – w(x, t), 0 < λ ≤ 1, (x, t) ∈ Ω ⊂R
2, (4.1)

subject to the initial or boundary conditions

w(x, 0) = e–x + x = g(x), w(0, t) = 1 = f0(t),

∂w(0, t)
∂x

= Eλ

(
–tλ

)
– 1 = f1(t), x, t ∈R.
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By a new methodology discussed in [21], applied to Eq. (4.1) we get the mth-order de-
formation equation for wm(x, t)

wm(x, t) = (ξm + �)wm–1 – �(1 – ξm)
(
e–x + x

)
– �L–1[s–λL[Dxxwm–1 – wm–1](s)

]
(t). (4.2)

At last,

w(x, t) = w0(x, t) +
∞∑

m=0

wm(x, t).

Next, the successive iterative values are

w1(x, t) =
�xtλ

Γ (λ + 1)
,

w2(x, t) =
�(1 + �)xtλ

Γ (λ + 1)
+

�
2xt2λ

Γ (2λ + 1)
,

w3(x, t) =
�(1 + �)2xtλ

Γ (λ + 1)
+

2�2(1 + �)xt2λ

Γ (2λ + 1)
+

�
3xt3λ

Γ (3λ + 1)
,

w4(x, t) =
�(1 + �)3xtλ

Γ (λ + 1)
+

3h2(1 + �)2xt2λ

Γ (2λ + 1)
+

3�3(1 + �)xt3λ

Γ (3λ + 1)
+

�
4xt4λ

Γ (4λ + 1)
+ · · · .

In a similar fashion, the remaining terms of wm(x, t) for m ≥ 5 can be entirely obtained.
Therefore, the solution of Eq. (4.1) is

w(x, t) =
∞∑

k=0

wk(x, t). (4.3)

If we select � = –1, then the solution is reduced to

w(x, t) = e–x + x
(

1 +
(–tλ)

Γ (λ + 1)
+

(–tλ)2

Γ (2λ + 1)
+

(–tλ)3

Γ (3λ + 1)
+

(–tλ)4

Γ (4λ + 1)
+ · · ·

)

= e–x + x
∞∑

k=0

(–tλ)k

Γ (kλ + 1)

= e–x + xEλ

(
–tλ

)
. (4.4)

Again if we take the standard value of λ = 1, then the series solution is reduced to
e–x + xe–t , this is an exact solution of standard CRDEs and hence the result is absolutely
in conformity with the homotopy perturbation given by Yildirim [16] and the Adomian
decomposition method by Lesnic [13].

Figure 1 demonstrates the comparisons of the exact solution and the approximate so-
lutions with different Brownian motions. The picture of subfigures (a), (b), (c) and (d) for
Fig. 1 shows that the approximate solution obtained by the current method and the exact
solution are very much identical for the Cauchy problem with the constant term D = 1.

At the same time, in order to judge the significance and the correctness of the HATM
method the absolute error curve is drawn in Fig. 2. It is to be noted that the approximate
solution converges quickly towards the exact one.
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Figure 1 The surface graph of the exact solution u(x, t) and the seventh-order approximate solution u7(x, t) of
Eq. (4.1): (a) u(x, t) when λ = 1, (b) u7(x, t) when λ = 1, (c) u7(x, t) when λ = 0.75, (d) u7(x, t) when λ = 0.5

Figure 2 Plot of absolute error E7(w) = |w(x, t) –w7(x, t)| using HATM when λ = 1

Figure 3 indicates the performance of the approximate solution for different fractional
Brownian motions, λ = 0.7, 0.8, 0.9, and for standard motion i.e. at λ = 1.

Figure 4 reflects the � curve of Eq. (4.1). As pointed out by Liao [17], we can choose any
values of �, where � ∈ (�1,�2) and �1 ≈ –1.80, �2 ≈ –0.2. In the particular case if � = –1
the speed of convergence is most advantageous.

In order to convergence study of the proposed method we present the absolute errors
in Table 1, simultaneously the error norms L2 and L∞ are presented in Table 2.

At the mth order of approximation, also we can define the exact square residual error
for equation, where


m =
∫ 1

0

∫ 1

0

(
N

[ m∑

i=0

wi(x, t)

])2

dx dt,
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Figure 3 Plot of u(x, t) verses x time for different values of λ at t = 1 and � = –1

Figure 4 Plot of � curve for different values of λ at x = 0.5 and t = 0.01

where

N
[
w(x, t)

]
=

dλw(x, t)
dtα

–
d2w(x, t)

dx2 + w(x, t).

In order to make things computationally easy we also introduced here the so-called aver-
aged residual error defined by

Em =
1

25

5∑

j=1

5∑

k=1

(
N

[ m∑

i=0

ui

(
j

10
,

k
10

)])2

.
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Table 1 E7 in the solution of TFCRDEs using HATM for λ = 1

(x, t) Exact solution Approximation
solution

|uexact – uMHATM|

(0.1, 0.1) 0.9953211598 0.9953211598 9.99201× 10–15

(0.1, 0.2) 0.9867104933 0.9867104933 2.95319× 10–14

(0.1, 0.3) 0.9789192401 0.9789192401 1.68754× 10–14

(0.2, 0.1) 0.9996982366 0.9996982366 2.27596× 10–14

(0.2, 0.2) 0.9824769036 0.9824769036 6.20615× 10–14

(0.2, 0.3) 0.9668943972 0.9668943972 8.32667× 10–15

(0.3, 0.1) 1.0122694460 1.0122694460 2.55351× 10–14

(0.3, 0.2) 0.9864374466 0.9864374466 4.32987× 10–14

(0.3, 0.3) 0.9630636868 0.9630636868 4.39648× 10–14

Table 2 L2 and L∞ error norms for TFCRDEs by HATM for λ = 1

x L2 error norm L∞ error norm

0.1 1.87998× 10–14 1.68754× 10–14

0.2 3.10492× 10–14 8.32667× 10–15

0.3 3.18634× 10–14 4.39648× 10–14

Table 3 Optimal value of � for λ = 1

Order of
approximation

Optimal
value of �

Value of Em

2 –0.826476 8.9631× 10–1

4 –0.939232 8.90047× 10–1

6 –0.964903 8.8997× 10–1

Table 4 Optimal value of � for λ = 0.9

Order of
approximation

Optimal
value of �

Value of Em

2 –0.79381 8.84405× 10–1

4 –0.918672 8.73643× 10–1

6 –0.950037 8.73404× 10–1

The optimal value of � can be found by solving nonlinear algebraic equation dEm
d�

= 0 [37].
The numerical results are elaborated in Tables 3 and 4.

It is clear from Tables 3 and 4 that the optimal value of � are –0.826476, –0.939232,
–0.964903 and –0.79381, –0.918672, –0.950037, respectively, in the case of different or-
ders of approximations.

Example 2 We take the following TFCRDEs [16] for D = 1 and r(x, t) = –1 – 4x2:

∂λw(x, t)
∂tλ

=
∂2w(x, t)

∂x2 –
(
1 + 4x2)w(x, t), 0 < λ ≤ 1, (x, t) ∈ Ω ⊂R

2, (4.5)

subject to the initial or boundary conditions

w(x, 0) = ex2
= g(x), w(0, t) = Eλ

(
tλ

)
= f0(t),

∂w(0, t)
∂x

= 0 = f1(t), x, t ∈R.
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Now similar to Example 1, the mth-order deformation equation (4.5) is

wm(x, t) = (ξm + �)wm–1 – �(1 – ξm)ex2
– �L–1[s–λL

[
Dxxwm–1

–
(
4x2 + 1

)
wm–1

]
(s)

]
(t). (4.6)

At last, we get

w(x, t) = w0(x, t) +
∞∑

m=0

wm(x, t).

By taking w0(x, t) = w(x, 0) = ex2 and the system (4.6), we get the subsequent values as
follows:

w1(x, t) = –
�ex2 tλ

Γ (λ + 1)
,

w2(x, t) = –
�(1 + �)ex2 tλ

Γ (λ + 1)
+

�
2ex2 t2λ

Γ (2λ + 1)
,

w3(x, t) = –
�(1 + �)2ex2 tλ

Γ (λ + 1)
+

2�2(1 + �)ex2 t2λ

Γ (2λ + 1)
–

�
3ex2 t3λ

Γ (3λ + 1)
,

w4(x, t) = –
�(1 + �)3ex2 tλ

Γ (λ + 1)
+

3�2(1 + �)2ex2 t2λ

Γ (2λ + 1)
–

3�3(1 + �)ex2 t3λ

Γ (3λ + 1)
+

�
4ex2 t4λ

Γ (4λ + 1)
+ · · · .

The solution of Eq. (4.5) for � = –1 is given as

w(x, t) = ex2
(

1 +
tλ

Γ (λ + 1)
+

t2λ

Γ (2λ + 1)
+

t3λ

Γ (3λ + 1)
+

t4λ

Γ (4λ + 1)
+ · · ·

)

= ex2
∞∑

k=0

tkλ

Γ (kλ + 1)

= ex2
Eλ

(
tλ

)
. (4.7)

Next for the standard value of λ = 1, the above series solution reduced to e–x + xe–t , this
is an exact solution of standard CRDEs and hence the result is absolutely conformity with
that the homotopy perturbation given by Yildirim [16] and the Adomian decomposition
method by Lesnic [13].

Figure 5 shows the comparison between the exact and the approximate solution for Ex-
ample 2 obtained by HATM for different values of λ.

Again, the convergence of the above method for Eq. (4.5) is shown by drawing the abso-
lute error curve.

Figure 6 represents the absolute error between exact and obtained solution.
Figure 7 reveals the performance of the estimated solution w(x, t) for Example 2.
In Fig. 8 the � curve for Eq. (4.5) is shown. It is clear from Fig. 8 that the perfect range

of � is from –1.60 to –0.3.
Table 5 lists the absolute error E7 = |w(x, t) – w7(x, t)| obtained for different values of x

and t by using the seventh-order approximate solution. Again, to show the validity and
exactness of the proposed method the error norms L2 and L∞ are presented in Table 6.
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Figure 5 The surface graph of the exact solution u(x, t) and the seventh-order approximate solution u7(x, t) of
Eq. (4.5): (a) u(x, t) when λ = 1, (b) u7(x, t) when λ = 1, (c) u7(x, t) when λ = 0.75, (d) u7(x, t) when λ = 0.5

Figure 6 Plot of absolute error E7(w) = |w(x, t) –w7(x, t)| using HATM when λ = 1

Example 3 We consider the following TFCRDEs [14] for D = 1 and r(x, t) = –1 + cos x –
sin2 x:

∂λw(x, t)
∂tλ

=
∂2w(x, t)

∂x2 –
(
–1 + cos x – sin2 x

)
w(x, t), 0 < λ ≤ 1, (x, t) ∈ Ω ⊂ R

2, (4.8)

subject to the initial or boundary conditions

w(x, 0) =
1

10
ecos x–11 = g(x), w(0, t) =

1
10

e–10Eλ

(
t–α

)
= f0(t),

∂w(0, t)
∂x

= 0 = f1(t).

The exact solution w(x, t) = 1
10 ecos x–t–11 for λ = 1.
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Figure 7 Plot of u(x, t) verses x time for different values of λ at t = 1 and � = –1

Figure 8 Plot of � curve for different values of λ at x = 0.5 and t = 0.01

By using the aforementioned techniques, in this case the solution of the mth-order de-
formation equations is as follows:

wm(x, t) = (ξm + �)wm–1 – �(1 – ξm)ex2 – �L–1[s–λL
[
Dxxwm–1

–
(
–1 + cos x – sin2 x

)
wm–1

]
(s)

]
(t). (4.9)

By taking w0(x, t) = w(x, 0) = 1
10 ecos x–10 and the system (4.6), we get the subsequent values

as follows:

w1(x, t) =
�e–11+cos xtλ

10Γ (λ + 1)
,
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Table 5 E7 in the solution of TFCRDEs by HATM for λ = 1

(x, t) Exact solution Approximation
solution

|uexact – uMHATM|

(0.1, 0.1) 1.1162780704 1.1162780704 4.62963× 10–12

(0.1, 0.2) 1.2336780599 1.2336780599 7.89258× 10–12

(0.1, 0.3) 1.3634251141 1.3634251141 6.866828× 10–12

(0.2, 0.1) 1.1502737988 1.1502737988 2.49134× 10–13

(0.2, 0.2) 1.2712491580 1.2712491580 3.77920× 10–13

(0.2, 0.3) 1.4049475905 1.4049475905 4.90874× 10–12

(0.3, 0.1) 1.0122694460 1.0122694460 7.84484× 10–13

(0.3, 0.2) 1.3364274882 1.3364274882 6.75904× 10–13

(0.3, 0.3) 1.4769807938 1.4769807938 3.81584× 10–12

Table 6 The error norm in the solution of TFCRDEs by HATM for λ = 1

x L2 error norm L∞ error norm

0.1 6.4635× 10–12 6.866828× 10–12

0.2 1.84526× 10–12 4.90874× 10–12

0.3 1.75874× 10–12 3.81584× 10–12

w2(x, t) =
�(1 + �)e–11+cos xtλ

10Γ (λ + 1)
+
�

2e–11+cos xt2λ

10Γ (2λ + 1)
,

w3(x, t) =
�(1 + �)2e–11+cos xtλ

10Γ (λ + 1)
+
�

2(1 + �)e–11+cos xt2λ

5Γ (2λ + 1)
+
�

3e–11+cos xt3λ

10Γ (3λ + 1)
.

If we select � = –1, then

w(x, t) =
1

10
ecos x–11 –

ecos x–11tλ

10Γ (λ + 1)
+

ecos x–11t2λ

10Γ (2λ + 1)
+

ecos x–11t3λ

11Γ (3λ + 1)
+ · · ·

=
1

10
ecos x–11

[
1 –

tλ

Γ (λ + 1)
+

t2λ

Γ (2λ + 1)
+

t3λ

Γ (3λ + 1)
+ · · ·

]

=
1

10
ecos x–11

∞∑

k=0

(–t)k

Γ (kλ + 1)

=
1

10
ecos x–11Eλ

(
–tα

)
. (4.10)

For λ = 1, this series is reduced to the closed form 1
10 ecos x–t–11, which is an exact solution

of the classical CRDEs and hence the result is absolutely in conformity with the variation
iteration method given by Dehghan [14].

Figure 9 shows the assessment among the exact and estimated solution. To ensure the
exactness of the HATM method the absolute error curve is given in Fig. 10. Again, Fig. 11
shows the performance of the u7(x, t) for diverse term of λ.

Figure 12 shows the � curve. Here we can choose any values of �, where � ∈ (�1,�2) and
�1 ≈ –1.70, �2 ≈ –0.5.

Example 4 Here we have taken the following TFCRDEs [38]:

∂λw(x, t)
∂tλ

=
∂

∂x

(
w

∂w
∂x

)
+ w – w2, 0 < λ ≤ 1, x, t ≥ 0, (4.11)
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Figure 9 The surface graph of the exact solution u(x, t) and the seventh-order approximate solution u7(x, t) of
Eq. (4.8): (a) u(x, t) when λ = 1, (b) u7(x, t) when λ = 1, (c) u7(x, t) when λ = 0.75, (d) u7(x, t) when λ = 0.5

Figure 10 Plot of absolute error E7(w) = |w(x, t) –w7(x, t)| using HATM when λ = 1

subject to the initial or boundary conditions

w(x, 0) = 1 – e
–x√

2 = g(x), w(0, t) = 1 – Eλ

(
–t

λ
2
)

= f0(t),

∂w(0, t)
∂x

=
1√
2

Eλ

(
–t

λ
2
)

= f1(t).

The exact solution w(x, t) = 1 – e
–x√

2
– t

2 for λ = 1.
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Figure 11 Plot of u(x, t) verses x time for different values of λ at t = 1 and � = –1

Figure 12 Plot of � curve for different values of λ at x = 0.5 and t = 0.01

By using the aforementioned techniques, in this case the solution of the mth-order de-
formation equations is as follows:

wm(x, t) = (ξm + �)wm–1 – �(1 – ξm)
(
1 – e

–x√
2
)

– �L–1

[
s–λL

[ ∞∑

k=0

(
wm–1–k(wk)x

)
x

+ wm–1 –
∞∑

k=0

wm–1–k(wk)

]
(s)

]
(t). (4.12)
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Figure 13 The surface graph of the exact solution u(x, t) and the seventh-order approximate solution u7(x, t)
of Eq. (4.11): (a) u(x, t) when λ = 1, (b) u7(x, t) when λ = 1, (c) u7(x, t) when λ = 0.75, (d) u7(x, t) when λ = 0.5

Figure 14 Plot of absolute error E7(w) = |w(x, t) –w7(x, t)| using HATM when λ = 1

By taking w0(x, t) = w(x, 0) = 1 – e
–x√

2 and the system (4.6), we get the subsequent values
as follows:

w1(x, t) =
–�e

–x√
2 tλ

2Γ (λ + 1)
,

w2(x, t) =
–�(1 + �)e

–x√
2 tλ

2Γ (λ + 1)
–

�
2e

–x√
2 tλ

4Γ (2λ + 1)
,

w3(x, t) =
–�(1 + �)2e

–x√
2 tλ

2Γ (λ + 1)
–
�

2(1 + �)e
–x√

2 t2λ

2Γ (2λ + 1)
–

�
3e

–x√
2 t3λ

8Γ (3λ + 1)
.

Figure 13 shows the comparison between the exact and approximate solution obtained
by HATM method. The absolute error curve is presented in Fig. 14.
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