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Abstract
In this paper, the global exponential stability and the existence of periodic solutions
of fuzzy wave equations are investigated. By variable substitution the system of partial
differential equations (PDEs) is transformed from second order to first order. Some
sufficient conditions that ensure the global exponential stability and the existence of
periodic solution of the system are obtained by an analysis that uses a suitable
Lyapunov functional. In addition, a concrete example is given to show the
effectiveness of the results.
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1 Introduction
Fuzzy differential equations (FDEs) are those whose parameters, initial conditions and
solutions are fuzzy numbers, while all these are real- or complex-valued functions for
standard differential equations. Recently, the theory of FDEs has been developed by the
community, since it is not only of interest but also one of the useful tools for modeling
dynamic systems, in which uncertainties or vagueness pervade. For basic theory of FDEs
one may refer to [1]. Some relevant applications that uses FDEs for demographic and life
expectancy modeling problems have been proposed in [2], which are also problems that
present high parametric uncertainty. In [3], the authors prove the existence and unique-
ness of the solution of the FDEs with the right-hand side satisfying the Lipschitz condition
by the concept of Hukuhara derivative. For more examples one can refer to the significant
results in [4–16]. Therefore, the construction of a theory that combines appropriately the
theory of impulsive differential equations with that of FDEs is essential. In [17], the au-
thors consider the exact solutions of fuzzy wave-like equations with variable coefficients
by a variational iteration method; see [18]. A systematic spectral-τ method for the solution
of fuzzy fractional diffusion and fuzzy fractional wave equations are investigated. In [19]
the authors study the calculus of fuzzy-valued functions of two variables and some prop-
erties are discussed, and the solutions of the fuzzy wave equations are given. In [20] the
homotopy analysis method is proposed to obtain a semi-analytical solution of the fuzzy
wave-like equations with variable coefficients. In [21] the authors study a geometric ap-
proach for solving the density-dependent diffusion Nagumo equation. In [22], a numerical
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solution of the time-fractional diffusion-wave equation with the fictitious time integration
method are investigated.

On the other hand, nonlinear hyperbolic equations are applied widely to the modeling
of many phenomena arising from experiments in physics and engineering, such as elec-
tromagnetic waves, elastic vibration in nonlinear media, and water waves. Indeed, as one
studies the long-time behavior of any dynamical system, the periodic solutions are very
important for a deep understanding of the dynamics of the system of fuzzy wave equa-
tions. To the best of our knowledge, there are no research results on the global exponential
stability of the equilibrium point and the existence of periodic solutions of the fuzzy wave
equations, which will be a more innovative research topic in both theory and applications.
In this work we therefore investigate the global exponential stability and the existence of
periodic solutions of the fuzzy wave equations.

The model equation we study has the following form:

⎧
⎨

⎩

∂2ui(t,x)
∂t2 =

∑n
k=1

∂
∂xk

(aik
∂ui(t,x)

∂xk
) – biui(t, x) – ei

∂ui(t,x)
∂t +

∧n
j=1 αijfj(uj(t – τij, x))

+
∨n

j=1 βijfj(uj(t – τij, x)) +
∧n

j=1 Tijμj +
∨n

j=1 Hijμj, t ≥ 0, x ∈ Ω ,
(1)

for i = 1, 2, . . . , n, ui(t, x) corresponds to the state of the ith unit at time t and space x;
bi > 0 represents the rate with which the ith unit will reset its potential to the resting state;
fj(uj(t, x)) denotes the activation function of the jth unit at time t and space x; ei > 0 rep-
resents the friction along the ith unit; τij corresponds to the transmission delay along the
axon of the jth unit from the ith unit and satisfies 0 ≤ τij ≤ τ ; aik > 0 corresponds to the
transmission diffusion operator along the ith unit; ∧ and ∨ denote the fuzzy AND and
fuzzy OR operation, respectively; αij and βij are elements of fuzzy feedback MIN tem-
plate and fuzzy feedback MAX template, respectively; Tij and Hij are fuzzy feed-forward
MIN template and fuzzy feed-forward MAX template, respectively; xi(i = 1, 2, . . . , n) cor-
responds to the ith coordinate in the space; Ω is a compact set with smooth boundary and
mesΩ > 0 in space Rn.

The initial and boundary conditions of system (1) are

⎧
⎪⎪⎨

⎪⎪⎩

∂ui(t,x)
∂n = 0, t ≥ 0, x ∈ ∂Ω ,

ui(s, x) = ϕi(s, x), –∞ < s < 0, ui(0, x) = ϕi(0, x) = u0, x ∈ Ω ,
∂ui(s,x)

∂t = ψi(s, x), –∞ < s ≤ 0, x ∈ Ω ,

(2)

for i = 1, 2, . . . , n, where u0 is constant, ϕi(s, x) and ψi(t, x)(i = 1, 2, . . . , n) are bounded and
continuous functions on (–∞, 0] × Ω ; ∂ui(t,x)

∂n = ( ∂ui(t,x)
∂x1

, ∂ui(t,x)
∂x2

, . . . , ∂ui(t,x)
∂xn

)T .
With appropriate parameters, system (1) can be reduced to:
1. One-dimensional wave equation

∂2u(t, x)
∂t2 = a

∂2u(t, x)
∂x2 + f (x, t).

2. Two-dimensional wave equation

∂2u(t, x, y)
∂t2 = a

∂2u(t, x)
∂x2 + b

∂2u(t, x)
∂y2 + f (x, y, t).
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3. Two-dimensional dissipative wave equation

∂2u(t, x, y)
∂t2 = a

∂2u(t, x, y)
∂x2 + b

∂2u(t, x, y)
∂y2 + c

∂u(t, x, y)
∂t

+ f (x, y, t)

etc., which have real-world applications.
This paper is organized as follows. Some preliminaries are given in Sect. 2. In Sect. 3, the

sufficient conditions are derived for the global exponential stability and the existence of
periodic solutions of the fuzzy wave equations, by the construction of a suitable Lyapunov
functional and using some analytical techniques, respectively. In Sect. 4, an illustrative
example is given to show the effectiveness of the proposed theory.

2 Preliminaries
Throughout this paper, we make the following assumptions.

(H) The activation functions fi (i = 1, 2, . . . , n) satisfy Lipschitz condition, i.e., there exists
a constant li > 0 (i = 1, 2, . . . , n) such that

∣
∣fi(v1) – fi(v2))

∣
∣ ≤ li|v1 – v2|, i = 1, 2, . . . , n,

for all v1, v2 ∈ R.
By introducing variable transformation

vi(t, x) =
∂ui(t, x)

∂t
+ ui(t, x), i = 1, 2, . . . , n,

the systems (1) and (2) can be rewritten as

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∂ui(t,x)
∂t = –ui(t, x) + vi(t, x),

∂vi(t,x)
∂t =

∑n
k=1

∂
∂xk

(aik
∂ui(t,x)

∂xk
) – (bi – ei + 1)ui(t, x) – (ei – 1)vi(t, x)

+
∧n

j=1 αijfj(uj(t – τij, x) +
∨n

j=1 βijfj(uj(t – τij, x)

+
∧n

j=1 Tijμj +
∨n

j=1 Hijμj, t ≥ 0, x ∈ Ω ,

(3)

for i = 1, 2, . . . , n,

⎧
⎪⎪⎨

⎪⎪⎩

∂ui(t,x)
∂n = 0, t ≥ 0, x ∈ ∂Ω ,

ui(s, x) = ϕi(s, x), –∞ < s < 0, ui(0, x) = ϕi(0, x) = u0, x ∈ Ω ,

vi(s, x) = ϕi(s, x) + ψi(s, x), –∞ < s ≤ 0, x ∈ Ω ,

(4)

for i = 1, 2, . . . , n.
For convenience, we denote ψ̄i(s, t) = ϕi(s, x) + ψi(s, x).
Let wi(t, x) = (ui(t, x), vi(t, x))T , system (3) can be written in the form

∂wi(t, x)
∂t

= P

(∑n
k=1

∂
∂xk

(aik
∂ui(t,x)

∂xk
)

0

)

– Biwi(t, x) + P

(∧n
j=1 αijfj(uj(t – τij, x))

0

)

+ P

(∨n
j=1 βijfj(uj(t – τij, x))

0

)

+ P

(∧n
j=1 Tijμj

0

)

+ P

(∨n
j=1 Hijμj

0

)

, (5)
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for t ≥ 0, x ∈ Ω , i = 1, 2, . . . , n, where

P =

(
0 0
1 0

)

, Bi =

(
1 –1

bi + 1 – ei ei – 1

)

.

Definition 1 The point u∗ = (u∗
1, u∗

2, . . . , u∗
n)T is called an equilibrium point of system (1),

if the following equation holds true:

–biu∗
i +

n∧

j=1

αijfj
(
u∗

j
)

+
n∨

j=1

βijfj
(
u∗

j
)

+
n∧

j=1

Tijμj +
n∨

j=1

Hijμj = 0, (6)

for i = 1, 2, . . . , n.
The point (u∗, v∗) is called an equilibrium point of system (3), if the following equations

hold true:

⎧
⎨

⎩

–u∗
i + v∗

i = 0,

–biu∗
i +

∧n
j=1 αijfj(u∗

j ) +
∨n

j=1 βijfj(u∗
j ) +

∧n
j=1 Tijμj +

∨n
j=1 Hijμj = 0,

(7)

for i = 1, 2, . . . , n, where u∗ = (u∗
1, u∗

2, . . . , u∗
n)T , v∗ = (v∗

1, v∗
2, . . . , v∗

n)T .

Definition 2 Let u∗ = (u∗
1, u∗

2, . . . , u∗
n)T , v∗ = (v∗

1, v∗
2, . . . , v∗

n)T be the equilibrium points of
system (3), then we may define the following norms:

∥
∥ui(t, x) – u∗

i
∥
∥2

L2 =
∫

Ω

(
ui(t, x) – u∗

i
)2 dx,

∥
∥vi(t, x) – v∗

i
∥
∥2

L2 =
∫

Ω

(
vi(t, x) – v∗

i
)2 dx,

∥
∥ϕ – u∗∥∥

L2 = sup
–∞<t≤0

n∑

i=1

∥
∥ϕi(t, x) – u∗

i
∥
∥2

L2 ,

∥
∥ψ̄ – v∗∥∥

L2 = sup
–∞<t≤0

n∑

i=1

∥
∥ψ̄i(t, x) – v∗

i
∥
∥2

L2 ,

∥
∥
∥
∥
∥

(
ϕ

ψ̄

)

–

(
u∗

v∗

)∥
∥
∥
∥
∥

L2

=
∥
∥ϕ – u∗∥∥

L2 +
∥
∥ψ̄ – v∗∥∥

L2 ,

where ϕ = (ϕ1,ϕ2, . . . ,ϕn)T and ψ̄ = (ψ̄1, ψ̄2, . . . , ψ̄n)T are initial values.

Definition 3 The equilibrium point u∗ = (u∗
1, u∗

2, . . . , u∗
n)T of system (1) is said to be glob-

ally exponentially stable, if there exist two constants σ > 0 and M > 1 such that

n∑

i=1

∥
∥ui(t, x) – u∗

i
∥
∥2

L2 ≤ Me–σ t∥∥ϕ – u∗∥∥
L2 ,
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for all t ≥ 0, where u(t, x) = (u1(t, x), u2(t, x), . . . , un(t, x))T is a solution of system (1) with
initial value

⎧
⎪⎪⎨

⎪⎪⎩

∂ui(t,x)
∂n = 0, t ≥ 0, x ∈ ∂Ω ,

ui(s, x) = ϕi(s, x), –∞ < s < 0, ui(0, x) = ϕi(0, x) = u0, x ∈ Ω ,
∂ui(s,x)

∂t = ψi(s, x), –∞ < s ≤ 0, x ∈ Ω ,

for i = 1, 2, . . . , n.

Lemma 1 (Yang and Yang [23]) Suppose u(t, x) and ū(t, x) are two states of system (1), then
we have

∣
∣
∣
∣
∣

n∧

j=1

αijfj
(
uj(t, x)

)
–

n∧

j=1

αijfj
(
ūj(t, x)

)
∣
∣
∣
∣
∣
≤

n∑

i=1

|αij|
∣
∣fj
(
uj(t, x)

)
– fj

(
ūj(t, x)

)∣
∣,

∣
∣
∣
∣
∣

n∨

j=1

βijfj
(
uj(t, x)

)
–

n∨

j=1

βijfj
(
ūj(t, x)

)
∣
∣
∣
∣
∣
≤

n∑

i=1

|βij|
∣
∣fj
(
uj(t, x)

)
– fj

(
ūj(t, x)

)∣
∣,

for i = 1, 2, . . . , n.

Lemma 2 (Forti and Tesi [24]) If H(u) ∈ C0, and it satisfies the following conditions:
(1) H(u) is injective on Rn,
(2) ‖H(u)‖ → +∞, as ‖u‖ → +∞,

then H(u) is a homeomorphism of Rn.

Lemma 3 For any α > 0 and x, y, there exists a constant 0 ≤ β ≤ 1, then we have α|x||y| ≤
1
2 [(αβ)2x2 + (α1–β)2y2].

Proof of Lemma 3 Using the inequality a2 + b2 ≥ 2ab, we have

α|x||y| =
(
αβ |x|)(α1–β |y|) ≤ 1

2
[(

αβ
)2x2 +

(
α1–β

)2y2]. �

3 Main results
In this section, we can derive some sufficient conditions which ensure the existence and
globally exponential stability of periodic solution of system (1) by constructing a suitable
Lyapunov functional and using some analysis techniques.

Theorem 1 For system (1), under the hypothesis (H), system (1) has a unique equilibrium
point, which is globally exponentially stable if there exist constants 0 ≤ βi ≤ 1, 0 ≤ γi ≤ 1
(i = 1, 2, . . . , n), such that

n∑

j=1

|αji|
2

(
l1–βi
i

)2 +
n∑

j=1

|βji|
2

(
l1–γi
i

)2 +
|bi – ei|

2
– 1 < 0,

n∑

j=1

|αij|
2

(
lβj
j
)2 +

n∑

j=1

|βij|
2

(
lγj
j
)2 + 1 +

|bi – ei|
2

– ei < 0,

for i = 1, 2, . . . , n.
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Proof of Theorem 1 We shall prove Theorem 1 in two steps.
Step 1: We prove the existence and uniqueness of the equilibrium point.
From Definition 1, we know that equilibrium point u∗ = (u∗

1, u∗
2, . . . , u∗

n)T of system (1)
satisfies the following equation:

–biu∗
i +

n∧

j=1

αijfj
(
u∗

j
)

+
n∨

j=1

βijfj
(
u∗

j
)

+
n∧

j=1

Tijμj +
n∨

j=1

Hijμj = 0,

for i = 1, 2, . . . , n. Let Φ(u) = (Φ1(u),Φ2(u), . . . ,Φn(u))T , where

Φi(u) = –biui +
n∧

j=1

αijfj(uj) +
n∨

j=1

βijfj(uj) +
n∧

j=1

Tijμj +
n∨

j=1

Hijμj,

for i = 1, 2, . . . , n.
It is known that the solutions of Φ(u) = 0 are equilibria of system (1). If the mapping

Φ(u) is a homeomorphism on Rn, then there exists a unique point u∗ such that Φ(u∗) = 0,
i.e., system (1) has a unique equilibrium point u∗ (see [25, 26]).

Next we prove that Φ(u) is a homeomorphism.
First, we prove that Φ(u) is an injective mapping on Rn.
In fact, if there exist u = (u1, u2, . . . , un)T , ū = (ū1, ū2, . . . , ūn)T ∈ Rn and u �= ū such that

Φ(u) = Φ(ū), then

–bi(ui – ūi) +
n∧

j=1

αij
(
fj(uj) – fj(ūj)

)
+

n∨

j=1

βij
(
fj(uj) – fj(ūj)

)
= 0,

for i = 1, 2, . . . , n. We have

(ui – ūi)

[

–bi(ui – ūi) +
n∧

j=1

αij
(
fj(uj) – fj(ūj)

)
+

n∨

j=1

βij
(
fj(uj) – fj(ūj)

)
]

= 0,

for i = 1, 2, . . . , n. From assumptions (H), Lemma 1 and Lemma 3, we obtain

n∑

i=1

[

–bi|ui – ūi|2 +
n∑

j=1

|αij|lj|ui – ūi| · |uj – ūj| +
n∑

j=1

|βij|lj|ui – ūi| · |uj – ūj|
]

≥ 0,

n∑

i=1

{

–bi|ui – ūi|2 +
n∑

j=1

|αij|
2

[(
lβj
j
)2|ui – ūi|2 + (l1–βj

j )2|uj – ūj|2
]

+
n∑

j=1

|βij|
2

[(
lγj
j
)2|ui – ūi|2 +

(
l1–γj
j

)2|uj – ūj|2
]
}

≥ 0.

From the above, since

n∑

i=1

n∑

j=1

|βij|
2

(
lγj
j
)2|uj – ūj|2 =

n∑

i=1

n∑

j=1

|βji|
2

(
l1–γi
i

)2|ui – ūi|2,
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we obtain

n∑

i=1

{

–bi +
n∑

j=1

( |αij|
2

(
lβj
j
)2 +

|αji|
2

(
l1–βi
i

)2
)

+
n∑

j=1

( |βij|
2

(
lγj
j
)2 +

|βji|
2

(
l1–γi
i

)2
)}

|ui – ūi|2 ≥ 0. (8)

From the condition of Theorem 1, we have

–bi +
n∑

j=1

( |αij|
2

(
lβj
j
)2 +

|αji|
2

(
l1–βi
i

)2
)

+
n∑

j=1

( |βij|
2

(
lγj
j
)2 +

|βji|
2

(
l1–γi
i

)2
)

< –bi + ei – |bi – ei| ≤ 0, (9)

for i = 1, 2, . . . , n. From (8) and (9), we obtain ui = ūi for i = 1, 2, . . . , n, which is in contra-
diction to u �= ū. So Φ(u) is an injective mapping on Rn.

Second, we prove that ‖Φ(u)‖ → +∞ as ‖u‖ → +∞.
Let Φ̃(u) = Φ(u) – Φ(0) = (Φ̃1(u), Φ̃2(u), . . . , Φ̃n(u))T , then

Φ̃i(u) = –biui +
n∧

j=1

αij
(
fj(uj) – fj(0)

)
+

n∨

j=1

βij
(
fj(uj) – fj(0)

)
,

for i = 1, 2, . . . , n. Calculating uTΦ̃(u), we obtain

uTΦ̃(u) =
n∑

i=1

[

–biu2
i +

n∧

j=1

αijui
(
fj(uj) – fj(0)

)
+

n∨

j=1

βijui
(
fj(uj) – fj(0)

)
]

≤
n∑

i=1

[

–biu2
i +

n∑

j=1

|αij|lj|ui||uj| +
n∑

j=1

|βij|lj|ui||uj|
]

≤ – min
1≤i≤n

{

bi –
n∑

j=1

( |αij|
2

(
lβj
j
)2 +

|αji|
2

(
l1–βi
i

)2
)

–
n∑

j=1

( |βij|
2

(
lγj
j
)2 +

|βji|
2

(
l1–γi
i

)2
)}

‖u‖2
L2 .

By the Schwartz inequality –XT Y ≤ |XT Y | ≤ ‖X‖‖Y‖ (X, Y ∈ Rn), where ‖X‖ =
(
∑

i=1 x2
i ) 1

2 , we get

‖u‖ · ‖Φ̃‖ ≥ min
1≤i≤n

{

bi –
n∑

j=1

( |αij|
2

(
lβj
j
)2 +

|αji|
2

(
l1–βi
i

)2
)

–
n∑

j=1

( |βij|
2

(
lγj
j
)2 +

|βji|
2

(
l1–γi
i

)2
)}

‖u‖2.
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When ‖u‖ �= 0, we have

‖Φ̃‖ ≥ min
1≤i≤n

{

bi –
n∑

j=1

( |αij|
2

(
lβj
j
)2 +

|αji|
2

(
l1–βi
i

)2
)

–
n∑

j=1

( |βij|
2

(
lγj
j
)2 +

|βji|
2

(
l1–γi
i

)2
)}

‖u‖.

Therefore ‖Φ̃(u)‖ → +∞ as ‖u‖ → +∞, which implies that ‖H(u)‖ → +∞ as ‖u‖ → +∞.
From Lemma 2, we know that Φ(u) is a homeomorphism on Rn, then system (1) has a

unique equilibrium point.
Step 2: We prove that the unique equilibrium point u∗ = (u∗

1, u∗
2, . . . , u∗

n)T of system (1) is
globally exponential stable.

Let Zi = (ui – u∗
i , vi – v∗

i )T , u∗ = (u∗
1, u∗

2, . . . , u∗
n)T , v∗ = (v∗

1, v∗
2, . . . , v∗

n)T be the equilibrium
of system (3). From (5), (6) and (7), we have

∂Zi(t, x)
∂t

= P

(∑n
k=1

∂
∂xk

(aik
∂(ui(t,x)–u∗

i )
∂xk

)
0

)

– BiZi(t, x) + P

(∧n
j=1 αij(fj(uj(t – τij, x)) – fj(u∗

j ))
0

)

+ P

(∨n
j=1 βij(fj(uj(t – τij, x)) – fj(u∗

j ))
0

)

, (10)

for t ≥ 0, x ∈ Ω , i = 1, 2, . . . , n.
By multiplying both sides of (10) with ZT

i = (ui – u∗
i , vi – v∗

i ), and Lemma 1, we obtain

ZT
i

∂Zi

∂t
=
(
vi – v∗

i
)

n∑

k=1

aik
∂2(ui – u∗

i )
∂x2

k

–
[(

ui – u∗
i
)2 + (ei – 1)

(
vi – v∗

i
)2 + (bi – ei)

(
ui – u∗

i
)(

vi – v∗
i
)]

+
n∧

j=1

αij
(
vi – v∗

i
)(

fj
(
uj(t – τij, x)

)
– fj

(
u∗

j
))

+
n∨

j=1

βij
(
vi – v∗

i
)(

fj
(
uj(t – τij, x)

)
– fj

(
u∗

j
))

≤ (
vi – v∗

i
)

n∑

k=1

aik
∂2(ui – u∗

i )
∂x2

k

–
[(

1 –
|bi – ei|

2

)
(
ui – u∗

i
)2 +

(

ei – 1 –
|bi – ei|

2

)
(
vi – v∗

i
)2
]

+
n∑

j=1

|αij|lj
∣
∣vi – v∗

i
∣
∣
∣
∣uj(t – τij, x) – u∗

j
∣
∣ +

n∑

j=1

|βij|lj
∣
∣vi – v∗

i
∣
∣
∣
∣uj(t – τij, x) – u∗

j
∣
∣

≤ (
vi – v∗

i
)

n∑

k=1

aik
∂2(ui – u∗

i )
∂x2

k
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–
[(

1 –
|bi – ei|

2

)
(
ui – u∗

i
)2 +

(

ei – 1 –
|bi – ei|

2

)
(
vi – v∗

i
)2
]

+
n∑

j=1

|αij|
2

[(
lβj
j
)2∣∣vi – v∗

i
∣
∣2 +

(
l1–βj
j

)2∣∣uj(t – τij, x) – u∗
j
∣
∣2]

+
(
l1–γj
j

)2∣∣uj(t – τij, x) – u∗
j
∣
∣2],

for i = 1, 2, . . . , n.
We consider the Lyapunov functional

V (t) =
∫

Ω

n∑

i=1

{‖Zi(t, x)‖2
L2

2
e2εt

+
n∑

j=1

|αij|(l1–βj
j )2 + |βij|(l1–γj

j )2

2

∫ t

t–τij

(
uj(s, x) – u∗

j
)2e2ε(s+τij) ds

+
n∑

k=1

aik

2
e2εt

[
∂(ui(t, x) – u∗

i )
∂xk

]2
}

dx, (11)

where ε > 0 is sufficiently small.
By calculating the upper right Dini derivative D+V (t) of V (t) along the solution of (10),

with some analysis techniques, we have

D+V (t) =
∫

Ω

n∑

i=1

{

ZT
i (t, x)

∂Zi(t, x)
∂t

e2εt + εe2εt∥∥Zi(t, x)
∥
∥2

L2

+
n∑

j=1

|αij|(l1–βj
j )2 + |βij|(l1–γj

j )2

2

× [(
uj(t, x) – u∗

j
)2e2ε(t+τij) –

(
uj(t – τij, x) – u∗

j
)2e2εt]

+
n∑

k=1

aik

2
∂

∂t

[

e2εt
(

∂(ui(t, x) – u∗
i )

∂xk

)2]
}

dx

≤
∫

Ω

n∑

i=1

e2εt

{

ε
∥
∥Zi(t, x)

∥
∥2

L2 +
(
vi – v∗

i
)

n∑

k=1

aik
∂2(ui – u∗

i )
∂x2

k

–
[(

1 –
|bi – ei|

2

)
(
ui – u∗

i
)2 +

(

ei – 1 –
|bi – ei|

2

)
(
vi – v∗

i
)2
]

+
n∑

j=1

|αij|
2

[(
lβj
j
)2∣∣vi – v∗

i
∣
∣2 +

(
l1–βj
j

)2∣∣uj(t – τij, x) – u∗
j
∣
∣2]

+
n∑

j=1

|βij|
2

[(
lγj
j
)2∣∣vi – v∗

i
∣
∣2 +

(
l1–γj
j

)2∣∣uj(t – τij, x) – u∗
j
∣
∣2]

+
n∑

j=1

|αij|(l1–βj
j )2 + |βij|(l1–γj

j )2

2
[(

uj(t, x) – u∗
j
)2e2ετij –

(
uj(t – τij, x) – u∗

j
)2]

+ e–2εt
n∑

k=1

aik

2
∂

∂t

[

e2εt
(

∂(ui(t, x) – u∗
i )

∂xk

)2]
}

dx. (12)
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Since vi – v∗
i = ∂ui

∂t + ui – u∗
i = ∂(ui–u∗

i )
∂t + (ui – u∗

i ), aik > 0, we have

e2εt
∫

Ω

(
vi – v∗

i
)

n∑

k=1

aik
∂2(ui – u∗

i )
∂x2

k
dx

= e2εt
n∑

k=1

aik

∫

Ω

{
∂

∂xk

[
(
vi – v∗

i
)∂(ui – u∗

i )
∂xk

]

–
∂(vi – v∗

i )
∂xk

∂(ui – u∗
i )

∂xk

}

dx

= e2εt
n∑

k=1

aik[
∫

∂Ω

(
vi – v∗

i
)∂(ui – u∗

i )
∂xk

dx –
∫

Ω

∂(vi – v∗
i )

∂xk

∂(ui – u∗
i )

∂xk
dx

= –e2εt
n∑

k=1

aik

∫

Ω

∂(vi – v∗
i )

∂xk

∂(ui – u∗
i )

∂xk
dx

= –e2εt
n∑

k=1

aik

∫

Ω

[
1
2

∂

∂t

(
∂(ui – u∗

i )
∂xk

)2

+
(

∂(ui – u∗
i )

∂xk

)2]

dx

≤ –
n∑

k=1

aik

2

∫

Ω

[

e2εt ∂

∂t

(
∂(ui – u∗

i )
∂xk

)2

+ 2εe2εt
(

∂(ui – u∗
i )

∂xk

)2]

dx

= –
n∑

k=1

aik

2

∫

Ω

∂

∂t

[

e2εt
(

∂(ui – u∗
i )

∂xk

)2]

dx. (13)

It follows from (12) and (13) that

D+V (t) ≤
n∑

i=1

e2εt

{

ε
(∥
∥ui – u∗

i
∥
∥2

L2 +
∥
∥vi – v∗

i
∥
∥2

L2
)

–
(

1 –
|bi – ei|

2

)
∥
∥ui – u∗

i
∥
∥2

L2 –
(

ei – 1 –
|bi – ei|

2

)
∥
∥vi – v∗

i
∥
∥2

L2

+
n∑

j=1

|cji|
2

(
l1–αi
i

)2∥∥ui – u∗
i
∥
∥2

L2 +
n∑

j=1

|αij|(lβj
j )2 + |βij|(lγj

j )2

2
∥
∥vi – v∗

i
∥
∥2

L2

+
n∑

j=1

|αji|(l1–βi
i )2 + |βji|(l1–γi

i )2

2
∥
∥ui – u∗

i
∥
∥2

L2 e2ετji

}

≤ e2εt
n∑

i=1

{

–

[

1 –
|bi – ei|

2
– ε

–
n∑

j=1

|αji|(l1–βi
i )2 + |βji|(l1–γi

i )2

2
e2ετji

]
∥
∥ui – u∗

i
∥
∥2

L2

–

[

ei – 1 –
|bi – ei|

2
– ε –

n∑

j=1

|αij|(lβj
j )2 + |βij|(lγj

j )2

2

]
∥
∥vi – v∗

i
∥
∥2

L2

}

, (14)

for i = 1, 2, . . . , n. From the condition of Theorem 1, we can choose a sufficiently small ε > 0
such that

n∑

j=1

|αji|
2

(
l1–βi
i

)2e2ετij +
n∑

j=1

|βji|
2

(
l1–γi
i

)2e2ετij +
|bi – ei|

2
+ ε – 1 ≤ 0,
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n∑

j=1

|αij|
2

(
lβj
j
)2 +

n∑

j=1

|βij|
2

(
lγj
j
)2 +

|bi – ei|
2

+ 1 + ε – ei ≤ 0,

for i = 1, 2, . . . , n. From (14), we have D+V (t) ≤ 0, and so V (t) ≤ V (0), for all t ≥ 0. From
(11), we have

V (t) ≥
∫

Ω

n∑

i=1

‖Zi(t, x)‖2
L2

2
e2εt dx =

n∑

i=1

e2εt

2
(∥
∥ui – u∗

i
∥
∥2

L2 +
∥
∥vi – v∗

i
∥
∥2

L2
)
. (15)

If we assume the initial values ui(0, x) = u0, x ∈ Ω , then ∂(ui(0,x)–u∗
i )

∂xk
= 0, thus from (11) we

obtain

V (0) =
∫

Ω

n∑

i=1

{‖Zi(0, x)‖2
L2

2

+
n∑

j=1

|αij|(l1–βj
j )2 + |βij|(l1–γj

j )2

2

∫ 0

–τij

(
uj(s, x) – u∗

j
)2e2ε(s+τij) ds

}

dx

=
∫

Ω

n∑

i=1

{‖ϕi(0, x) – u∗
i ‖2

L2

2
+

‖ψ̄i(0, x) – u∗
i ‖2

L2

2

+
n∑

j=1

|αij|(l1–βj
j )2 + |βij|(l1–γj

j )2

2

∫ 0

–τij

(
ϕj(s, x) – u∗

j
)2e2ε(s+τij) ds

}

dx

≤ ‖ϕ – u∗‖L2

2
+

‖ψ̄ – u∗‖L2

2

+
n∑

i=1

n∑

j=1

|αij|(l1–βj
j )2 + |βij|(l1–γj

j )2

2

∫

Ω

[∫ 0

–τij

(
ϕj(s, x) – u∗

j
)2e2ε(s+τij) ds

]

dx

≤ ‖ϕ – u∗‖L2

2
+

‖ψ̄ – u∗‖L2

2

+ τ

n∑

j=1

max
1≤i≤n

{ |αji|(l1–βi
i )2 + |βji|(l1–γi

i )2

2

}

e2ετ
∥
∥ϕ – u∗∥∥

L2

=

[
1
2

+ τ

n∑

j=1

max
1≤i≤n

{ |αji|(l1–βi
i )2 + |βji|(l1–γi

i )2

2

}

e2ετ

]
∥
∥ϕ – u∗∥∥

L2

+
‖ψ̄ – u∗‖L2

2
. (16)

Since V (0) ≥ V (t), from (15) and (16), we obtain

n∑

i=1

e2εt

2
(∥
∥ui – u∗

i
∥
∥2

L2 +
∥
∥vi – v∗

i
∥
∥2

L2
)

≤
[

1
2

+ τ

n∑

j=1

max
1≤i≤n

{ |αji|(l1–βi
i )2 + |βji|(l1–γi

i )2

2

}

e2ετ

]
∥
∥ϕ – u∗∥∥

L2 +
‖ψ̄ – u∗‖L2

2
. (17)
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By multiplying both sides of (17) with 2e–2εt , we get

n∑

i=1

(∥
∥ui – u∗

i
∥
∥2

L2 +
∥
∥vi – v∗

i
∥
∥2

L2
)

≤ e–2εt

{[

1 + 2τ

n∑

j=1

max
1≤i≤n

{ |αji|(l1–βi
i )2 + |βji|(l1–γi

i )2

2

}

e2ετ

]
∥
∥ϕ – u∗∥∥

L2

+
∥
∥ψ̄ – u∗∥∥

L2

}

≤ e–2εt

{

1 + 2τ

n∑

j=1

max
1≤i≤n

{ |αji|(l1–βi
i )2 + |βji|(l1–γi

i )2

2

}

e2ετ +
‖ψ̄ – u∗‖L2

‖ϕ – u∗‖L2

}

× ∥
∥ϕ – u∗∥∥

L2 , (18)

for all t ≥ 0.

Let M = 1+2τ
∑n

j=1 max1≤i≤n{ |αji|(l1–βi
i )2+|βji|(l1–γi

i )2

2 }e2ετ + ‖ψ̄–u∗‖L2
‖ϕ–u∗‖L2

> 1, we obtain from (18),

n∑

i=1

∥
∥ui – u∗

i
∥
∥2

L2 ≤ Me–2εt∥∥ϕ – u∗∥∥
L2 ,

for all t ≥ 0. It implies that the equilibrium u∗ of system (1) is globally exponentially sta-
ble. �

Theorem 2 For system (1), under the hypothesis (H), system (1) there exist one periodic
solution of system (1) and other solutions of (1) converge exponentially to it as t → +∞ if
there exist constants 0 ≤ βi ≤ 1, 0 ≤ γi ≤ 1 (i = 1, 2, . . . , n) such that

n∑

j=1

|αji|
2

(
l1–βi
i

)2 +
n∑

j=1

|βji|
2

(
l1–γi
i

)2 +
|bi – ei|

2
– 1 < 0,

n∑

j=1

|αij|
2

(
lβj
j
)2 +

n∑

j=1

|βij|
2

(
lγj
j
)2 + 1 +

|bi – ei|
2

– ei < 0,

for i = 1, 2, . . . , n.

Proof of Theorem 2 Let

θ =
{
φ|φ = (ϕ, ψ̄)T = (ϕ1,ϕ2, . . . ,ϕn, ψ̄1, ψ̄2, . . . , ψ̄n)T ,φ : (–∞, 0] × Ω → R2n},

for any φ ∈ θ , we define

‖φ‖L2 =
∥
∥(ϕ, ψ̄)T∥∥

L2 = sup
–∞<t≤0

n∑

i=1

‖ϕi‖2
L2 + sup

–∞<t≤0

n∑

i=1

‖ψ̄i‖2
L2 ,

then θ is the Banach space of continuous functions which maps (–∞, 0] × Ω into R2n

with the topology of uniform convergence. For any (ϕ, ψ̄)T , (ϕ∗, ψ̄∗)T ∈ θ , we denote the



Liu and Lou Advances in Difference Equations         (2020) 2020:13 Page 13 of 17

solutions of system (3) by

((
0
0

)

,

(
ϕ

ψ̄

))

,

((
0
0

)

,

(
ϕ∗

ψ̄∗

))

,

as u(t,ϕ, x) = (u1(t,ϕ, x), u2(t,ϕ, x), . . . , un(t,ϕ, x))T , v(t, ψ̄ , x) = (v1(t, ψ̄ , x), v2(t, ψ̄ , x), . . . ,
vn(t, ψ̄ , x)T , and u(t,ϕ∗, x) = (u1(t,ϕ∗, x), u2(t,ϕ∗, x), . . . , un(t,ϕ∗, x))T , v(t, ψ̄∗, x) = (v1(t, ψ̄∗,
x), v2(t, ψ̄∗, x), . . . , vn(t, ψ̄∗, x)T , respectively.

Defining ut(ϕ, x) = u(t + δ,ϕ, x), vt(ψ̄ , x) = v(t + δ, ψ̄ , x), δ ∈ (–∞, 0], t ≥ 0, then (ut(ϕ, x),
vt(ψ̄ , x))T ∈ θ , for all t ≥ 0.

Let

Zi,t,ϕ,ψ̄ (t, x) =

(
ui(t,ϕ, x) – ui(t,ϕ∗, x)
vi(t, ψ̄ , x) – vi(t, ψ̄∗, x)

)

,

thus from (3) we have

∂Zi,t,ϕ,ψ̄ (t, x)
∂t

= P

(∑n
k=1

∂
∂xk

(aik
∂(ui(t,ϕ,x)–ui(t,ϕ∗ ,x))

∂xk
)

0

)

– BiZi,t,ϕ,ψ̄ (t, x)

+ P

(∧n
j=1 αij(fj(uj(t – τij,ϕ, x)) – fj(uj(t – τij,ϕ∗, x)))

0

)

+ P

(∨n
j=1 βij(fj(uj(t – τij,ϕ, x)) – fj(uj(t – τij,ϕ∗, x)))

0

)

, t ≥ 0, x ∈ Ω .

We consider the Lyapunov functional

V (t) =
∫

Ω

n∑

i=1

{‖Zi,t,ϕ,ψ̄ (t, x)‖2
L2

2
e2εt +

n∑

j=1

|αij|(l1–βj
j )2 + |βij|(l1–γj

j )2

2

∫ t

t–τij

(
uj(s,ϕ, x)

– uj
(
s,ϕ∗, x

))2e2ε(s+τij) ds +
n∑

k=1

aik

2
e2εt

[
∂(ui(t,ϕ, x) – ui(t,ϕ∗, x))

∂xk

]2
}

dx, (19)

where ε > 0 is sufficiently small.
By a minor modification of the proof of Theorem 1, we can derive easily

n∑

i=1

(∥
∥ui(t,ϕ, x) – ui

(
t,ϕ∗, x

)∥
∥2

L2 +
∥
∥vi(t, ψ̄ , x) – vi

(
t, ψ̄∗, x

)∥
∥2

L2
)

≤ e–2εt

{[

1 + 2τ

n∑

j=1

max
1≤i≤n

{ |αji|(l1–βi
i )2 + |βji|(l1–γi

i )2

2

}

e2ετ

]
∥
∥ϕ – ϕ∗∥∥

L2

+
∥
∥ψ̄ – ψ̄∗∥∥

L2

}

≤ e–2εt

{

1 + 2τ

n∑

j=1

max
1≤i≤n

{ |αji|(l1–βi
i )2 + |βji|(l1–γi

i )2

2

}

e2ετ
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+
‖ψ̄ – ψ̄∗‖L2

‖ϕ – ϕ∗‖L2

}
∥
∥ϕ – ϕ∗∥∥

L2

≤ e–2εtM
∥
∥ϕ – ϕ∗∥∥

L2 , (20)

for all t ≥ 0, where M = 1 + 2τ
∑n

j=1 max1≤i≤n{ |αji|(l1–βi
i )2+|βji|(l1–γi

i )2

2 }e2ετ + ‖ψ̄–ψ̄∗‖L2
‖ϕ–ϕ∗‖L2

> 1.
We can choose a positive integer N and ω > 0, such that Me–2Nεω ≤ 1

3 . Now we define a
Poincaré mapping θ → θ by

F(ϕ, ψ̄)T =
(
uω(ϕ, x), vω(ψ̄ , x)

)T ,

then

FN (ϕ, ψ̄)T =
(
uNω(ϕ, x), vNω(ψ̄ , x)

)T .

Let t = Nω, then from (20) we have

∥
∥
∥
∥
∥

FN

(
ϕ

ψ̄

)

– FN

(
ϕ∗

ψ̄∗

)∥
∥
∥
∥
∥

L2

≤ 1
3

∥
∥
∥
∥
∥

(
ϕ

ψ̄

)

–

(
ϕ∗

ψ̄∗

)∥
∥
∥
∥
∥

L2

.

It implies that FN is a contraction mapping, hence there exists a unique fixed point
(ϕ∗, ψ̄∗)T ∈ θ , such that FN (ϕ∗, ψ̄∗)T = (ϕ∗, ψ̄∗)T . Since

FN

(

F

(
ϕ∗
ψ̄∗

))

= F

(

FN

(
ϕ∗
ψ̄∗

))

= F

(
ϕ∗
ψ̄∗

)

,

F(ϕ∗, ψ̄∗)T ∈ θ is also a fixed point of FN , and thus F(ϕ∗, ψ̄∗)T = (ϕ∗, ψ̄∗)T , i.e., (uω(ϕ∗),
vω(ψ̄∗))T = (ϕ∗, ψ̄∗)T . Let (u(t,ϕ∗, x), v(t, ψ̄∗, x))T be the solution of system (3) through

((
0
0

)

,

(
ϕ∗
ψ̄∗

))

,

then (u(t + ω,ϕ∗, x), v(t + ω, ψ̄∗, x))T is also a solution of system (3). Obviously we have

(
ut+ω(ϕ∗, x)
vt+ω(ψ̄∗, x)

)

=

(
ut(uω(ϕ∗, x))
vt(vω(ψ̄∗, x))

)

=

(
ut(ϕ∗, x)
vt(ψ̄∗, x)

)

,

for all t ≥ 0. Hence

(
u(t + ω,ϕ∗, x)
v(t + ω, ψ̄∗, x)

)

=

(
u(t,ϕ∗, x)
v(t, ψ̄∗, x)

)

,

for all t ≥ 0.
It shows that there is exactly one ω-periodic solution of system (3) and other solutions

of system (3) converge exponentially to it as t → +∞, which implies that u(t,ϕ∗, x) is ex-
actly one ω-periodic solution of system (1) and other solutions of system (1) converge
exponentially to is as t → +∞. �
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Furthermore, as a consequence of the Theorem 2 we have the following corollary.

Corollary 1 For system (1), under the hypothesis (H), there exists one periodic solution of
system (1), and other solutions of system (1) converge exponentially to it as t → +∞, if one
of the following conditions holds:

⎧
⎨

⎩

∑n
j=1

|αji|
2 li +

∑n
j=1

|βji|
2 li + |bi–ei|

2 – 1 < 0,
∑n

j=1
|αij|

2 lj +
∑n

j=1
|βij|

2 lj + 1 + |bi–ei|
2 – ei < 0,

(21)

for i = 1, 2, . . . , n,

⎧
⎨

⎩

∑n
j=1

|αji|
2 +

∑n
j=1

|βji|
2 + |bi–ei|

2 – 1 < 0,
∑n

j=1
|αij|

2 l2
j +

∑n
j=1

|βij|
2 l2

j + 1 + |bi–ei|
2 – ei < 0,

(22)

for i = 1, 2, . . . , n, and

⎧
⎨

⎩

∑n
j=1

|αji|
2 l2

i +
∑n

j=1
|βji|

2 l2
i + |bi–ei|

2 – 1 < 0,
∑n

j=1
|αij|

2 +
∑n

j=1
|βij|

2 + 1 + |bi–ei|
2 – ei < 0,

(23)

In fact, the conditions (21)–(23) are special cases of Theorem 2 as βi = γi = 1
2 ;βi = γ1 =

1;βi = γ1 = 0, respectively. Therefore, by Theorem 2 we observe that Corollary 1 is true.

4 Numerical example
In this section, we give a numerical example to show the results of our method.

Example Consider the following neural networks with hyperbolic terms:

⎧
⎨

⎩

∂2ui(t,x)
∂t2 =

∑2
k=1

∂
∂xk

(aik
∂ui(t,x)

∂xk
) – biui(t, x) – ei

∂ui(t,x)
∂t +

∧2
j=1 αijfj(uj(t – τij, x)

+
∨2

j=1 βijfj(uj(t – τij, x) +
∧2

j=1 Tijμj +
∨2

j=1 Hijμj, t ≥ 0, x ∈ Ω ,
(24)

for i = 1, 2, where b1 = 3, b2 = 2, e1 = 2.8, e2 = 1.96, α11 = 0.2, α12 = 0.1, α21 = –0.2, α22 =
–0.3, β11 = 0.25, β12 = 0.35, β21 = –0.15, β22 = –0.3, fk(u) = 1

2 (|u + 1| – |u – 1|) (k = 1, 2).
Obviously, fk(u) (k = 1, 2) satisfies the condition (H) and lk = 1 (k = 1, 2).
By choosing βi = 1, γi = 1 (i = 1, 2), we have the following results after a simple calcula-

tion:

2∑

j=1

( |αj1|
2

+
|βj1|

2

)

+
|b1 – e1|

2
– 1 = –0.5 < 0,

2∑

j=1

( |α1j|
2

+
|β1j|

2

)

l2
j + 1 – e1 +

|b1 – e1|
2

= –1.25 < 0,

2∑

j=1

( |αj2|
2

+
|βj2|

2

)

+
|b2 – e2|

2
– 1 = –0.455 < 0,

2∑

j=1

( |α2j|
2

+
|β2j|

2

)

l2
j + 1 – e2 +

|b2 – e2|
2

= –1.305 < 0.
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Hence, it follows from Theorem 1 that (24) has a unique equilibrium point which is glob-
ally exponentially stable. It also follows, from Theorem 2, that there exists exactly one
periodic solution of (24) and all other solutions of (24) converge exponentially to it as
t → +∞.

5 Conclusions
In this paper, some sufficient conditions have been derived for the globally exponential
stability and existence of periodic solution of the fuzzy wave equations by constructing a
suitable Lyapunov functional and using some analytical techniques. A numerical example
is given to show the effectiveness of the results. The given algebra conditions are verifiable
and useful in the theory and applications.
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