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Abstract
In this paper, the exponential stability for a class of delayed competitive neural
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approach, some novel and useful criteria of global exponential stability for the
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1 Introduction
Competitive neural networks (CNNs), firstly proposed by Meyer-Bäse et al. in [1], involve
two types of memory: long-term and short-term memories. Viewed mathematically, there
are two classes of state variables in such a network model described by ODEs, one is short-
term memory, which depicts fast neuronal activity, another one is long-term memory,
which depicts the slow unsupervised synaptic modifications. Such a network model pos-
sesses a two-layer structure and then extensive fundamental results have been reported
to address the dynamic behaviors of such a network model. For example, Lu and He in [2]
gave some sufficient conditions for the global exponential stability of delayed competitive
neural networks with different time scales. Nie and Cao [3], Duan and Huang [4] studied
the dynamics of equilibrium for two different kinds of competitive neural networks with
time-varying delay and discontinuous activations, respectively. Nie et al. [5, 6], and Xu et
al. [7], respectively, investigated the multistability issue of CNNs by using the fixed point
theorem and the contraction mapping theorem. Pratap [8] and Yang [9] investigated the
finite time synchronization and adaptive lag synchronization problem of delayed CNNs.
For other interesting theoretical results of CNNs, one may refer to [10–16] and the refer-
ences therein.

On the other hand, for evident engineering and biological reasons, it is often useful to
bring an inertial term into a neural system. For instance, comparing to electronic neural
networks of the standard resistor–capacitor variety, Babcocka and Westervelt showed that
the dynamics could be complex when the neuron couplings were of an inertial nature [17].
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Another evident biological reason for introducing an inertial term into the standard neural
system is the implementation of the membrane of a hair cell by equivalent circuits con-
taining an inductance in semicircular canals of some animals, such as pigeon [18]. There-
fore, various dynamical behaviors for types of neural networks with inertial terms have
been studied by many authors, such as in [19–26] and the references therein. However,
the method employed in the aforementioned works are all through a reduced-order ap-
proach, that is, by changing the second-order inertial neural networks into the first-order
system, the reduced-order method clearly expanding the dimension of the system, which
increases the difficulty of the theoretical analysis for the NNs.

In this paper, abandoning the traditional reduced-order method and being inspired by
recent work [27, 28], we further study the issue of exponential stability of a delayed inertial
CNNs. The main contribution of this paper lies in the following aspects.

(1) By introducing the non-reduced-order approach, a novel Lyapunov–Krasovskii
functional proposed and new criteria are established for the exponential stability of
the considered model.

(2) Different from existing works on the stability analysis of delayed CNNs in which the
reduced-order approach is employed, the presented non-reduced-order approach
significantly reduces the computational complexity and improves some recently
reported ones.

This paper is outlined as follows. In Sect. 2, a model description and preliminaries are
presented. In Sect. 3, exponential stability of the considered model is studied. In Sect. 4, a
numerical example is provided. Finally, a conclusion is drawn in Sect. 5.

2 Model description and preliminaries
In this paper, we consider the following delayed inertial CNN model:

⎧
⎪⎪⎨

⎪⎪⎩

STM : x′′
i (t) = –aix′

i(t) – bixi(t) +
∑n

j=1Dijfj(xj(t)) +
∑n

j=1Dτ
ijgj(xj(t – τ (t)))

+ ci
∑q

l=1 mil(t)pl + Ii,

LTM : m′′
il(t) = –m′

il(t) – mil(t) + plfi(xi(t)), i = 1, . . . , n, l = 1, . . . , q,

(2.1)

where xi(t) is the neuron current activity level, fj(t) and gj(t – τ (t)) are the activation func-
tions, mil(t) is the synaptic efficiency, pl is the constant external stimulus, Dij represents
the connection weight between the ith neuron and the jth neuron, ci is the strength of
the external stimulus, Dτ

ij represents the synaptic weight of delayed feedback and Ii is the
constant input. In system (2.1), the second derivatives are called inertial terms, and the
time-varying delay τ (t) is a differentiable function satisfying

0 ≤ τ (t) ≤ τ , τ ′(t) ≤ μ < 1. (2.2)

Firstly, we shall rewrite system (2.1) as follows:
Setting

si(t) =
q∑

l=1

mil(t)pl = pT mi(t),



Shi et al. Advances in Difference Equations         (2020) 2020:87 Page 3 of 12

where p = (p1, p2, . . . , pq)T , mi(t) = (mi1(t), mi2(t), . . . , miq(t))T , and summing up the LTM
over l, the neural networks (2.1) can be rewritten as the state-space form

⎧
⎪⎪⎨

⎪⎪⎩

STM : x′′
i (t) = –aix′

i(t) – bixi(t) +
∑n

j=1Dijfj(xj(t)) +
∑n

j=1Dτ
ijgj(xj(t – τ (t)))

+ cisi + Ii,

LTM : s′′
i (t) = –s′

i(t) – si(t) + ‖p‖2fi(xi(t)),

where ‖p‖2 = p2
1 + · · · + p2

q is a constant. Without loss of generality, the input stimulus p
is assumed to be normalized with unit magnitude ‖p‖2 = 1, then the above networks are
simplified as

⎧
⎪⎪⎨

⎪⎪⎩

STM : x′′
i (t) = –aix′

i(t) – bixi(t) +
∑n

j=1Dijfj(xj(t)) +
∑n

j=1Dτ
ijgj(xj(t – τ (t)))

+ cisi + Ii,

LTM : s′′
i (t) = –s′

i(t) – si(t) + fi(xi(t)),

(2.3)

the initial conditions associated with (2.1) or (2.3) are to be of the form

⎧
⎨

⎩

xi(θ ) = φi(θ ), x′
i(θ ) = φ̃i(θ ), θ ∈ [–τ , 0],

si(θ ) = ψi(θ ), s′
i(θ ) = ψ̃i(θ ), θ ∈ [–τ , 0],

i = 1, 2, . . . , n. (2.4)

Throughout this paper, the activation functions are assumed to satisfy the following
assumption.

(H1) For any i = 1, 2, . . . , n, the activation functions fi and gi satisfy Lipschitz condition,
that is, there exist constants LF

i and LG
i such that for all u, v ∈ R

∣
∣fi(u) – fi(v)

∣
∣ ≤ LF

i |u – v|, ∣
∣gi(u) – gi(v)

∣
∣ ≤ LG

i |u – v|.

Definition 2.1 Suppose (x(t), s(t))T and (x∗(t), s∗(t))T are two solutions of the system sat-
isfying the initial condition, the system is said to be globally exponentially stable if there
are two positive constants ε and M depending on the initial values, such that

∣
∣xi(t) – x∗

i (t)
∣
∣ ≤ Me–εt ,

∣
∣si(t) – s∗

i (t)
∣
∣ ≤ Me–εt , i = 1, 2, . . . , n.

3 Main result
In this section, we will derive some sufficient conditions which ensure the global expo-
nential stability for system (2.3).

Theorem 3.1 Suppose that Assumption (H1) holds. The inertial CNNs (2.3) with initial
values (2.4) are globally exponentially stable if the algebra conditions hold:

Ai < 0, Ai < 0, (3.1)

and

4AiBi > (Ci)2, 4AiBi > (Ci)2, (3.2)
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where

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Ai = ξ1iη1i + 1
2
∑n

j=1ξ
2
1i(|Dij|LF

j + |Dτ
ij|LG

j ) – aiξ
2
1i,

Bi = 1
2
∑n

j=1ξ1iη1i(|Dij|LF
j + |Dτ

ij|LG
j ) + 1

2
∑n

j=1(ξ 2
1j + ξ1jη1j)|Dji|LF

i

+ 1
2(1–μ)

∑n
j=1(ξ 2

1j + ξ1jη1j)|Dτ
ji| + 1

2 (ξ2i + ξ2iη2i)LF
i – biξ1iη1i,

Ci = λ1i + η2
1i – aiξ1iη1i – biξ

2
1i,

and

⎧
⎪⎪⎨

⎪⎪⎩

Ai = ξ2iη2i + 1
2ξ2iLF

i – ξ 2
2i,

Bi = 1
2ξ2iη2iLF

i – ξ2iη2i,

Ci = λ2i + η2
2i – ξ2iη2i – ξ 2

2i.

Proof Let (x(t), s(t))T = (x1(t), x2(t), . . . , xn(t), s1(t), s2(t), . . . , sn(t))T and (x∗(t), s∗(t))T =
(x∗

1(t), x∗
2(t), . . . , x∗

n(t), s∗
1(t), s∗

2(t), . . . , s∗
n(t))T be two solutions of inertial CNNs (2.1).

Define yi(t) = xi(t) – x∗
i (t), zi(t) = si(t) – s∗

i (t), then system (2.3) can be rewritten as

⎧
⎨

⎩

y′′
i (t) = –aiy′

i(t) – biyi(t) +
∑n

j=1DijFj(yj(t)) +
∑n

j=1Dτ
ijGj(yj(t – τ (t))),

z′′
i (t) = –z′

i(t) – zi(t) + Fi(yi(t)),
(3.3)

where

Fi
(
yi(·)

)
= fi

(
xi(·)

)
– fi

(
x∗

i (·)), Gi
(
yi(·)

)
= gi

(
xi(·)

)
– gi

(
x∗

i (·)), i = 1, 2, . . . , n.

In view of (3.1), (3.2) and combining with the continuity theory, there exists a sufficiently
small ε > 0 such that

A ε
i < 0, Aε

i < 0, (3.4)

and

4A ε
i Bε

i >
(
C ε

i
)2, 4Aε

i Bε
i >

(
Cε

i
)2, (3.5)

where

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

A ε
i = ξ 2

1i + ξ1iη1i + 1
2
∑n

j=1ξ
2
1i(|Dij|LF

j + |Dτ
ij|LG

j ) – aiξ
2
1i,

Bε
i = λ1iε + η2

1iε + 1
2
∑n

j=1ξ1iη1i(|Dij|LF
j + |Dτ

ij|LG
j ) + 1

2
∑n

j=1(ξ 2
1j + ξ1jη1j)|Dji|LF

i

+ 1
2(1–μ)

∑n
j=1(ξ 2

1jξ1jη1j)|Dτ
ji|e2ετ + 1

2 (ξ2i + ξ2iη2i)LF
i – biξ1iη1i,

C ε
i = λ1i + η2

1i + 2εξ1iη1i – aiξ1iη1i – biξ
2
1i,

and

⎧
⎪⎪⎨

⎪⎪⎩

Aε
i = ξ 2

2iε + ξ2iη2i + 1
2ξ2iLF

i – ξ 2
2i,

Bε
i = λ2iε + η2

2iε + 1
2ξ2iη2iLF

i – ξ2iη2i,

Cε
i = λ2i + η2

2i + 2εξ2iη2i – ξ2iη2i – ξ 2
2i.
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Consider a Lyapunov–Krasovskii functional given by

V (t) =
1
2

n∑

i=1

λ1iy2
i (t)e2εt +

1
2

n∑

i=1

(
ξ1iy′

i(t) + η1iyi(t)
)2e2εt

︸ ︷︷ ︸
V1

+
1
2

n∑

i=1

λ2iz2
i (t)e2εt +

1
2

n∑

i=1

(
ξ2iz′

i(t) + η2izi(t)
)2e2εt

︸ ︷︷ ︸
V2

+
1

2(1 – μ)

n∑

i=1

n∑

j=1

(
ξ 2

1i + ξ1iη1i
)∣
∣Dτ

ij
∣
∣
∫ t

t–τ (t)
y2

j (s)e2ε(s+τ (t))

︸ ︷︷ ︸
V3

ds. (3.6)

First, let us compute the derivative of V1(t), we have

dV1(t)
dt

=
n∑

i=1

λ1iyi(t)y′
i(t)e2εt + ε

n∑

i=1

λ1iy2
i (t)e2εt

+
n∑

i=1

(
ξ1iy′

i(t) + η1iyi(t)
)(

ξ1iy′′
i (t) + η1iy′

i(t)
)
e2εt + ε

n∑

i=1

(
ξ1iy′

i(t) + η1iyi(t)
)2e2εt

= e2εt

{ n∑

i=1

λ1iyi(t)y′
i(t) + ε

n∑

i=1

λ1iy2
i (t) + ε

n∑

i=1

ξ 2
1i
(
y′

i(t)
)2

+ ε

n∑

i=1

η2
1iy

2
i (t) + 2εξ1iη1iyi(t)y′

i(t) +
n∑

i=1

{

–aiξ
2
1i
(
y′

i(t)
)2 – biξ

2
1iyi(t)y′

i(t)

+ ξ 2
1iy

′
i(t)

[ n∑

j=1

DijFj
(
yj(t)

)
+

n∑

j=1

Dτ
ijGj

(
yj

(
t – τ (t)

))
]}

+
n∑

i=1

ξ1iη1i
(
y′

i(t)
)2 +

n∑

i=1

{

–aiξ1iη1iyi(t)y′
i(t) – biξ1iη1iy2

i (t)

+ ξ1iη1iyi(t)

[ n∑

i=1

DijFj
(
yj(t)

)
+

n∑

i=1

Dτ
ijGj

(
yj

(
t – τ (t)

))
]}

+ η2
1iyi(t)y′

i(t)

}

= e2εt

{ n∑

i=1

(
λ1i + η2

1i + 2εξ1iη1i – aiξ1iη1i – biξ
2
1i
)
yi(t)y′

i(t)

+
n∑

i=1

(
ξ 2

1iε + ξ1iη1i – aiξ
2
1i
)(

y′
i(t)

)2

+
n∑

i=1

(
λ1iε + η2

1iε – biξ1iη1i
)
y2

i (t) +
n∑

i=1

n∑

j=1

(
ξ 2

1iy
′
i(t) + ξ1iη1iyi(t)

)
DijFj

(
yj(t)

)

+
n∑

i=1

n∑

j=1

(
ξ 2

1iy
′
i(t) + ξ1iη1iyi(t)

)
Dτ

ijGj
(
yj

(
t – τ (t)

))
}

. (3.7)
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It follows from (H1) and the fundamental inequality uv ≤ 1
2 (u2 + v2) (u, v ∈R) that

n∑

i=1

n∑

j=1

(
ξ 2

1iy
′
i(t) + ξ1iη1iyi(t)

)
DijFj

(
yj(t)

)

≤ 1
2

n∑

i=1

n∑

j=1

ξ 2
1i|Dij|LF

j
((

y′
i(t)

)2 + y2
j (t)

)
+

1
2

n∑

i=1

n∑

j=1

ξ1iη1i|Dij|LF
j
(
y2

i (t) + y2
j (t)

)

=
1
2

n∑

i=1

n∑

j=1

ξ 2
1i|Dij|LF

j
(
y′

i(t)
)2 +

1
2

n∑

i=1

n∑

j=1

(
ξ1iη1i|Dij|LF

j

+ ξ 2
1j|Dji|LF

i + ξ1jη1j|Dji|LF
i
)
y2

i (t) (3.8)

and

n∑

i=1

n∑

j=1

(
ξ 2

1iy
′
i(t) + ξ1iη1iyi(t)

)
Dτ

ijGj
(
yj

(
t – τ (t)

))

≤ 1
2

n∑

i=1

n∑

j=1

ξ 2
1i
∣
∣Dτ

ij
∣
∣LG

j
((

y′
i(t)

)2 + y2
j
(
t – τ (t)

))

+
1
2

n∑

i=1

n∑

j=1

ξ1iη1i
∣
∣Dτ

ij
∣
∣LG

j
(
y2

i (t) + y2
j
(
t – τ (t)

))

=
1
2

n∑

i=1

n∑

j=1

ξ 2
1i
∣
∣Dτ

ij
∣
∣LG

j
[
y′

i(t)
]2 +

1
2

n∑

i=1

n∑

j=1

ξ1iη1i
∣
∣Dτ

ij
∣
∣LG

j y2
i (t)

+
1
2

n∑

i=1

n∑

j=1

(
ξ 2

1i + ξ1iη1i
)∣
∣Dτ

ij
∣
∣LG

j y2
j
(
t – τ (t)

)
. (3.9)

Substituting (3.8), (3.9) into (3.7) leads to

dV1(t)
dt

≤ e2εt

{ n∑

i=1

(
λ1i + η2

1i + 2εξ1iη1i – aiξ1iη1i – biξ
2
1i
)
yi(t)y′

i(t)

+
n∑

i=1

(

ξ 2
1iε + ξ1iη1i +

1
2

n∑

j=1

ξ 2
1i
(|Dij|LF

j +
∣
∣Dτ

ij
∣
∣LG

j
)

– aiξ
2
1i

)
(
y′

i(t)
)2

+
n∑

i=1

(

λ1iε + η2
1iε +

1
2

n∑

j=1

ξ1iη1i
(|Dij|LF

j +
∣
∣Dτ

ij
∣
∣LG

j
)

+
1
2

n∑

j=1

(
ξ 2

1j + ξ1jη1j
)|Dji|LF

i – biξ1iη1i

)

y2
i (t)

+
1
2

n∑

i=1

n∑

j=1

(
ξ 2

1i + ξ1iη1i
)∣
∣Dτ

ij
∣
∣LG

j y2
j
(
t – τ (t)

)
}

. (3.10)
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Secondly, calculating the derivative of V2(t), we obtain

dV2(t)
dt

=
n∑

i=1

λ2izi(t)z′
i(t)e2εt + ε

n∑

i=1

λ2iz2
i (t)e2εt

+
n∑

i=1

(
ξ2iz′

i(t) + η2izi(t)
)(

ξ2iz′′
i (t) + η2iz′

i(t)
)
e2εt

+ ε

n∑

i=1

(
ξ2iz′

i(t) + η2izi(t)
)2e2εt

= e2εt

{ n∑

i=1

λ2izi(t)z′
i(t) + ε

n∑

i=1

λ2iz2
i (t) + ε

n∑

i=1

ξ 2
2i
(
z′

i(t)
)2

+ ε

n∑

i=1

η2
2iz

2
i (t) + 2εξ2iη2izi(t)z′

i(t)

+
n∑

i=1

ξ 2
2iz

′
i(t)

(
–z′

i(t) – zi(t) + Fi
(
yi(t)

))
+ ξ2iη2izi(t)

(
–z′

i(t) – zi(t) + Fi
(
yi(t)

))

+ ξ2iη2i
(
z′

i(t)
)2 + η2

2izi(t)z′
i(t)

}

= e2εt

{ n∑

i=1

(
λ2i + η2

2i + 2εξ2iη2i – ξ2iη2i – ξ 2
2i
)
zi(t)z′

i(t)

+
n∑

i=1

(
ξ 2

2iε + ξ2iη2i – ξ 2
2i
)(

z′
i(t)

)2

+
n∑

i=1

(
λ2iε + η2

2iε – ξ2iη2i
)
z2

i (t) +
n∑

i=1

(
ξ 2

2iz
′
i(t) + ξ2iη2izi(t)

)
Fi

(
yi(t)

)
}

. (3.11)

One can easily deduce that

n∑

i=1

(
ξ 2

2iz
′
i(t) + ξ2iη2izi(t)

)
Fi

(
yi(t)

)

≤ 1
2

n∑

i=1

ξ 2
2iL

F
i
((

z′
i(t)

)2 + y2
i (t)

)
+

1
2

n∑

i=1

ξ2iη2iLF
i
(
z2

i (t) + y2
i (t)

)

=
1
2

n∑

i=1

ξ 2
2iL

F
i
(
z′

i(t)
)2 +

1
2

n∑

i=1

ξ2iη2iLF
i z2

i (t) +
1
2

n∑

i=1

(
ξ 2

2i + ξ2iη2i
)
LF

i y2
i (t)

and thus

dV2(t)
dt

≤ e2εt{
n∑

i=1

(
λ2i + η2

2i + 2εξ2iη2i – ξ2iη2i – ξ 2
2i
)
zi(t)z′

i(t)

+
n∑

i=1

(

ξ 2
2iε + ξ2iη2i +

1
2
ξ 2

2iL
F
i – ξ 2

2i

)
(
z′

i(t)
)2
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+
n∑

i=1

(

λ2iε + η2
2iε +

1
2
ξ2iη2iLF

i – ξ2iη2i

)

z2
i (t)

+
1
2

n∑

i=1

(
ξ 2

2i + ξ2iη2i
)
LF

i y2
i (t). (3.12)

By virtue of (2.3) and a straightforward computation

dV3(t)
dt

=
1

2(1 – μ)

n∑

i=1

n∑

j=1

(
ξ 2

1i
∣
∣Dτ

ij
∣
∣ + ξ1iη1i

∣
∣Dτ

ij
∣
∣
)
y2

j (t)e2ε(t+τ (t))

–
1

2(1 – μ)

n∑

i=1

n∑

j=1

(
ξ 2

1i
∣
∣Dτ

ij
∣
∣ + ξ1iη1i

∣
∣Dτ

ij
∣
∣
)
y2

j
(
t – τ (t)

)
e2εt(1 – τ̇ (t)

)

≤ 1
2(1 – μ)

n∑

i=1

n∑

j=1

(
ξ 2

1j
∣
∣Dτ

ji
∣
∣ + ξ1jη1j

∣
∣Dτ

ji
∣
∣
)
y2

i (t)e2ε(t+τ )

–
1
2

n∑

i=1

n∑

j=1

(
ξ 2

1i
∣
∣Dτ

ij
∣
∣ + ξ1iη1i

∣
∣Dτ

ij
∣
∣
)
y2

j
(
t – τ (t)

)
e2εt ,

which, together with (3.10), and (3.11), gives

dV (t)
dt

≤ e2εt{
n∑

i=1

(
λ1i + η2

1i + 2εξ1iη1i – aiξ1iη1i – biξ
2
1i
)
yi(t)y′

i(t)

+
n∑

i=1

(

ξ 2
1i + ξ1iη1i +

1
2

n∑

j=1

ξ 2
1i
(|Dij|LF

j +
∣
∣Dτ

ij
∣
∣LG

j
)

– aiξ
2
1i

)
[
y′

i(t)
]2

+
n∑

i=1

{

λ1iε + η2
1iε +

1
2

n∑

j=1

ξ1iη1i
(|Dij|LF

j +
∣
∣Dτ

ij
∣
∣LG

j
)

+
1
2

n∑

j=1

(
ξ 2

1j + ξ1jη1j
)|Dji|LF

i

+
1

2(1 – μ)

n∑

j=1

(
ξ 2

1j + ξ1jη1j
)|Dτ

ji|e2ετ +
1
2

(ξ2i + ξ2iη2i)LF
i – biξ1iη1i

}

y2
i (t)

+
n∑

i=1

(
λ2i + η2

2i + 2εξ2iη2i – ξ2iη2i – ξ 2
2i
)
zi(t)z′

i(t)

+
n∑

i=1

(

ξ 2
2iε + ξ2iη2i +

1
2
ξ 2

2iL
F
i – ξ 2

2i

)
[
z′

i(t)
]2

+
n∑

i=1

(

λ2iε + η2
2iε +

1
2
ξ2iη2iLF

i – ξ2iη2i

)

z2
i (t)

= e2εt

{ n∑

i=1

(
A ε

i
(
y′

i(t)
)2 + Bε

i
(
y2

i (t)
)2 + C ε

i yi(t)y′
i(t)

)

+
(
Aε

i
(
z′

i(t)
)2 + Bε

i
(
z2

i (t)
)2 + Cε

i zi(t)z′
i(t)

)
}
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= e2εt

{ n∑

i=1

A ε
i

(

y′
i(t) +

C ε
i

2A ε
i

yi(t)
)2

+
n∑

i=1

(

Bε
i –

(C ε
i )2

4A ε
i

)
(
yi(t)

)2

+
n∑

i=1

Aε
i

(

z′
i(t) +

Bε
i

2A ε
i

yi(t)
)2

+
n∑

i=1

(

Bε
i –

(Cε
i )2

4Aε
i

)
(
zi(t)

)2
}

≤ 0, for all t ∈ [0, +∞).

Hence,

V (t) ≤ V (0), for all t ∈ [0, +∞),

which implies that

∣
∣yi(t)

∣
∣ = O

(
e–εt),

∣
∣zi(t)

∣
∣ = O

(
e–εt),

where O(e–εt) means that |yi(t)|, |zi(t)| exponentially converge to 0 with the same order as
e–εt . This completes the proof of Theorem 3.1. �

4 Numerical simulations
In this section, a numerical example is presented to justify the effectiveness of the pro-
posed exponential stability results. The simulation is performed using Matlab software.

Example 4.1 Let us consider the following inertial CNNs:

⎧
⎪⎪⎨

⎪⎪⎩

x′′
i (t) = –aix′

i(t) – bixi(t) +
∑2

j=1Dijfj(xj(t)) +
∑2

j=1Dτ
ijgj(xj(t – τ (t)))

+ cisi + Ii,

s′′
i (t) = –s′

ij(t) – sij(t) + fi(xi(t)),

(4.1)

where fi(u) = gi(u) = 1
2 (|u + 1| – |u – 1|), i = 1, 2. The parameters in (4.1) are assumed to be

a1 = 2, a2 = 3, b1 = 5, b2 = 3, I1 = 3, I2 = 2.5, c1 = c2 = 0.6, and

D =

[
–0.5 0.5
0.4 –0.9

]

, Dτ =

[
–0.3 0.3
0.4 –0.4

]

.

It is not difficult to check that LF
i = LG

i = 1, i = 1, 2. Let us chose ξ11 = ξ12 = η11 = η12 = 1,
η21 = 0.5, η22 = 0.1, ξ21 = 1.3, ξ22 = 1.7, λ11 = 6.67, λ12 = 5.89, λ21 = 2.79, λ22 = 3.33, B1 =
–0.575, B2 = –0.215, B1 = –0.325, B2 = –0.085. Through simple manipulation, we have

A1 = –0.2 < 0, 4A1B1 ≈ 0.46 > 0.4489 = C 2
1 = 0.672,

A2 = –0.95 < 0, 4A2B2 ≈ 0.817 > 0.792 = C 2
2 = 0.892,

and

A1 = –0.39 < 0, 4A1B1 ≈ 0.507 > 0.49 = C2
1 = 0.72,

A2 = –0.24 < 0, 4A2B2 ≈ 0.0816 > 0.0784 = C2
2 = 0.282.
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Figure 1 The state trajectories of state variables xi(t), si(t) with different values, i = 1, 2

Then, all the conditions of Theorem 3.1 are satisfied and thus the inertial CNN (4.1) is
exponentially stable. This fact is revealed in Fig. 1.

Remark 4.1 In recent years, many excellent theoretical results on competitive neural net-
works have been published (see [10, 11, 29–32] and the references therein), however, these
references do not consider the effect of inertia terms. On the other hand, to the best of our
knowledge, fewer dynamic results on delayed inertial CNNs have been reported. There-
fore, our results are new and complement some existing ones.

Remark 4.2 For technical reasons, we impose some conditions on the derivatives of the
time-varying delay (see (2.2)), that is, we demand that the delay increase not too fast. As
for the case of μ > 1 or the stability criteria are independent of time delay, which are our
objectives for future research.

5 Conclusion
In this paper, different from the existing methods which usually apply the variable substi-
tution to transform the second-order inertial system into the first-order differential equa-
tions, we investigated the exponential stability for a class of delayed inertial CNNs. A new
Lyapunov functional is constructed and the well-known Barbalat lemma is used to obtain
the stability criteria. Secondly, the asymptotic and adaptive synchronization of the ad-
dressed inertial networks is studied by designing two new control strategies. Finally, two
examples with numerical simulations are provided to show the effectiveness of the derived
theoretical results.

Acknowledgements
The author would like to express the sincere appreciation to the editor and reviewer for their helpful comments in
improving the presentation and quality of the paper. In particular, the authors express sincere gratitude to Prof. Lian Duan
for helpful discussion when revision work was being carried out.

Funding
This work was jointly supported by the National Natural Science Foundation of China (11701007, 11971076), Natural
Science Foundation of Anhui Province (1808085QA01, 1908085QA02), China Postdoctoral Science Foundation
(2018M640579), Postdoctoral Science Foundation of Anhui Province (2019B329), Innovation Foundation for Postgraduate
of AUST (2019CX2067), Key Program of Scientific Research Fund for Young Teachers of AUST (QN201605).

Availability of data and materials
Not applicable.

Competing interests
The authors declare that they do not have any competing interests in this manuscript.



Shi et al. Advances in Difference Equations         (2020) 2020:87 Page 11 of 12

Authors’ contributions
All authors contributed equally to this manuscript. All authors read and approved the final manuscript.

Author details
1School of Mathematics and Big Data, Anhui University of Science and Technology, Huainan, P.R. China. 2School of
Mathematics and Statistics, Changsha University of Science and Technology, Changsha, P.R. China.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Received: 23 July 2019 Accepted: 19 December 2019

References
1. Meyer-Bäse, A., Ohl, F., Scheich, H.: Singular perturbation analysis of competitive neural networks with different time

scales. Neural Comput. 8, 1731–1742 (1996)
2. Lu, H., He, Z.: Global exponential stability of delayed competitive neural networks with different time scales. Neural

Netw. 18, 243–250 (2005)
3. Nie, X., Cao, J.: Existence and global stability of equilibrium point for delayed competitive neural networks with

discontinuous activation functions. Int. J. Syst. Sci. 43, 459–474 (2012)
4. Duan, L., Huang, L.: Global dynamics of equilibrium point for delayed competitive neural networks with different time

scales and discontinuous activations. Neurocomputing 123, 318–327 (2014)
5. Nie, X., Zheng, W.: Dynamical behaviors of multiple equilibria in competitive neural networks with discontinuous

nonmonotonic piecewise linear activation functions. IEEE Trans. Cybern. 46, 679–693 (2015)
6. Nie, X., Cao, J., Fei, S.: Multistability and instability of competitive neural networks with non-monotonic piecewise

linear activation functions. Nonlinear Anal., Real World Appl. 45, 799–821 (2019)
7. Xu, D., Tan, M.: Multistability of delayed complex-valued competitive neural networks with discontinuous

non-monotonic piecewise nonlinear activation functions. Commun. Nonlinear Sci. Numer. Simul. 62, 352–377 (2018)
8. Pratap, A., Raja, R., Cao, J., et al.: Further synchronization in finite time analysis for time-varying delayed fractional

order memristive competitive neural networks with leakage delay. Neurocomputing 317, 110–126 (2018)
9. Yang, X., Cao, J., Long, Y., et al.: Adaptive lag synchronization for competitive neural networks with mixed delays and

uncertain hybrid perturbations. IEEE Trans. Neural Netw. 21, 1656–1667 (2010)
10. Duan, L., Fang, X., Yi, X., et al.: Finite-time synchronization of delayed competitive neural networks with discontinuous

neuron activations. Int. J. Mach. Learn. Cybern. 9, 1649–1661 (2018)
11. Pratap, A., Raja, R., Cao, J., et al.: Stability and synchronization criteria for fractional order competitive neural networks

with time delays: an asymptotic expansion of Mittag-Leffler function. J. Franklin Inst. 356, 2212–2239 (2019)
12. Liu, D., Zhu, S., Sun, K.: Global anti-synchronization of complex-valued memristive neural networks with time delays.

IEEE Trans. Cybern. 49, 1735–1747 (2018)
13. Chen, C., Zhu, S., Wei, Y.: Closed-loop control of nonlinear neural networks: the estimate of control time and energy

cost. Neural Netw. 117, 145–151 (2019)
14. Duan, L., Wei, H., Huang, L.: Finite-time synchronization of delayed fuzzy cellular neural networks with discontinuous

activations. Fuzzy Sets Syst. 361, 56–70 (2019)
15. Duan, L., Huang, L., Guo, Z., et al.: Periodic attractor for reaction-diffusion high-order Hopfield neural networks with

time-varying delays. Comput. Math. Appl. 73, 233–245 (2017)
16. Huang, C., Cao, J., Wen, F., et al.: Stability analysis of SIR model with distributed delay on complex networks. PLoS ONE

11, e0158813 (2016)
17. Babcock, K.L., Westervelt, R.M.: Stability and dynamics of simple electronic neural networks with added inertia.

Physica D 23, 464–469 (1986)
18. Angelaki, D.E., Correia, M.J.: Models of membrane resonance in pigeon semicircular canal type II hair cells. Biol.

Cybern. 65(1), 1–10 (1991)
19. Wang, J., Tian, L.: Global Lagrange stability for inertial neural networks with mixed time-varying delays.

Neurocomputing 235, 140–146 (2017)
20. Chen, C., Zhu, S., Wei, Y., Yang, C.: Finite-time stability of delayed memristor-based fractional-order neural networks.

IEEE Trans. Cybern. to be published. https://doi.org/10.1109/TCYB.2018.2876901
21. Wang, J., Huang, C., Huang, L.: Discontinuity-induced limit cycles in a general planar piecewise linear system of

saddle-focus type. Nonlinear Anal. Hybrid Syst. 33, 162–178 (2019)
22. Huang, C., Yang, Z., Yi, T., et al.: On the basins of attraction for a class of delay differential equations with

non-monotone bistable nonlinearities. J. Differ. Equ. 256, 2101–2114 (2014)
23. Duan, L., Fang, X., Huang, C.: Global exponential convergence in a delayed almost periodic Nicholson’s blowflies

model with discontinuous harvesting. Math. Methods Appl. Sci. 41(5), 1954–1965 (2018)
24. Duan, L., Huang, C.: Existence and global attractivity of almost periodic solutions for a delayed differential neoclassical

growth model. Math. Methods Appl. Sci. 40, 814–822 (2017)
25. Wang, J., Chen, X., Huang, L.: The number and stability of limit cycles for planar piecewise linear systems of

node-saddle type. J. Math. Anal. Appl. 469, 405–427 (2019)
26. Tan, Y., Huang, C., Sun, B., et al.: Dynamics of a class of delayed reaction–diffusion systems with Neumann boundary

condition. J. Math. Anal. Appl. 458, 1115–1130 (2018)
27. Li, X., Li, X., Hu, C.: Some new results on stability and synchronization for delayed inertial neural networks based on

non-reduced order method. Neural Netw. 96, 91–100 (2017)
28. Huang, C., Liu, B.: New studies on dynamic analysis of inertial neural networks involving non-reduced order method.

Neurocomputing 325, 283–287 (2019)
29. Balasundaram, K., Raja, R., Pratap, A., et al.: Impulsive effects on competitive neural networks with mixed delays:

existence and exponential stability analysis. Math. Comput. Simul. 155, 290–302 (2019)

https://doi.org/10.1109/TCYB.2018.2876901


Shi et al. Advances in Difference Equations         (2020) 2020:87 Page 12 of 12

30. Huang, C., Zhang, H.: Periodicity of non-autonomous inertial neural networks involving proportional delays and
non-reduced order method. Int. J. Biomath. 12, 1950016 (2019)

31. Tan, Y., Zhang, M.: Global exponential stability of periodic solutions in a nonsmooth model of hematopoiesis with
time-varying delays. Math. Methods Appl. Sci. 40, 5986–5995 (2017)

32. Duan, L., Zhang, M., Zhao, Q.: Finite-time synchronization of delayed competitive neural networks with different time
scales. J. Inf. Optim. Sci. 40, 813–837 (2019)


	Global exponential stability of delayed inertial competitive neural networks
	Abstract
	MSC
	Keywords

	Introduction
	Model description and preliminaries
	Main result
	Numerical simulations
	Conclusion
	Acknowledgements
	Funding
	Availability of data and materials
	Competing interests
	Authors' contributions
	Author details
	Publisher's Note
	References


