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Abstract
Ecological stoichiometry is the study of the balance of multiple elements in
ecological interactions and processes (Sterner and Elser in Ecological Stoichiometry:
The Biology of Elements from Molecules to the Biosphere, 2002). Modeling under this
framework enables us to investigate the effect nutrient content on organisms
whether the imbalance involves insufficient or excess nutrient content. This
phenomenon is called the “stoichiometric knife-edge”. In this paper, a discrete-time
predator–prey model that captures this phenomenon is established and qualitatively
analyzed. We systematically expound the similarities and differences between our
discrete model and the corresponding continuous analog. Theoretical and numerical
analyses show that while the discrete and continuous models share many properties,
differences also exist. Under certain parameter sets, the models exhibit qualitatively
different dynamics. While the continuous model shows limit cycle, Hopf bifurcation,
and saddle-node bifurcation, the discrete-time model exhibits richer dynamical
behaviors, such as chaos. By comparing the dynamics of the continuous and discrete
model, we can conclude that stoichiometric effects of low food quality on predators
are robust to the discretization of time. This study can possibly serve as an example
for pointing to the importance of time scale in ecological modeling.

Keywords: Ecological stoichiometry; Discrete model; Stoichiometric knife-edge; P:C
ratio

1 Introduction
Ecological stoichiometry is the study of the balance of energy and essential chemical el-
ements throughout ecological systems [23]. The ratios of elements, such as carbon (C)
and phosphorus (P), vary within and across trophic levels and play important roles in
ecological interactions. Stoichiometric population models have been widely used to un-
derstand predator–prey dynamics under nutritional constraints [3, 10, 20, 21, 27]. Loladze
et al. 2000 [17] formulated a tractable two-dimensional Lotka–Volterra type model (LKE
model) that incorporates the transfer of elements between predator and prey, where the
prey is a primary producer and the predator is a grazer. During the last decades, the LKE
model has been extended in the study of plant–herbivore interactions [15], competition
among consumers [18], three trophic level food chain [6, 19], seasonal variation in the
carrying capacity [2]. All these stoichiometric models show that low nutrient food con-
tent (low P:C ratio) causes a nutrient deficiency in grazers.
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It is well known that the selection of time scale is very important in biological and eco-
logical studies [13]. The above-mentioned stoichiometric models are continuous in time.
The sensitivity of stoichiometric effects to time discretization has been the subject of re-
cent studies. Fan et al. [12], Sui et al. [24], Xie et al. [28], and Chen et al. [7] compared
the continuous stoichiometric LKE producer–grazer model [17], a stoichiometric plant–
herbivore model [15], a model with one-prey and two-predators [18], and a tritrophic food
chain model [19] to their discrete analogs, respectively.

Through numerical and bifurcation analyses these studies investigated the dynamic be-
haviors of the discrete models, compared them with their corresponding continuous mod-
els. Many similarities were found between the dynamics of the continuous models and
their discrete analogs. However, different from the corresponding time-continuous mod-
els, the time-discrete models exhibit new phenomena, such as chaos.

Recent discoveries in ecological stoichiometry suggest that grazer dynamics are not only
affected by insufficient food nutrient content but also by excess food nutrient content (high
P:C ratio). This phenomenon is known as the “stoichiometric knife edge” [4, 11]. Elser
2012 [10] and Peace 2013 [21] proposed a stoichiometric model in order to investigate the
growth response of grazer to producer of varying P:C ratios capturing the mechanism of
the knife-edge phenomenon. These stoichiometric models are defined on the continuous
time scale; however, empirical data in ecological systems are collected on discrete time
intervals. Indeed many plants in natural and agricultural settings have non-overlapping
generations, and many herbivores exhibit annual or seasonal dynamics [28].

The effects of the knife-edge phenomenon can significantly impact population dynamics
when environmental nutrient loads are high. It is important to investigate how sensitive
these effects are to time discretization. The objective of the work presented here is to com-
pare the dynamics of the continuous stoichiometric knife-edge model [21] with its discrete
analog. In particular, we focus on whether the discrete model can retain the most impor-
tant dynamical features exhibited in the continuous stoichiometric knife-edge model, like
deterministic extinction of grazer when faced with excess food-nutrient content (i.e., low
food quality). Also, we concentrate on whether chaotic dynamics can arise in the discrete
model when the parameters are the same as the continuous one. In the next section, a dis-
crete analog of the producer-grazer model with the effect of the stoichiometric knife-edge
is conducted. In Sects. 2 and 3, we explore the dynamics of the discrete model qualita-
tively. Comparison between our discrete model and its continuous analog by numerical
simulations can be found in Sect. 5. In the discussion, we address the implications of our
findings.

2 Model construction
Using stoichiometric principles, Peace 2013 [21] proposed a two-trophic-level model that
takes the following form:

dx
dt

= bx
(

1 –
x

min{K , (PT – θy)/q}
)

– min

{
f (x),

f̂ θ
Q

}
y,

dy
dt

= min

{
êf (x),

Q
θ

f (x), êf̂
θ

Q

}
y – dy,

(2.1)

where Q = (PT – θy)/x describes the variable P quota of the producer. Here x(t) is the den-
sity of producer (in milligrams of carbon per liter, mg C/L), y(t) is the density of grazer
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(mg C/L), b is the maximum growth rate of producer (day–1), d is the specific loss rate
of grazer that includes metabolic losses (respiration) and death (day–1), ê is the maxi-
mum production efficiency of the grazer (no unit) and the second law of thermodynamics
requires that ê < 1, K is the producer’s constant carrying capacity based on light inten-
sity, and f (x) is the grazer’s ingestion rate (day–1), which is taken here as a Holling type-II
functional response. In general, the function f (x) is a bounded differentiable function that
satisfies f (0) = 0, f ′(x) > 0, f ′(0) < ∞, and f ′′(x) < 0 for x ≥ 0 [17]. f (x) is saturating with
limx→∞ f (x) = f̂ . The model makes the following four assumptions:

A1: The total mass of phosphorus in the entire system is fixed, i.e., the system is closed for
phosphorus with a total of PT (mg P/L).

A2: P:C ratio in the producer varies, but never falls below a minimum q (mg P/mg C);
the grazer maintains a constant P:C, θ (mg P/mg C).

A3: All phosphorus in the system is divided into two pools: P in the grazer and P in the
producer.

A4: The grazer ingests P up to the rate required for its maximal growth but not more.
These assumptions introduce new constraints in terms of P and C. Three minimum

functions have been obtained according to Liebig’s law of the minimum. Here, the first
minimum function min{K , (PT – θy)/q} is used to describe the producer carrying capacity
determined by C (light) and P availability. The second minimum function min{f (x), f̂ θ/Q}
is used to describe the grazer ingestion rate. The first input f (x) is the grazer ingestion
rate when P is not excess, and the second input f̂ θ/Q is the ingestion rate of grazer when
P is in excess. The third minimum function min{êf (x), Qf (x)/θ , êf̂ θ/Q} is used to describe
the grazer’s biomass growth rate, determined by energy limitation, P limitation, and P in
excess.

Now we consider the discrete analogue of the above continuous stoichiometric knife-
edge model (2.1). There are several methods for discretization of the continuous-time
models known to theoretical ecologists [14, 25]. We discretize the model (2.1) applying
the method developed by Cook, Busenberg, Wiener, and Shah [5, 8] and used in many pa-
pers [7, 12, 16, 22, 24, 28]. This method employs the differential equations with piecewise
constant arguments (EPCA) by assuming that on a given time interval [t, t + 1] the per
capita growth rate stays constant.

First, we assume that the per capita growth rates in equation (2.1) change only at the
time of each measurement. Incorporating this aspect in equation (2.1) yields the following
modified system:

1
x(t)

dx(t)
dt

= b
(

1 –
x[t]

min(K , (PT – θy[t])/q)

)
– min

{
f (x[t])

x[t]
,

f̂ θ
PT – θy([t])

}
y
(
[t]

)
,

1
y(t)

dy(t)
dt

= min

{
êf

(
x[t]

)
,

PT – θy[t]
θ

f (x[t])
x[t]

,
êf̂ θx[t]

PT – θy[t]

}
– d, t �= 0, 1, 2, . . . ,

(2.2)

where [t] denotes the integer part of t ∈ (0, +∞). By a solution of system (2.2), we mean a
function S = (x, y)T which is defined for t ∈ [0,∞) and possesses the following properties:

1 S is continuous on [0,∞).
2 The derivatives dx(t)

dt and dy(t)
dt exist at each point t ∈ [0,∞) with the possible exception

of the points t ∈ {0, 1, 2, . . .}, where left-sided derivatives exist.
3 System (2.2) is valid on each interval [n, n + 1) with n = 0, 1, 2, . . . .
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Table 1 Parameters of model (2.4) with default values

Parameter Value Unit

PT Total phosphorus 0–0.14 mg P/L
ê Maximal production efficiency of the grazer 0.8 –
b Maximal growth rate of the producer 1.2 /day
d Grazer loss rate (include respiration) 0.25 /day
θ Grazer constant P:C 0.03 mg P/mg C
q Producer minimal P:C 0.0038 mg P/mg C
c Maximal ingestion rate of the grazer 0.81 /day
a Half-saturation of the grazer ingestion response 0.25 mg C/L
K Producer carrying capacity limited by light 1.5 mg C/L

Next we integrate both sides of equation (2.2) on any interval of the form [n, n + 1),
n = 0, 1, 2, . . . , and obtain, for n ≤ t < n + 1, n = 0, 1, 2, . . . ,

x(t) = x(n) exp

{[
b –

bx(n)
min{K , (PT – θy(n))/q}

– min

{
f (x(n))

x(n)
,

f̂ θ
PT – θy(n)

}
y(n)

]
(t – n)

}
,

y(t) = y(n) exp

{[
min

{
êf

(
x(n)

)
,

PT – θy(n)
θ

f (x(n))
x(n)

,
êf̂ θx(n)

PT – θy(n)

}
– d

]
(t – n)

}
.

(2.3)

Letting t → n + 1, we obtain the following discrete-time analog of system (2.1):

x(n + 1) = x(n) exp

{
b –

bx(n)
min{K , (PT – θy(n))/q}

– min

(
f (x(n))

x(n)
,

f̂ θ
PT – θy(n)

)
y(n)

}
,

y(n + 1) = y(n) exp

{
min

{
êf

(
x(n)

)
,

PT – θy(n)
θ

f (x(n))
x(n)

,
êf̂ θx(n)

PT – θy(n)

}
– d

}
(2.4)

for n ∈N.
In the following sections, we focus our attention on system (2.4). Throughout the rest of

this paper, we consider only biologically meaningful initial values. Thus, we assume that
x(0) > 0 and PT /θ > y(0) > 0. And it is easy to check that the solution S of system (2.4) is
positive for all n ∈N.

3 Boundedness and invariance
In this section, we establish the following boundedness and positive invariant results for
system (2.4) by carrying out arguments similar to those in Fan et al. [12].

For convenience, we assume that f (x) = xp(x). In Loladze et al. [17], it has been proven
that

lim
x→0

p(x) = f ′(0) < ∞, p′(x) < 0 for x > 0.
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Theorem 3.1 For system (2.4), we have, for all n ∈N
+,

x(n) ≤ max

{
x(0),

K
b

exp(b – 1)
}

≡ U ,

y(n) ≤ max
{

y(0), v
}

exp
(
2êf (U) – 2d

) ≡ V ,

where v is any number satisfying êf (U exp(b – p(U)v)) < d.

Proof By using the fact that maxx∈R x exp(b – bx
K ) = K

b exp(b – 1) for b > 0, from system (2.4)
we obtain

x(n + 1) < x(n) exp

{
b –

bx(n)
K

}
≤ K

b
exp(b – 1) ≡ u.

Hence, for all n ∈N, we have

x(n) ≤ max
{

x(0), u
} ≡ U .

If êf (U) ≤ d, then it is clear that, for all n ∈ N
+, we have y(n) ≤ y(0). We thus assume

below that êf (U) > d. Let v be large enough so that

êf
(
U exp

(
b – p(U)v

))
< d.

We claim that for all n ∈N we have

y(n) ≤ max
{

y(0), v
}

exp
(
2êf (U) – 2d

) ≡ V .

This is obviously true for n = 1, 2. In the following, we distinguish two cases to prove the
claim.

Case 1. y(0) ≤ v. If the claim is not true, then, for some n1 > 2, v < y(n1 – 2) ≤ V ,
v < y(n1 – 1) ≤ V , and y(n1) > V . In this case, using the assumption that p′(x) < 0, we have

x(n1 – 1) ≤ x(n1 – 2) exp
(
b – p

(
x(n1 – 2)

)
y(n1 – 2)

)
< U exp

(
b – p(U)v

)
.

This implies that

y(n1) < y(n1 – 1) exp
{

êf
(
U exp

(
b – p(U)v

))
– d

}
< y(n1 – 1) ≤ V ,

which contradicts y(n1) > V .
Case 2. y(0) > v. In this case, we have x(1) < U exp(b – p(U)v), which implies that y(2) <

y(1). In other words, as long as y(n) > v, we have y(n + 2) < y(n + 1). Hence there are two
possibilities: either (i) for some y(n∗) ≤ v for some n∗ ∈ N

+; or (ii) y(n) > v for all n ∈ N
+.

In case (ii), y(n) is strictly decreasing for n > 1 and the claim is obviously true. In case (i),
from the proof of case 1, we see that for y(n) < V for n > n∗, and hence the claim is also
true. This completes the proof. �
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The positive invariance of

� =
{

(x, y) : 0 < x <
K
b

exp(b – 1), 0 < y < v
}

is a straightforward consequence of the above theorem.

Theorem 3.2 For system (2.4), � is globally attractive with respect to the initial values
(x(0), y(0)) such that x(0) > 0 and PT /θ > y(0) > 0.

Proof In view of Theorem 3.1, it is easy to see that � is a positively invariant domain of
system (2.4) and for large values of n, x(n) ∈ (0, K

b exp(b–1)). Notice that if y(n) > v for large
values of n ∈ N

+, then y(n) must have y∗ = lim supx→∞ y(n) ≥ v by boundedness. Hence,
for large values of n, we have

y(n) < y(n – 1) exp
{

êf
(
U exp

(
b – p(U)v

))
– d

}
.

Letting n → ∞ yields

y∗ ≤ y∗ exp
{

êf
(
U exp

(
b – p(U)v

))
– d

}
< y∗.

This contradicts y∗ > v > 0. Then, for large values of n, y(n) ∈ (0, v), proving the theorem. �

4 Nullclines
In this section, we focus on analyzing the stability of the equilibria of (2.4). For conve-
nience, we rewrite equation (2.4) as

x(n + 1) = x(n) exp
{

F
(
x(n), y(n)

)}
,

y(n + 1) = y(n) exp
{

G
(
x(n), y(n)

)}
,

(4.1)

where

F(x, y) = b –
bx

min{K , (PT – θy)/q} – min

{
p(x),

f̂ θ
PT – θy

}
y,

G(x, y) = min

{
êxp(x),

PT – θy
θ

p(x),
êf̂ θx

PT – θy

}
– d.

To find the equilibrium points of equation (2.4), we solve

Producer nullclines: x
[
1 – exp

{
F(x, y)

}]
= 0, i.e., x = 0 or F(x, y) = 0,

Grazer nullclines: y
[
1 – exp

{
G(x, y)

}]
= 0, i.e., y = 0 or G(x, y) = 0.

The Jacobian of (2.4) is

J(x, y) =

(
exp{F(x, y)} + x exp{F(x, y)}Fx(x, y) x exp{F(x, y)}Fy(x, y)

y exp{G(x, y)}Gx(x, y) exp{G(x, y)} + y exp{G(x, y)}Gy(x, y)

)
,

(4.2)
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where

Fx(x, y) =
∂F(x, y)

∂x
=

⎧⎪⎨
⎪⎩

– b
min{K , PT –θy

q } – p′(x)y, if f (x) < f̂ θ
Q ,

– b
min{K , PT –θy

q } < 0, if f (x) > f̂ θ
Q ,

Fy(x, y) =
∂F(x, y)

∂y
=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

–p(x) < 0, if f (x) < f̂ θ
Q , K < PT –θy

q ,

– PT f̂ θ
(PT –θy)2 < 0, if f (x) > f̂ θ

Q , K < PT –θy
q ,

– bqθx
(PT –θy)2 – p(x) < 0, if f (x) < f̂ θ

Q , K > PT –θy
q ,

– bqθx
(PT –θy)2 – PT f̂ θ

(PT –θy)2 < 0, if f (x) > f̂ θ
Q , K > PT –θy

q ,

Gx(x, y) =
∂G(x, y)

∂x
=

⎧⎪⎪⎨
⎪⎪⎩

ê[p(x) + xp′(x)] > 0, if êf (x) < Q
θ

f (x), êf (x) < êf̂ θ
Q ,

PT –θy
θ

p′(x) < 0, if Q
θ

f (x) < êf (x), Q
θ

f (x) < êf̂ θ
Q ,

êf̂ θ
PT –θy > 0, if êf̂ θ

Q < êf (x), êf̂ θ
Q < Q

θ
f (x),

Gy(x, y) =
∂G(x, y)

∂y
=

⎧⎪⎪⎨
⎪⎪⎩

0, if êf (x) < Q
θ

f (x), êf (x) < êf̂ θ
Q ,

–p(x) < 0, if Q
θ

f (x) < êf (x), Q
θ

f (x) < êf̂ θ
Q ,

êf̂ θ2x
(PT –θy)2 > 0, if êf̂ θ

Q < êf (x), êf̂ θ
Q < Q

θ
f (x).

(4.3)

4.1 Boundary equilibria
We use the following standard lemma (see Edelstein-Keshet [9], p. 57) to study the stability
of equilibrium points of system (2.4).

Lemma 4.1 (Jury test) Let A be a 2 × 2 constant matrix. Both characteristic roots of A
have magnitude less than 1 if and only if

2 > 1 + Det(A) >
∣∣Tr(A)

∣∣. (4.4)

In order to find the possible equilibrium points of system (2.4), we solve the equations

x
[
1 – exp

{
F(x, y)

}]
= 0, y

[
1 – exp

{
G(x, y)

}]
= 0.

It is easy to see that the equilibria of equation (2.4) are exactly the same as those of equation
(2.1). The only boundary equilibrium points are E0 = (0, 0) and E1 = (k, 0).

The Jacobian matrix (4.2) at the origin E0 turns out to be

J(E0) =

(
eb 0
0 e–d

)
.

It is clear that the magnitude of characteristic root e–d is less than 1 while the magnitude
of eb is larger than 1. Consequently, E0 is always unstable.

The Jacobian matrix (4.2) at E1 becomes

J(E1) =

(
1 – b kFy(k, 0)

0 exp{G(k, 0)}

)
,
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where

G(k, 0) = min

{
êkp(k),

PT

θ
p(k),

êf̂ θk
PT

}
– d.

From Lemma 4.1, we obtain the following theorem.

Theorem 4.1 For (2.4), E0 is always unstable. E1 is locally asymptotically stable (LAS) if

0 < b < 2 and min

{
êkp(k),

PT

kθ
p(k),

êf̂ θk
PT

}
< d;

it is unstable if

b > 2 or min

{
êkp(k),

PT

kθ
p(k),

êf̂ θk
PT

}
> d.

Proof If we let λ1 and λ2 be the characteristic roots of J(E1), then the condition

0 < b < 2 and min

{
êkp(k),

PT

kθ
p(k),

êf̂ θk
PT

}
< d

ensures that |λi| < 1, i = 1, 2, while the condition

b > 2 or min

{
êkp(k),

PT

kθ
p(k),

êf̂ θk
PT

}
< d

implies |λ1| > 1 or |λ2| > 1. �

4.2 Internal equilibria
From [21], we claim that equation (2.4) could have multiple interior equilibria because
both equations (2.1) and (2.4) have the same equilibria. Now we assume that E∗(x∗, y∗) is
such an equilibrium and discuss its local stability.

The Jacobian (4.2) matrix at the positive equilibria E∗ becomes

J
(
E∗) =

(
1 + x∗Fx x∗Fy

y∗Gx 1 + y∗Gy

)
,

where

Fx = Fx
(
x∗, y∗), Fy = Fy

(
x∗, y∗), Gx = Gx

(
x∗, y∗), Gy = Gy

(
x∗, y∗).

Its trace and determinant are

Tr
(
J
(
E∗)) = 2 + x∗Fx + y∗Gy,

Det
(
J
(
E∗)) = 1 + x∗Fx + y∗Gy + x∗y∗[FxGy – FyGx]

= Tr
(
J
(
E∗)) – 1 + x∗y∗[FxGy – FyGx],
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Figure 1 Phase plane for system (2.4). The lines

ê = Q
θ and f (x) = f̂θ

Q split the phase plane into three
biological significant regions. Region I is defined by

ê < Q
θ and f (x) < f̂θ

Q , where P is neither limiting nor

in excess. Region II is defined by ê > Q
θ (always

f (x) < f̂θ
Q from Lemma 2.4.1, [21]), where grazer’s

growth is limited by a deficiency of P. Region III is

defined by ê < Q
θ and f (x) > f̂θ

Q , where P is in excess
and reduces grazer’s growth

respectively. By referenced [21], the phase plane is divided into three biologically signifi-
cant regions by the two lines ê = Q

θ
and f (x) = f̂ θ

Q to investigate the interior equilibrium E∗

(see Fig. 1). We have the following theorem on the local asymptotically stability of E∗.

Theorem 4.2 In Region I (i.e., ê < Q
θ

and f (x) < f̂ θ
Q ), the following are true:

• If the producer’s nullcline is increasing at E∗ (i.e., Fx > 0), then E∗ is unstable.
• If the producer’s nullcline is decreasing at E∗ (i.e., Fx < 0), and

1
2

x∗y∗FyGx – 2 < x∗Fx < x∗y∗FyGx,

then E∗ is LAS.
• If the producer’s nullcline is decreasing at E∗ (i.e., Fx < 0), and

Fx > y∗FyGx or x∗Fx <
1
2

x∗y∗FyGx – 2,

then E∗ is unstable.
In Region II (i.e., ê > Q

θ
and f (x) < f̂ θ

Q ), the following are true:
• If the slope of the producer’s nullcline at E∗ is greater than the grazer’s (i.e.,

–Gx/Gy < –Fx/Fy), then E∗ is unstable.
• If the slope of the grazer’s nullcline at E∗ is greater than the producer’s (i.e.,

–Gx/Gy > –Fx/Fy), and

1
2

x∗y∗[FyGx – FxGy] – 2 < x∗Fx + y∗Gy < x∗y∗[FyGx – FxGy],

then E∗ is LAS.
• If the slope of the grazer’s nullcline at E∗ is greater than the producer’s (i.e.,

–Gx/Gy > –Fx/Fy), and

x∗Fx + y∗Gy <
1
2

x∗y∗[FyGx – FxGy] – 2 or

x∗Fx + y∗Gy > x∗y∗[FyGx – FxGy],

then E∗ is unstable.
In Region III (i.e., ê < Q

θ
and f (x) > f̂ θ

Q ), the following are true:
• If the slope of the grazer’s nullcline at E∗ is greater than the producer’s (i.e.,

–Gx/Gy > –Fx/Fy), then E∗ is unstable.
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• If the slope of the producer’s nullcline at E∗ is greater than the grazer’s (i.e.,
–Gx/Gy < –Fx/Fy), and

1
2

x∗y∗[FyGx – FxGy] – 2 < x∗Fx + y∗Gy < x∗y∗[FyGx – FxGy], (4.5)

then E2 is LAS.
• If the slope of the producer’s nullcline at E∗ is greater than the grazer’s (i.e.,

–Gx/Gy < –Fx/Fy), and

x∗Fx + y∗Gy <
1
2

x∗y∗[FyGx – FxGy] – 2 or

x∗Fx + y∗Gy > x∗y∗[FyGx – FxGy],
(4.6)

then E∗ is unstable.

Proof The LAS of E∗ in Region I and II is obtained by using the same arguments as those
used in the proof of Theorem 4.2 in [12] where the interested reader can find all the details.
Therefore, here we focus on the stability of E∗ in Region III, ê < Q

θ
and f (x) > f̂ θ

Q . Suppose
that E∗ lies in Region III, then system (4.3) yields that at E∗, Fx < 0, Fy < 0, Gx > 0, and
Gy > 0.

Note that

Det
(
J
(
E∗)) = 1 + x∗Fx + y∗Gy + x∗y∗FyGy

[
–

Gx

Gy
–

(
Fx

Fy

)]
.

If the slope of the grazer’s nullcline at E∗ is greater than the producer’s, i.e., –Gx/Gy >
–Fx/Fy, then 1 + Det(J(E∗)) < Tr(J(E∗)), which implies that equation (4.4) does not hold.
Hence, E∗ is unstable. If the slope of the producer’s nullcline at E∗ is greater than the
grazer’s, then

–
Gx

Gy
< –

Fx

Fy
< 0.

If equation (4.5) holds, then one can easily show that system (4.4) holds. Consequently, E∗

is stable. If equation (4.6) is valid, then E∗ is unstable since equation (4.4) is not valid. �

5 Numerical simulations
In this section, we carry out systematic numerical simulations to verify and deepen our an-
alytical findings and to compare them with those of the corresponding continuous system.
Specifically, we investigate how the discretization impacts the modeling of the dynamic
interaction between grazer and producer.

For simplicity, and without any loss of generality, we choose the Monod type function
f (x) = cx/(a + x) as the functional response of the grazer and on the assumption in the sec-
tion (3), p(x) = c/(a + x). In order to compare the dynamical behaviors of the discrete-time
model (5.1) and continuous-time model (5.2), we carry out numerical simulations using
the same parameters as in [21]. The parameter values are listed in Table 1. These values
were also used by Loladze et al. [17] and chosen as biologically realistic values obtained
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from Anderson [1] and Urabe and Sterner [26]. We will simulate the following producer-
grazer systems:

x(n + 1) = x(n) exp

{
b –

bx(n)
min{K , (PT – θy(n))/q} – min

{
cy(n)

a + x(n)
,

f̂ θy(n)
PT – θy(n)

}}
,

y(n + 1) = y(n) exp

{
min

{
ê

cx(n)
a + x(n)

,
PT – θy(n)

θx(n)
cx(n)

a + x(n)
,

êf̂ θx(n)
PT – θy(n)

}
– d

} (5.1)

and

dx
dt

= bx
(

1 –
x

min{K , (PT – θy)/q}
)

– min

{
cxy

a + x
,

f̂ θxy
PT – θy

}
,

dy
dt

= min

{
ê

cx
a + x

,
PT – θy

θx
cx

a + x
,

êf̂ θx
PT – θy

}
y – dy.

(5.2)

In the numerical simulations, the initial values are set to x(0) = 0.5 mg C/L and y(0) =
0.25 mg C/L. The parameter PT represents the total amount of P in the system. Since the
producer takes up P, the P:C ratio of the producer is affected by the level of P. Low values
of P will result in insufficient food nutrient content for the grazer, while high values of P
will result in excess food nutrient content for the grazer.

In Fig. 2, we compare the solutions of the two systems with varying PT . The dynamics
of these two models are similar, but there are also some important differences between
them. For very low values of PT , the grazer cannot persist due to the very low food quan-

Figure 2 Solution curves for systems (5.1) and (5.2). The parameters are defined in Table 1, and the initial
conditions are x = 0.5 mg C/L and y = 0.25 mg C/L. (ai ) and (bi ) denote the dynamics of (5.1) and (5.2) with
different PT , respectively. Producer and grazer densities (mg C/L) are given by dashed and solid lines,
respectively
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Figure 3 Bifurcation diagram of the population densities plotted against PT the discrete-time model (5.1)
(ai , i = 1, 2) and continuous-time model (5.2) (bi , i = 1, 2). The values of other parameters are given in Table 1

tity and starvation (see (a1)–(b1)). When PT = 0.025 mg P/L, the population densities are
at an equilibrium (see (a2)–(b2)). In both systems, we see periodic oscillations around an
unstable equilibrium for PT = 0.05 mg P/L (see (a3)–(b3)). However, in (a3), we observe
oscillations where grazer density reaches smaller values. When PT = 0.08 mg P/L, (b4)
displays damped oscillations towards a stable equilibrium, whereas (a4) shows periodic
oscillations. When PT = 0.1 mg P/L the oscillation disappears and equilibrium emerges
(see (a5)–(b5)). For very high values of PT , we see deterministic extinction caused by re-
duction of grazer growth due to high producer P:C or low food quality (see (a6)–(b6)).

The bifurcation diagrams in Fig. 3 illustrate how population dynamics in equations (5.1)
and (5.2) vary with PT . For PT less than 0.015 mg P/L, the grazer cannot survive due to
starvation. When PT increases, the grazer persists at a stable equilibrium, and its den-
sity rises. When we increase PT further, the system undergoes a Hopf bifurcation and the
equilibrium loses its stability to a limit cycle, the amplitude of which increases with PT .
We can observe that the amplitude of the oscillation in the discrete model is larger than
that in the continuous model. As PT increases further, the limit cycle disappears through
a saddle-node bifurcation and a new stable equilibrium appears. It can also be observed
that the stable equilibrium of equation (5.2) emerges earlier than the corresponding one of
equation (5.1). When we increase PT still further, the grazer density begins to decline; al-
though the producer density increases as PT increases, its worsening quality significantly
constrains the grazer’s growth. For excess level of PT , the grazer is heading toward deter-
ministic extinction due to low food quality. Due to the extinction of grazer, the primary
producer in both models tends to its carrying capacity. This type of scenario is often ob-
served as phytoplankton blooms.

In fact, the discretization can have a significant impact on the dynamics of system (5.2).
We further compare the dynamics of the continuous-time model (5.2) and the discrete-
time model (5.1) by choosing the producer carrying capacity K as a bifurcation parameter.
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Figure 4 The bifurcation curves versus K for the discrete-time model (ai , i = 1, 2) and the continuous-time
model (bi , i = 1, 2). All parameters are as in Table 1 except that b = 2.9 and K varying from 0 to 2.6

Figure 5 Spectrum of the maximum Lyapunov exponent (MLE) versus K for the discrete-time model. The
parameters are defined in Table 1 except that b = 2.9 and K varying from 0 to 2.6

There are some subtle differences between the dynamics of equations (5.1) and (5.2). From
the bifurcation diagram in Fig. 4, we can easily observe that the dynamics of discrete-time
model (5.1) are very different from those of the corresponding continuous-time model
for b = 2.9 and K varying from 0 to 2.6. In continuous-time, the global attractor is either
the boundary equilibrium or the internal equilibrium (see (b1) and (b2)), while in discrete-
time, the global attractor can be a boundary equilibrium, internal equilibrium, limit cycles,
or even a stranger attractor (chaos) (see (a1) and (a2)).

In Fig. 5, the existence interval of positive spectra of maximum Lyapunov exponent
(MLE) of (5.1) proves that the discrete-time model exhibits chaos when K varies within
the intervals (0.025, 0.28) and (1.95, 2.6). Figure 4(a1) shows the familiar period-doubling
route to chaos for the producer density. However, the grazer density crashes and instantly
reaches zero immediately after the producer enters the chaotic zone (see Fig. 4(a2)). This
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suggests that chaotic behavior of the producer population provides an important factor
for the extinction of grazer population. This interesting and important biological insight
is totally lost in the continuous-time model (5.2) (see Fig. 4(b1) and (b2)). This also sup-
ports the point that the discretization can contribute to the occurrence of oscillation of
the populations.

6 Conclusion and discussion
The theory of ecological stoichiometry has deepened our understanding of many eco-
logical interactions [23]. Stoichiometry-based models provide more insight into popula-
tion dynamics. Continuous-time models lead to several interesting results. An important
question is how robust the model predictions are to time discretization. In this paper we
develop and analyze a 2-D stoichiometric knife-edge discrete model. The model admits
rich dynamics under the stoichiometric constraints.

Through the theoretical and numerical analysis, we find that many of the dynamical
features exhibited by its continuous analogs (2.1) are captured in our discrete model (2.4).
Indeed, the continuous and discrete stoichiometric models exhibit similar phenomena.
The analysis presented here verifies that the effects of food quality and the resulting stoi-
chiometric constraints on the grazer are qualitatively robust to discretization of time for
certain parameter sets. In these stoichiometric models, the nutritional quality of the pro-
ducer can lead to counterintuitive dramatic impacts on population dynamics. The notable
point that high nutrient level can drive the grazer to deterministic extinction can also be
observed in the discrete model.

It is important to note that for some particular parameter sets the two models predict
qualitatively different dynamics. These differences are highlighted in the bifurcation dia-
grams for PT (see Fig. 3). The amplitude of the cyclic oscillations of species in the discrete
model is larger than that in the continuous model at the same fixed nutrient level, and they
are presented at a larger range of parameter value PT . These results highlight the fact that
the discretization can make the system more prone to oscillation. Here, the dynamics of
continuous system (2.1) can be significantly impacted by the discretization.

Additional differences between the two models are seen when K , the producer’s carrying
capacity, is chosen as the bifurcation parameter in Fig. 4. The bifurcation diagrams of both
the discrete model (2.4) and the continuous model (2.1) show quite different dynamics
with each other. The possible attractors of the continuous model (2.1) only include bound-
ary equilibrium and internal equilibrium. However, the possible attractors of the discrete
model (2.4) include boundary and internal equilibria, limit cycles, or even a strange at-
tractor (chaos) (see Fig. 4). The positive maximum Lyapunov exponents of model (2.4) in
some biologically reasonable region suggest that the discrete model exhibits chaotic dy-
namics. This result can also serve as a case study on the possibility of chaos in discrete
stoichiometric systems [1, 12].

The stoichiometric features of the continuous model are robust to the time discretiza-
tion, but the differences caused by discretization should not be neglected. Due to the im-
portance and crucial implications of the time scaling in ecology, it is critical to select ap-
propriate time scale in ecological modeling for a practical problem.
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