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Abstract
This article deals with existence results of Caputo fractional neutral inclusions without
compactness in Banach space using weak topology. In fact, for weakly sequentially
closed maps we apply fixed point theorems to obtain the existence of the solution.
Furthermore, the results are manifested for fractional neutral system held by nonlocal
conditions. To justify the application of the reported results an illustration is presented.
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1 Introduction
The dynamical behavior of real life phenomenon are summarized by essential tools such
as fractional differential equations (FDEs) in a precise manner. This aspect is the main
convenience of derivatives with fractional-order versus integer-order models. FDEs and
inclusions have obtained many interest for their applications in different fields, such as en-
gineering, physics, mechanics, and mathematical modelling, because they are more practi-
cal and realistic to describe many natural phenomena. Compared with ordinary and partial
differential systems, fractional differential systems have the strong prospect to modulate
the real time issues with high efficiency. The goal of analyzing fractional differential sys-
tems for the above, major analysis [2–4, 6, 7, 12, 23, 25–28, 30–32, 38, 40, 42, 47, 48, 56–
58] had been carried out. El-Sayed and Ibrahim in [24]. were the first who considered
fractional differential inclusions.

Furthermore, differential inclusions are used to model many realistic problems, arising
from optimal control, economics, and so on. Recently, by using various techniques, the
mild solutions together with other issues for different types of nonlinear fractional evolu-
tion inclusions have been studied in [1, 5, 13–17, 21, 22, 33, 43–45, 49–52, 54, 55, 59].

We recall that several techniques and noncompact measures are used to achieve the
outcome of the differential systems. Most of these papers, assumed the compactness of
the semi group or alternatively a compactness condition on the nonlinear part (gener-
ally a measure of noncompactness). In [46], Ravichandran et al. analyzed the controllabil-
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ity of impulsive fractional integro-differential systems utilizing a contraction principle. Li
[33] studied the controllability results for neutral impulsive inclusion systems using the
Dhage fixed point theorem. The controllability for evolution inclusions without compact-
ness was studied by Benedetti et al. [15]. To the best of our knowledge, the existence of
mild solutions of Caputo fractional neutral differential inclusions without compactness
has not been studied and this is the main motivation of this work, is to prove the exis-
tence of Caputo fractional neutral differential inclusions with weak topology, and without
compactness. We investigate the following Caputo fractional neutral inclusion in Banach
space:

CDq
u
[
z(u) – h

(
u, z(u)

)] ∈ A z(u) + H
(
u, z(u)

)
, a.e. u ∈ [0, b], 0 < q ≤ 1, (1.1)

z(0) = z0, (1.2)

where b is positive in nature, A represents the infinitesimal generator of a C0-strongly
continuous semigroup T(u), u ≥ 0, defined from A : D(A ) → Y. Besides, z(·) assumes
values in the Banach space Y, z0 is for an element of Y, H : [0, b] × Y � Y denotes a
multivalued map, h : [0, b] ×Y→ Y is equicontinuous and bounded.

The aim of this paper is to derive some sufficient conditions for the existence of neutral
differential inclusions in Banach space. Furthermore, we expand the result to get the con-
ditions for neutral differential inclusions with nonlocal conditions. In this paper another
procedure is considered, it utilize the weak topology of the state space.

Considering the importance of modeling of crisis phenomena, one may extend the anal-
ysis to the existence of solutions for a three step crisis integro-differential equation. Also in
order to rise the applicability of the fractional calculus, many researchers assumed a new
type of fractional derivatives with different kernels. By exploiting it, one can examine the
existence of solutions for high-order fractional differential equations using the Caputo–
Fabrizio derivative [8–11, 36, 37].

The layout of this artical is as follows: The preliminaries and notations are listed in
Sect. 2. The existence results are discussed in Sect. 3, and in Sect. 4 we investigate the
same fractional system supported by nonlocal conditions. An illustration is offered to en-
hance the abstract technique.

2 Basic tools
Here, we present a few fundamental facts on fractional theory and theorems in order to
use them in the manuscript.

Let Y possessing ‖ · ‖. For some constant M1 > 0 provided supu∈[0,b] ‖T(u)‖ ≤ M1. Let
(Y,‖ · ‖) be a reflexive Banach space and Yw denotes Y equipped with the weak topology.
C([0, b];Y) refers the Banach space of all continuous functions from [0, b] into Y. For D ⊂
Y, D

w
signifies the weak closure of D . Moreover, the bounded subset D of a reflexive

Banach space Y is weakly relatively compact. Let us express by ‖ · ‖p both the Lp([0, b];Y)-
norm and the Lp([0, b];R)-norm and by ‖ · ‖0 the C([0, b];Y)-norm. We evoke (see [18],
Theorem 4.3) that the sequence {χn} ⊂ C([0, b];Y) converges weakly to χ ∈ C([0, b];Y) if
and only if

(i) there exists M > 0 such that, for every m ∈N and u ∈ [0, b], ‖χm(u)‖ ≤ M;
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(ii) χm(u) ⇀ χ (u), for every u ∈ [0, b].
In addition to that, we state some results that will be utilized further as a part of this
manuscript.

Theorem 2.1 (Donal O’Regan fixed point theorem [39]) Let F be a metrizable locally con-
vex linear topological space and U be a weakly compact, convex subset of F and C(U) the
family of nonempty closed, convex subsets of U . If G : U → C(U) possesses weakly sequen-
tially closed graph then G admits a fixed point.

Theorem 2.2 ([29]) Let Ψ be a subset of the Banach space Y then the subsequent affirma-
tions are equivalent, namely:

(i) Ψ is relatively weakly compact;
(ii) Ψ is relatively weakly sequentially compact.

Remark 2.1 ([29]) Let Ψ be a subset of the Banach space Y, then the subsequent affirma-
tions are equivalent:

(a) Ψ is weakly compact;
(b) Ψ is weakly sequentially compact.

Theorem 2.3 (Krein–Smulian theorem [23, p. 434]) The convex hull of a weakly compact
set in a Banach space Y is weakly compact.

Theorem 2.4 (Pettis measurability theorem [41]) Let (E,Σ) be a measurable space, Y be
a separable Banach space. Then f : E −→ Y is measurable if and only if, for every e ∈ E′,
the function e ◦ f : E −→R is measurable with respect to

∑
and the Borel σ -algebra in R.

Now we summarize the subsequent interpretations [7, 31, 32, 38, 42].

Definition 2.1 The form of the fractional integral for f is

Iαg(p) =
1

Γ (α)

∫ p

0

g(w)
(p – w)1–α

dw, p > 0,α > 0,

as the right hand-side is point-wise on [0,∞) and Γ (α) =
∫ ∞

0 pα–1e–p dp.

Definition 2.2 ([31]) The form of the R-L fractional derivative for g : [0,∞) → R is char-
acterized by

(R–L)Dα
0+g(p) =

1
Γ (m – α)

(
d

dp

)m ∫ p

0
(p – w)m–α–1g(w) dw, p > 0, m – 1 < α < m,

such that the function g(p) posses absolutely continuous derivative up to (m – 1).

Definition 2.3 ([31]) The expression of the Caputo derivative for g : [0,∞) →R is

CDαg(p) = (R–L)Dα

(

g(p) –
m–1∑

k=0

pk

k!
g(k)(0)

)

, p > 0, m – 1 < α < m.
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Remark 2.2 (i) If g(p) ∈ Cm[0,∞), then

CDαg(p) =
1

Γ (m – α)

∫ p

0

g(m)(w)
(p – w)α+1–m dw = Im–αg(m)(p), p > 0, m – 1 < α < m.

3 Existence results
Below, we demonstrate some sufficient conditions for the existence of (1.1)–(1.2) coupled
with weak topology.

(H1) For {T(u)}u≥0 in Y, there is a constant M1 ≥ 1 fulfilling supu∈[0,b] ‖T(u)‖ ≤ M1.
Additionally, we require that the multivalued nonlinearity function H : [0, b] ×

Y�Y possess nonempty convex and weakly compact values.
(H2) For all z ∈Y, the multivalued function H (·, z) : [0, b] �Y has a measurable selec-

tion.
(H3) H (u, ·) : Y�Y is weakly sequentially closed for almost everywhere u in [0, b].
(H4) For a real valued function h : [0, b]×Y → Y, for all u > 0 and some constant Mh > 0

we have ‖h(u, ·)‖ ≤ Mh.
(H5) For κ1 ∈ (0, q), for every r > 0 and a function δr ∈ L

1
κ1 ([0, b];R+) as for each d ∈ Y,

‖d‖ ≤ r:

∥∥h(u, d)
∥∥ = sup

{‖z‖ : z ∈ h(u, d)
} ≤ δr(u),

for almost everywhere u ∈ [0, b].
(H6) For κ1 ∈ (0, q), for every r > 0 and a function μr ∈ L

1
κ1 ([0, b];R+) as for each d ∈ Y,

‖d‖ ≤ r:

∥∥H (u, d)
∥∥ = sup

{‖z‖ : z ∈ H (u, d)
} ≤ μr(u),

for almost everywhere u ∈ [0, b].
In connection with the above consideration, we determine the solution of (1.1)–(1.2).

Definition 3.1 ([56]) z : [0, b] → Y is a mild solution of (1.1)–(1.2) if the accompanying
recognize z(0) = z0 and there is χ ∈ L

1
κ1 ([0, b];Y) provided χ (u) ∈ H (u, z(u)) on u ∈ [0, b]

and z fulfills

z(u) = T(u)
[
z0 – h(0, z0)

]
+ h

(
u, z(u)

)
+

∫ u

0
(u – w)q–1A S(u – w)h

(
w, z(w)

)
dw

+
∫ u

0
(u – w)q–1

S(u – w)χ (w) dw, u ∈ [0, b],

where

T(u) =
∫ ∞

0
ξq(θ )T

(
uqθ

)
dθ , S(u) = q

∫ ∞

0
θξq(θ )T

(
uqθ

)
dθ ,

and, for θ ∈ (0,∞),

ξq(θ ) =
1
q
θ

–1– 1
q wq

(
θ

– 1
q
) ≥ 0,
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wq(θ ) =
1
π

∞∑

n=1

(–1)n–1θ–nq–1 Γ (nq + 1)
n!

sin(nπq),

∫ ∞

0
ξq(θ ) dθ = 1.

Remark 3.1 Obviously, for ν ∈ [0, 1],

∫ ∞

0
θνξq(θ ) dθ =

∫ ∞

0
θ–qνwq(θ ) dθ =

Γ (1 + ν)
Γ (1 + qν)

.

Lemma 3.1 (See [56]) T and S obey the subsequent assertions:
(i) For a constant M2 ≥ 1, for any z ∈Y, fixed u ≥ 0 and for the bounded linear

operators T and S we have

∥∥T(u)z
∥∥ ≤ M1‖z‖ and

∥∥S(u)z
∥∥ ≤ qM1

Γ (1 + q)
‖z‖,

∥∥A S(u)z
∥∥ ≤ qM1M2

Γ (1 + q)
‖z‖.

(ii) The operators {T(u), u ≥ 0} and {S(u), u ≥ 0} are strongly continuous.

Construct the set Υ℘ , for given ℘ ∈ C([0, b];Y) as Υ℘ = {χ ∈ L
1
κ1 ([0, b];Y) : χ (u) ∈

H (u,℘(u)) for almost everywhere u ∈ [0, b]}. Υ℘ is nonempty as the next Proposition 3.1
mentions.

Proposition 3.1 (See [15, 59]) Let us assume that a multivalued map H : [0, b] ×Y�Y

obeys (H2)–(H6), the set Υ℘ is nonempty for any ℘ ∈ C([0, b];Y).

We define the operator Λ : C([0, b];Y) � C([0, b];Y) by

Λ(℘) =
{

z ∈ C
(
[0, b];Y

)
: z(u) = T(u)

(
z0 – h(0, z0)

)
+ h

(
u,℘(u)

)

+ S1(z)(u) + S2χ (u),χ ∈ Υ℘

}
,

where

S1 : C
(
[0, b];Y

) → C
(
[0, b];Y

)
,

S1(z) =
∫ u

0
(u – w)q–1A S(u – w)h

(
w,℘(w)

)
dw,

and

S2 : L
1
κ1

(
[0, b];Y

) → C
(
[0, b];Y

)
,

S2(χ ) =
∫ u

0
(u – w)q–1

S(u – w)χ (w) dw.

At first, we show that S1 and S2 are continuous.
For any zn, z ∈ C([0, b];Y) and zn → z (n → ∞), using (H5), for every u ∈ [0, b], we get

(u – w)q–1∥∥zn(w) – z(w)
∥∥ ≤ 2(u – w)q–1μr(w), almost everywhere w ∈ [0, u).
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Also for any χn,χ ∈ L
1
κ1 ([0, b];Y) and χn → χ (n → ∞), using (H6), we can have, for every

u ∈ [0, b],

(u – w)q–1∥∥χn(w) – χ (w)
∥∥ ≤ 2(u – w)q–1δr(w), almost everywhere w ∈ [0, u).

Moreover, the functions

∫ u

0
(u – w)q–1μr(w) dw =

[(
1 – κ1

q – κ1

)
b

q–κ1
1–κ1

]1–κ1

‖μr‖ 1
κ1

and

∫ u

0
(u – w)q–1δr(w) dw =

[(
1 – κ1

q – κ1

)
b

q–κ1
1–κ1

]1–κ1

‖δr‖ 1
κ1

becomes integrable for u ∈ [0, b]. Taking into account the Lebesgue theorem, we conclude,
as n → ∞,

∫ u

0
(u – w)q–1∥∥zn(w) – z(w)

∥
∥dw → 0 and

∫ u

0
(u – w)q–1∥∥χn(w) – χ (w)

∥
∥dw → 0.

Therefore

∥
∥S1(zn) – S1(z)

∥
∥ ≤

∥∥
∥∥

∫ u

0
(u – w)q–1A S(u – w)

(
zn(w) – z(w)

)
dw

∥∥
∥∥

≤ qM1M2

Γ (1 + q)

∫ u

0
(u – w)q–1∥∥zn(w) – z(w)

∥
∥dw → 0, as n → ∞,

∥∥S2(χn) – S2(χ )
∥∥ ≤

∥
∥∥∥

∫ u

0
(u – w)q–1

S(u – w)
(
χn(w) – χ (w)

)
dw

∥
∥∥∥

≤ qM1

Γ (1 + q)

∫ u

0
(u – w)q–1∥∥χn(w) – χ (w)

∥
∥dw → 0, as n → ∞.

It indicates that the operators S1 and S2 are continuous.
For n ∈N, Φn, the closed ball of radius n in C([0, b];Y) described by Λn = Λ | Φn : Φn �

C([0, b];Y), the limitation of Λ on Φn. Next we illustrate the qualities of Λn.

Proposition 3.2 Λn possess a weakly sequentially closed graph.

Proof Let a sequence {℘m} ⊂ Φn, {zm} ⊂ C([0, b];Y) obeying zm ⊂ Λn(℘m), for all m and
℘m ⇀ ℘ , zm ⇀ z in C([0, b];Y); we claim z ∈ Λn(℘).

Since ℘m ∈ Φn, for each m and ℘m(u) ⇀ ℘(u), for every u ∈ [0, b], we conclude ‖℘(u)‖ ≤
liminfm→∞ ‖℘m(u)‖ ≤ n, for all u (see [19]). By zm ∈ Λn(pm), there is a sequence {χm}, χm ∈
Υ℘m, provided for all u ∈ [0, b], we get

zm(u) = T(u)
(
z0 – h(0, z0)

)
+ h

(
u,℘m(u)

)
+

∫ u

0
(u – w)q–1A S(u – w)h

(
w,℘m(w)

)
dw

+
∫ u

0
(u – w)q–1

S(u – w)χm(w) dw.
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By reference to (H6), ‖χm(u)‖ ≤ μn(u), for almost everywhere u and every m. It means
that {χm} is bounded, uniformly integrable and {χm(u)} is bounded in Y for almost ev-
erywhere u ∈ [0, b]. By the Dunford-Pettis theorem [13], we can conclude that there exist
a subsequence, represented as the sequence, and functions g1, g2 provided zm ⇀ g1 in
C([0, b];Y) and χm ⇀ g2 in L

1
κ1 ([0, b];Y).

Therefore, we have S1zm ⇀ S1g1 and S2χm ⇀ S2g2. In this connection, let the linear con-
tinuous operator e′ : Y →R. The operators S1 and S2 are linear and continuous, therefore
we have

g1 → e′(S1g1)(u), g1 ∈ C
(
[0, b];Y

)
,

is linear continuous operator on C([0, b];Y) to R for every u ∈ [0, b]. Also,

g2 → e′(S2g2)(u), g2 ∈ L
1
κ1

(
[0, b];Y

)
,

is linear continuous operator on L
1
κ1 ([0, b];Y) to R for every u ∈ [0, b]. By weak conver-

gence, we get

e′
(∫ u

0
(u – w)q–1A S(u – w)h

(
w,℘m(w)

)
dw +

∫ u

0
(u – w)q–1

S(u – w)χm(w) dw
)

→ e′
(∫ u

0
(u – w)q–1A S(u – w)g1(w) dw +

∫ u

0
(u – w)q–1

S(u – w)g2(w) dw
)

.

Therefore

zm(u) ⇀ T(u)
(
z0 – h(0, z0)

)
+ h

(
u,℘m(u)

)
+

∫ u

0
(u – w)q–1A S(u – w)g1(w) dw

+
∫ u

0
(u – w)q–1

S(u – w)g2(w) dw

= z0(u),

for every u ∈ [0, b]. This indicates that z0(u) = z(u), for all u ∈ [0, b]. Hence by Proposi-
tion 3.1, g2(u) ∈ H (u,℘(u)), for almost everywhere u ∈ [0, b]. �

Proposition 3.3 Λn is weakly compact.

Proof At first, we show that Λn(Φn) is relatively weakly sequentially compact.
Let us consider ℘m ∈ Φn and zm ⊂ C([0, b];Y) such that zm ∈ Λn(℘m) for all m. For Λn,

there exists a sequence {χm}, χm ∈ Υ℘m, provided that

zm(u) = T(u)
(
z0 – h(0, z0)

)
+ h

(
u,℘m(u)

)
+

∫ u

0
(u – w)q–1A S(u – w)h

(
w,℘m(w)

)
dw

+
∫ u

0
(u – w)q–1

S(u – w)χm(w) dw,

for every u ∈ [0, b]. Therefore, by Proposition 3.2, there exist a subsequence, represented
by the sequence, and functions g1, g2 provided zm ⇀ g1 in C([0, b];Y) and χm ⇀ g2 in
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L
1
κ1 ([0, b];Y). Hence

zm(u) ⇀ l(u)

= T
(
z0 – h(0, z0)

)
+ h

(
u,℘m(u)

)
+

∫ u

0
(u – w)q–1A S(u – w)g1(w) dw

+
∫ u

0
(u – w)q–1

S(u – w)g2(w) dw.

Furthermore, by the nature of weak convergence of χm, by (H1), we have

∥
∥zm(u)

∥
∥ ≤ M1‖z0‖ + δr(0) + Mh +

M1M2q
Γ (1 + q)

[(
1 – κ1

q – κ1

)
b

q–κ1
1–κ1

]1–κ1

‖δr‖ 1
κ1

+
M1q

Γ (1 + q)

[(
1 – κ1

q – κ1

)
b

q–κ1
1–κ1

]1–κ1

‖μr‖ 1
κ1

,

for all m ∈ N and u ∈ [0, b]. By utilizing the Proposition 3.2, we ensure that zm ⇀ l in
C([0, b];Y). Thus, Λn(Φn) is relatively weakly compact by Theorem 2.2. �

Proposition 3.4 Λn has convex and weakly compact values.

Proof Fixing ℘ ∈ Φn, taking into account that H is convex valued and the characteris-
tics of T(u) and S(u), it implies that Λn(℘) is convex. By reference to Proposition 3.2 and
Proposition 3.3, Λn(℘) has weakly compact values. �

Next we list out the essential outcomes of this part.

Theorem 3.1 Assuming (H1)–(H6) hold. Suppose (H7) for a sequence of functions {un} ∈
L

1
κ1 ([0, b];R+) provided

sup
‖d‖≤n

∥
∥H (u, d)

∥
∥ ≤ un(u),

for almost everywhere u ∈ [0, b], n ∈N with

lim
n→∞ inf

‖un‖ 1
κ1

n
= 0. (3.1)

Then (1.1)–(1.2) recognizes at least a mild solution.

Proof We have to confirm that Λ maps Φn into itself for n ∈N.
Assume by way of contradiction that there exist {zn}, {xn} such that zn ∈ Φn, xn ∈ Λn(zn)

and xn /∈ Φn, for every n ∈ N. Therefore for a sequence {χn} ⊂ L
1
κ1 ([0, b];Y), χn(w) ∈

H (w, zn(w)), we can have

xn(u) = T(u)
(
z0 – h(0, z0)

)
+ h

(
u, zn(u)

)
+

∫ u

0
(u – w)q–1A S(u – w)h

(
w, zn(w)

)
dw

+
∫ u

0
(u – w)q–1

S(u – w)χn(w) dw,
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for every u ∈ [0, b]. By Proposition 3.3, we have

n ≤ ‖xn‖0

≤ M1‖z0‖ + δr(0) + Mh +
M1MhM2q

Γ (1 + q)

[(
1 – κ1

q – κ1

)
b

q–κ1
1–κ1

]1–κ1

+
M1q

Γ (1 + q)

[(
1 – κ1

q – κ1

)
b

q–κ1
1–κ1

]1–κ1

‖un‖ 1
κ1

.

Then, for n ∈ N,

1 ≤ ‖xn‖0

n

≤ 1
n

[
M1‖z0‖ + δr(0) + Mh +

M1MhM2q
Γ (1 + q)

[(
1 – κ1

q – κ1

)
b

q–κ1
1–κ1

]1–κ1

+
M1q

Γ (1 + q)

[(
1 – κ1

q – κ1

)
b

q–κ1
1–κ1

]1–κ1

‖un‖ 1
κ1

]
,

which leads to a contradiction. Therefore xn ∈ Φn.
Now, fix n ∈ N such that Λn(Φn) ⊂ Φn. By Proposition 3.3, the set Vn = Λn(Φn)

w
is

weakly compact. Let ξn = co(Vn), be the closed convex hull of Vn. According to Theo-
rem 2.3, ξn denotes a weakly compact set. In addition to that Λn(Φn) ⊂ Φn and Φn is a
closed convex set. Furthermore we have ξn ⊂ Φn, and we have

Λn(ξn) = Λn
(
co

(
Λn(Φn)

)) ⊆ Λn(Φn) ⊆ Λn(Φn)
w

= Vn ⊂ ξn.

This shows that Λn possesses a weakly sequentially closed graph. As a result by utilizing
Theorem 2.1, we conclude that the system (1.1)–(1.2) recognizes a solution. �

Remark 3.2 There exist α ∈ L
1
κ1 ([0, b];R+) and a nondecreasing function φ : [0,∞) →

[0,∞) such that ‖H (u, d)‖ ≤ α(u)φ(‖d‖), for almost everywhere u ∈ [0, b] and every
d ∈Y. Then the restriction (3.1) is related to

lim
n→∞ inf

φ(n)
n

= 0.

Theorem 3.2 Assume that (H1)–(H5) holds.
(H8) There exists ρ ∈ L

1
κ1 ([0, b];R+), for almost everywhere u ∈ [0, b], for every d ∈ Y

provided

∥∥H (u, d)
∥∥ ≤ ρ(u)

(
1 + ‖d‖)

and

M1q
Γ (1 + q)

[(
1 – κ1

q – κ1

)
b

q–κ1
1–κ1

]1–κ1(
M2Mh + ‖ρ‖ 1

κ1

)
< 1, (3.2)

then (1.1)–(1.2) possess at least a mild solution.
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Proof By reference to Theorem 3.1, assuming that there exist {zn}, {xn} provided zn ∈ Φn,
xn ∈ Λn(zn) and xn /∈ Φn, for every n ∈N, we get

n < ‖xn‖0

≤ M1‖z0‖ + δr(0) + Mh +
M1M2Mhq

Γ (1 + q)

[(
1 – κ1

q – κ1

)
b

q–κ1
1–κ1

]1–κ1

+
M1q

Γ (1 + q)

[(
1 – κ1

q – κ1

)
b

q–κ1
1–κ1

]1–κ1 ∫ b

0

∣∣ρ(ξ )
∣∣

1
κ1

(
1 +

∥∥zn(ξ )
∥∥

1
κ1 dξ

)κ1

≤ M1‖z0‖ + δr(0) + Mh

+
M1q

Γ (1 + q)

[(
1 – κ1

q – κ1

)
b

q–κ1
1–κ1

]1–κ1(
M2Mh + (1 + n)‖ρ‖ 1

κ1

)
, n ∈N,

which contradicts (3.2). The conclusion refers to Theorem 2.1, like Theorem 3.1. �

Theorem 3.3 Assuming that (H1)–(H5) holds. (H9) there exist β ∈ L
1
κ1 ([0, b];R+) and a

nondecreasing function � : [0,∞) → [0,∞) fulfilling

∥∥H (u, d)
∥∥ ≤ β(u)�

(‖d‖),

for almost everywhere u ∈ [0, b], d ∈Y, and L > 0 provided

L

M1‖z0‖ + δr(0) + Mh + M1q
Γ (1+q) [( 1–κ1

q–κ1
)b

q–κ1
1–κ1 ]1–κ1 (M2Mh + ‖ρ‖ 1

κ1
)�(L )

> 1, (3.3)

then (1.1)–(1.2) possess at least a mild solution.

Proof We have to ensure that Λ maps the ball ΦL into itself. For any z ∈ ΦL , x ∈ Γ (z),
we conclude

‖xn‖0 ≤ M1‖z0‖ + δr(0) + Mh +
M1M2Mhq

Γ (1 + q)

[(
1 – κ1

q – κ1

)
b

q–κ1
1–κ1

]1–κ1

+
M1q

Γ (1 + q)

[(
1 – κ1

q – κ1

)
b

q–κ1
1–κ1

]1–κ1 ∫ b

0

∣
∣ρ(ξ )

∣
∣

1
κ1

(
�
∥
∥z(ξ )

∥
∥

1
κ1 dξ

)κ1

≤ M1‖z0‖ + δr(0) + Mh

+
M1q

Γ (1 + q)

[(
1 – κ1

q – κ1

)
b

q–κ1
1–κ1

]1–κ1[
M2Mh + ‖β‖ 1

κ1

]
�(L ) < L .

This indicates that (1.1)–(1.2) possess at least a mild solution. �

4 Nonlocal conditions
The active desire for analyzing fractional systems with nonlocal problems comes mainly
from theoretical physics. The outcomes regarding the existence of Cauchy problems using
nonlocal conditions were firstly investigated by Byszewski [20]. Many papers [13, 21, 34,
35, 53] have acknowledged the facts of the existence, controllability and uniqueness for
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varied nonlinear fractional systems and abstract differential systems. Motivated by the
above discussions, this part deals with the existence of (1.1)–(1.2) as

CDq
t
[
z(u) – h

(
u, z(u)

)] ∈ A z(u) + H
(
u, z(u)

)
, u ∈ [0, b], (4.1)

z(0) + ϕ(z) = z0, (4.2)

where ϕ : C([0, b];Y) →Y fulfills the following conditions:
(H10) For some constant N > 0 provided ‖ϕ(z)‖ ≤ N , z ∈ C([0, b];Y).
(H11) There is a constant L > 0 and

L

M1‖z0‖ + N + δr(0) + Mh + M1q
Γ (1+q) [( 1–κ1

q–κ1
)b

q–κ1
1–κ1 ]1–κ1 (M2Mh + ‖ρ‖ 1

κ1
)�(L )

> 1. (4.3)

In order to show the high accuracy, we always refer the nonlocal condition in the place of
initial condition z(0) = z0. Particularly, ϕ(z) can be formulated as

ϕ(z) =
n∑

i=1

Kiz(ti),

where Ki (i = 1, 2, 3, . . . , n) are constants and 0 < t1 < t2 < · · · < tn ≤ b.

Definition 4.1 z : [0, b] → Y is called the mild solution of the neutral fractional differ-
ential model (4.1)–(4.2) if the accompanying recognize z(0) + ϕ(z) = z0 and there exists
χ ∈ L

1
κ1 ([0, b];Y) provided χ (u) ∈ H (u, z(u)) on u ∈ [0, b] and z satisfies

z(u) = T(u)
[
z0 – ϕ(z) – h(0, z0)

]
+ h

(
u, z(u)

)
+

∫ u

0
(u – w)q–1A S(u – w)h

(
w, z(w)

)
dw

+
∫ u

0
(u – w)q–1

S(u – w)χ (w) dw, u ∈ [0, b],

such that T(u) and S(u) are defined as in Definition 3.1.

Theorem 4.1 If Theorem 3.1, Theorem 3.2 and Theorem 3.3 hold, and in addition hy-
potheses (H10) and (H11) hold, then the neutral fractional system with inclusion (4.1)–(4.2)
has at least a mild solution.

Proof We introduce the solution operator Λ : C([0, b];Y) � C([0, b];Y) as

Λ(℘) =
{

z ∈ C
(
[0, b];Y

)
: z(u) = T

(
z0 – ϕ(z) – h(0, z0)

)
+ h

(
u,℘(u)

)

+ S1(z)(u) + S2(χ )(u)
}

.

It should be noted that we recognize that Λ possesses a fixed point by employing the
techniques utilized in Theorems corresponding to initial conditions. The proof is similar,
therefore we omitted it. �
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5 An example
Let us consider the model:

CDq
u

[
v(u, y) +

∫ π

0
k(θ , y)v(u, θ ) dθ

]
∈ ∂2

∂y2 v(u, y) + s
(
u, v(u, y)

)
, u ∈ I = [0,π ],

v(u, 0) = v(u,π ) = 0, (5.1)

v(0, y) = 0, 0 < y < π , (5.2)

where 0 < q ≤ 1, construct Y = L2(0,π ) and A : D(A ) ⊆ Y → Y by A z = z′′, together
D(A ) = {z ∈ Y : y′′ ∈ Y}, are absolutely continuous. Obviously A is the infinitesimal gen-
erator of {T(u), u ≥ 0} in Y and generates the strongly continuous semi group T(u). Ad-
ditionally, A has eigenvalues in the form of –n2, n ∈N, and it can be denoted as

A z =
∞∑

n=1

n2〈z, zn〉, z ∈ D(A ),

and zn(x) =
√

2
π

sin(nx), n = 1, 2, 3, . . . , represents the set of eigenvectors of A which are
orthonormal. Also for any z ∈Y,

T(u)z =
∞∑

n=1

e–n2
u〈z, zn〉zn.

Clearly, T(u) fulfills (H1). Define h : [0,π ] ×Y →Y by

h(v)(z) =
∫ π

0
k(θ , z)v(u, θ ) dθ ,

where the continuous function k : [0,π ] × [0,π ] −→ R provided ‖k(·, z)‖ ≤ 1, for each
z ∈ [0,π ] and v(u)(z) = v(u, z), H (u, z(u))z = s(u, v(u, z)). With a suitable choice of A , H ,
h, the above said system can be equivalent to (1.1)–(1.2), that is,

CDq
t
[
z(u) – h

(
u, z(u)

)] ∈ A z(u) + H
(
u, z(u)

)
, u ∈ [0, b], (5.3)

z(0) + ϕ(z) = z0. (5.4)

Besides assuming H , h satisfies the concerned hypotheses. As a result, (5.1)–(5.2) has at
least a mild solution on [0, b].

6 Conclusion
This manuscript addresses the existence of Caputo fractional neutral inclusions without
compactness in a Banach space by using weak topology. Further, the results are derived
for fractional neutral system where nonlocal conditions hold. Our theorem guarantees the
effectiveness of the existence, which is the result of the system concerned.
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