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Abstract
In this paper, we are concerned with a delayed smoking model in which the
population is divided into five classes. Sufficient conditions guaranteeing the local
stability and existence of Hopf bifurcation for the model are established by taking the
time delay as a bifurcation parameter and employing the Routh–Hurwitz criteria.
Furthermore, direction and stability of the Hopf bifurcation are investigated by
applying the center manifold theorem and normal form theory. Finally, computer
simulations are implemented to support the analytic results and to analyze the effects
of some parameters on the dynamical behavior of the model.
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1 Introduction
In China and around the world, one of the public health problems that has been recog-
nized in recent years is smoking addiction, which has developed into an epidemic causing
many deaths. Taking China for example, the data from the Global Tobacco Epidemic Re-
port published on 26 July 2019 by the World Health Organization shows that smoking-
related diseases kill one million people in China every year and 100,000 non-smokers
die from exposure to second-hand smoke [1]. From the global perspective, according to
the survey, smoking kills about six million persons each year, and ten million persons
will pass away every year because of smoking-related diseases by 2030 [2–4]. Conse-
quently, it is very essential to help people quit smoking and reduce tobacco use and related
deaths.

In order to reduce the future effects of smoking on the health of people, the World
Health Organization has suggested a set of control policy measures since 2008, known
as Framework Convention on Tobacco Control (FCTC). As stated in the Global Tobacco
Epidemic Report (2019), about five billion people all over the world have been covered by
at least one comprehensive tobacco control measure, although there are still 59 countries
in which none of the tobacco control measures has reached the highest level of imple-
mentation [1]. On the other hand, the mathematicians have been also in effort to inform
people about control of smoking by using mathematical models considering that smok-
ing can spread through social contact since the pioneering work of Castullo-Garsow et
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al. in [5]. In [5], Castullo-Garsow et al. formulated a giving up smoking model including
three population classes: the potential smokers (P), the smokers (S), and the quit smokers
(Q). Then Sharomi and Gumel [6] developed a model taking into account the temporar-
ily quit smokers (Qt) and the permanently quit smokers (Qp) in the model formulated by
Castullo-Garsow et al. [5]. Afterwards, some scholars [4, 7–13] proposed different forms
of giving up smoking models including the occasional smoker class. Rahman et al. [14] pro-
posed a giving up smoking model with the continuous age-structure in the chain smok-
ers and studied local and global stability of the model, and the optimal control strategy
on potential smokers is also presented. Fei and Liu [15] presented a giving up smoking
model with birth and death rates on complex heterogeneous networks. They examined
the stability and attractivity of the proposed model. For the analytical study of stochas-
tic giving up smoking models or some other giving up smoking models, we can refer to
[16–20].

As stated in [12], smoking contributes to a number of human diseases such as lung can-
cer, heart disease, alimentary canal effect, and so on. Thus, it is reasonable to consider the
smokers associated with some illness compartment in giving up smoking model. Based on
this point, the following smoking model has been proposed by Din et al. [21]:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

dP(t)
dt = α – β

√
P(t)S(t) – γ P(t),

dS(t)
dt = β

√
P(t)S(t) – (γ + δ + ε)S(t) + ζX(t),

dX(t)
dt = δ(1 – η)S(t) – (γ + ζ )X(t),

dY (t)
dt = δηS(t) – γ Y (t),

dZ(t)
dt = εS(t) – (γ + ϑ)Z(t),

(1)

where P(t), S(t), X(t), Y (t), and Z(t) denote the numbers of the potential smokers, smokers,
temporarily quit smokers, permanently quit smokers, and smokers associated with some
illness at time t, respectively. α is the recruitment rate of the potential smoker; β is the
transmission coefficient; γ is the natural death rate; δ(1 – η) is the temporarily quit rate of
smoking; δη is the permanently quit rate of smoking; ε is the developing rate of the smokers
associated with some illness; ζ is the relapse rate from the temporarily quit smokers to the
smokers; ϑ is the death rate related to smoking illness. Din et al. [21] investigated stability
of system (1).

In fact, there is usually a fixed duration of temporary immunity due to self-control, after
which the temporarily quit smokers return to the class of smokers. That is, the temporar-
ily quit smokers begin to quit smoking at t – τ and they start smoking again at t. On the
other hand, it is worthy to notice that delay differential equations exhibit much more com-
plicated dynamics than ordinary differential equations since a time delay could cause the
population to fluctuate [22–24]. Yuan et al. demonstrated that time delay can affect stabil-
ity of a dynamical system and cause nonlinear phenomena such as Hopf bifurcation and
periodic solutions [25, 26]. For some other works about dynamical systems, one can refer
to [27–30]. Therefore, it is very crucial to examine the effect of the time delay τ on sys-
tem (1). To this end, we incorporate the time delay due to the immunity period, after which
the temporarily quit smokers return to the class of smokers, and investigate the following
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Figure 1 The flow diagram of system (2)

delayed system:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

dP(t)
dt = α – β

√
P(t)S(t) – γ P(t),

dS(t)
dt = β

√
P(t)S(t) – (γ + δ + ε)S(t) + ζX(t – τ ),

dX(t)
dt = δ(1 – η)S(t) – γ X(t) – ζX(t – τ ),

dY (t)
dt = δηS(t) – γ Y (t),

dZ(t)
dt = εS(t) – (γ + ϑ)Z(t),

(2)

where τ is the length of immunity period after which the temporarily quit smokers return
to the class of smokers. The flow diagram of system (2) is shown as in Fig. 1.

The outline of this article is arranged as follows. In Sect. 2, local stability and existence
of Hopf bifurcation are discussed in detail. In Sect. 3, the direction of Hopf bifurcation
and the stability of bifurcating periodic solutions are determined. In order to validate the
theoretical analysis and the effect of some crucial parameters on behaviors of the model,
some numerical simulations are carried out in Sect. 4. Finally, conclusions are offered in
Sect. 5.

2 Local stability and existence of Hopf bifurcation
In view of [21], we can conclude that system (2) has a unique positive equilibrium
E∗(P∗, S∗, X∗, Y ∗, Z∗), where

P∗ =
α(γ 2 + γ (δ + ζ + ε) + ζ (δη + ε))

β2(γ + ζ ) + γ (γ 2 + γ (δ + ζ + ε) + ζ (δη + ε))
,

S∗ =
αβ2(γ + ζ )2

(γ 2 + γ (δ + ζ + ε) + ζ (δη + ε))(β2(γ + ζ ) + γ (γ 2 + γ (δ + ζ + ε) + ζ (δη + ε)))
,

X∗ =
αβ2δ(1 – η)(γ + ζ )

(γ 2 + γ (δ + ζ + ε) + ζ (δη + ε))(β2(γ + ζ ) + γ (γ 2 + γ (δ + ζ + ε) + ζ (δη + ε)))
,

Y ∗ =
αβ2δη(γ + ζ )2

γ (γ 2 + γ (δ + ζ + ε) + ζ (δη + ε))(β2(γ + ζ ) + γ (γ 2 + γ (δ + ζ + ε) + ζ (δη + ε)))
,

Z∗ =
αβ2ε(γ + ζ )2

(γ + ϑ)(γ 2 + γ (δ + ζ + ε) + ζ (δη + ε))(β2(γ + ζ ) + γ (γ 2 + γ (δ + ζ + ε) + ζ (δη + ε)))
.
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The linear system of system (2) at E∗ is

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

dP(t)
dt = g11P(t) + g12S(t),

dS(t)
dt = g21P(t) + g22S(t) + h23X(t – τ ),

dX(t)
dt = g32S(t) + g33X(t) + h33X(t – τ ),

dY (t)
dt = g42S(t) + g44Y (t),

dZ(t)
dt = g52S(t) + g55Z(t),

(3)

with

g11 = –
β
√

S∗

2
√

P∗ – γ , g12 = –
β
√

P∗

2
√

S∗ ,

g21 =
β
√

S∗

2
√

P∗ , g22 =
β
√

P∗

2
√

S∗ – (γ + δ + ε), h23 = ζ ,

g32 = δ(1 – η), g33 = –γ , h33 = –ζ ,

g42 = δη, g44 = –γ , g52 = ε, g55 = –(γ + ϑ).

The characteristic equation of system (3) is given by

det

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

λ – g11 –g12 0 0 0
–g21 λ – g22 –h23e–λτ 0 0

0 –g32 λ – g33 – h33e–λτ 0 0
0 –g42 0 λ – g44 0
0 –g52 0 0 λ – g55

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

= 0, (4)

which leads to

λ5 + G4λ
4 + G3λ

3 + G2λ
2 + G1λ + G0 +

(
H4λ

4 + H3λ
3 + H2λ

2 + H1λ + H0
)
e–λτ = 0, (5)

where

G0 = g33g44g55(g12g21 – g11g22),

G1 = (g33g44 + g33g55 + g44g55)(g11g22 – g12g21)

+ g33g44g55(g11 + g22),

G2 = (g33 + g44 + g55)(g12g21 – g11g22)

– (g11 + g22)(g33g44 + g33g55 + g44g55),

G3 = (g11 + g22)(g33 + g44 + g55) + g33g44 + g33g55

+ g44g55 – g12g21,

G4 = –(g11 + g22 + g33 + g44 + g55),

H0 = g44g55(g11g32h23 – g11g22h33 + g12g21h33),
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H1 = g55h33(g11g22 + g11g44 + g22g44) + g11g22g44h33

– g32h23(g11g44 + g11g55 + g44g55) – g12g21h33(g44 + g55),

H2 = g32h23(g11 + g44 + g55) – g55h33(g11 + g22 + g44)

+ g12g21h33 – h33(g11g22 + g11g44 + g22g44),

H3 = h33(g11 + g22 + g44 + g55) – g32h23, G44 = –h33.

When τ = 0, Eq. (5) becomes

λ5 + G04λ
4 + G03λ

3 + G02λ
2 + G01λ + G00 = 0, (6)

with

G00 = G0 + H0, G01 = G1 + H1, G02 = G2 + H2,

G03 = G3 + H3, G04 = G4 + H0.

Based on the discussion in [21], it can be concluded that all the roots of Eq. (6) have
negative real parts. Thus, according to the Hurwitz criterion, we have the following result.

Lemma 1 ([21]) The unique positive equilibrium E∗(P∗, S∗, X∗, Y ∗, Z∗) of system (2) is lo-
cally asymptotically stable when τ = 0.

For τ > 0, let λ = iω (ω > 0) be a root of Eq. (5). Then

⎧
⎨

⎩

(H1ω – H3ω
3) sin τω + (H4ω

4 – H2ω
2 + H0) cos τω = G2ω

2 – G4ω
4 – G0,

(H1ω – H3ω
3) cos τω – (H4ω

4 – H2ω
2 + H0) sin τω = G3ω

3 – ω5 – G1ω.
(7)

It follows from Eq. (8) that

ω10 + J4ω
8 + J3ω

6 + J2ω
4 + J1ω

2 + J0 = 0, (8)

with

J0 = G2
0 – H2

0 ,

J1 = 2G0G2 – H2
1 + 2H0H2,

J2 = G2
2 – 2G0G4 – 2G1G3 + 2H1H3 – H2

2 – 2H0H4,

J3 = 2G1 – 2G2G4 – H2
3 + 2H2H4,

J4 = G2
4 – H2

4 .

Let ω2 = ν , Eq. (8) becomes

ν5 + J4ν
4 + J3ν

3 + J2ν
2 + J1ν + J0 = 0. (9)

In order to establish the main results of this paper, we make the following necessary
assumption:
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(S1) Eq. (9) has at least one positive root.
(S2) f ′(ν0) �= 0, where f (ν) = ν5 + J4ν

4 + J3ν
3 + J2ν

2 + J1ν + J0.
It follows from (S1) that Eq. (9) has at least one positive root, and without loss of gener-

ality we assume that Eq. (9) has five positive roots denoted by ν1, ν2, ν3, ν4, and ν5. Thus,
ωl = √

νl , (l = 1, 2, 3, 4, 5) is the roots of Eq. (8). Based on Eq. (7), one can obtain

τ
j
l =

1
ωl

× arccos

{
H3ω

8
l – (G3H3 + H1)ω6

l + (G1H3 + G3H1)ω4
l – G1H1ω

2
l

(H1ωl – H3ω
3
l )2 + (H4ω

4
l – H2ω

2
l + H0)2 + 2nπ

}

(10)

with l = 1, 2, 3, 4, 5; n = 0, 1, 2, . . . . Denote

τ0 = τ 0
j0 = min

{
τ 0

l |l = 1, 2, 3, 4, 5
}

, ω0 = ω|τ=τ0 .

Lemma 2 Let λ(τ ) = α̃(τ ) + iβ̃(τ ) be the root of Eq. (5) at τ = τ0 satisfying α̃(τ0) = 0, β̃(τ0) =
ω0, then Re[dλ/dτ ]τ=τ0 �= 0.

Proof Differentiating Eq. (5) with respect to τ leads to

[
dλ

dτ

]–1

= –
5λ4 + 4G4λ

3 + 3G3λ
2 + 2G2λ + G1

λ(λ5 + G4λ4 + G3λ3 + G2λ2 + G1λ + G0)

+
4H4λ

3 + 3H3λ
2 + 2H2λ + H1

λ(H4λ4 + H3λ3 + H2λ2 + H1λ + H0)
–

τ

λ
. (11)

Then

Re

[
dλ

dτ

]–1

τ=τ0

=
f ′(ν0)

(H1ω0 – H3ω
3
0)2 + (H4ω

4
0 – H2ω

2
0 + H0)2 . (12)

It follows from (S2) that Re[dλ/dτ ]τ=τ0 �= 0. This ends the proof of Lemma 2. Based on
the discussion above and Lemmas 1 and 2, one has the following result. �

Theorem 1 For system (2), if (S1)–(S2) hold, then E∗(P∗, S∗, X∗, Y ∗, Z∗) is locally asymptoti-
cally stable when τ ∈ [0, τ0); system (2) undergoes a Hopf bifurcation at E∗(P∗, S∗, X∗, Y ∗, Z∗)
when τ = τ0 and a family of periodic solutions bifurcate from E∗(P∗, S∗, X∗, Y ∗, Z∗). τ0 is de-
fined as in Eq. (10).

3 Direction and stability of Hopf bifurcation
In this section, we investigate the direction and stability of Hopf bifurcation. By Hassard
et al. [31], we have the following theorem for system (2).

Theorem 2 The Hopf bifurcation exhibited by system (2) can be determined by the pa-
rameters μ2, β2, and T2. (i) If μ2 > 0 (μ2 < 0), then the Hopf bifurcation is supercritical
(subcritical); (ii) if β2 < 0 (β2 > 0), then the bifurcating periodic solutions are stable (unsta-
ble); (iii) if T2 > 0 (T2 < 0), then the period of the bifurcating periodic solutions increases
(decrease).
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The parameters μ2, β2, and T2 can be found using the following formulas:

C1(0) =
i

2τ0ω0

(

v11v20 – 2|v11|2 –
|v02|2

3

)

+
v21

2
,

μ2 = –
Re{C1(0)}
Re{λ′(τ0)} ,

β2 = 2Re
{

C1(0)
}

,

T2 = –
Im{C1(0)} + μ2 Im{λ′(τ0)}

τ0ω0
,

(13)

in which the expressions of v20, v11, v02, and v21 can be found in the following.

Proof of Theorem 2 Introduce a new perturbation parameter τ = τ0 + μ with μ ∈ R, then
μ = 0 is the Hopf bifurcation value of system (2). Let u1(t) = P(t) – P∗, u2(t) = S(t) – S∗,
u3(t) = X(t) – X∗, u4(t) = Y (t) – Y ∗, u5(t) = Z(t) – Z∗, and ui(t) = ui(τ t), i = 1, 2, . . . , 5. Then
system (2) can be written as a functional differential equation in C = C([–1, 0], R5) as fol-
lows:

u̇(t) = Lμ(ut) + F(μ, ut), (14)

where Lμ : C → R5, F : R × C → R5, and

Lμφ = (τ0 + μ)
(
Gmaxφ(0) + Hmaxφ(–1)

)
, (15)

F(μ,φ) = (τ0 + μ)(F1, F2, 0, 0, 0)T , (16)

with

Gmax =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

g11 g12 0 0 0
g21 g22 0 0 0
0 g32 g33 0 0
0 g42 0 g44 0
0 g52 0 0 g55

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

, Hmax =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 0 0 0 0
0 0 h23 0 0
0 0 h33 0 0
0 0 0 0 0
0 0 0 0 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

and

F1 = g13φ
2
1 (0) + g14φ1(0)φ2(0) + g15φ

2
2 (0) + g16φ

3
1 (0) + g17φ

2
1 (0)φ2(0)

+ g18φ1(0)φ2
2 (0) + g19φ

3
2 (0) + · · · ,

F2 = g23φ
2
1 (0) + g24φ1(0)φ2(0) + g25φ

2
2 (0) + g26φ

3
1 (0) + g27φ

2
1 (0)φ2(0)

+ g28φ1(0)φ2
2 (0) + g29φ

3
2 (0) + · · · ,

where

g13 =
β
√

S∗

8P∗√P∗ , g14 = –
β

2
√

P∗S∗ , g15 =
β
√

P∗

8S∗√S∗ , g16 = –
β
√

S∗

16(P∗)2
√

P∗ ,

g17 =
β

16P∗√P∗S∗ , g18 =
β

16S∗√P∗S∗ , g19 = –
β
√

P∗

16(S∗)2
√

S∗ ,
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g23 = –
β
√

S∗

8P∗√P∗ , g24 =
β

2
√

P∗S∗ , g25 = –
β
√

P∗

8S∗√S∗ , g26 =
β
√

S∗

16(P∗)2
√

P∗ ,

g27 = –
β

16P∗√P∗S∗ , g28 = –
β

16S∗√P∗S∗ , g29 =
β
√

P∗

16(S∗)2
√

S∗ .

By using the Riesz representation theorem, let η(θ ,μ) : [–1, 0] → R5×5 be a function of
bounded variation.

For φ ∈ C([–1, 0], R5), let

Lμφ =
∫ 0

–1
dη(θ ,μ)φ(θ ). (17)

Moreover, we can choose

η(θ ,μ) =

⎧
⎪⎪⎨

⎪⎪⎩

(τ0 + μ)Gmax, θ = 0,

0, θ ∈ (–1, 0),

(τ0 + μ)Hmax, θ = –1.

Define

A(μ)φ =

⎧
⎨

⎩

dφ(θ )
dθ

, –1 ≤ θ < 0,
∫ 0

–1 dη(θ ,μ)φ(θ ), θ = 0,

and

R(μ)φ =

⎧
⎨

⎩

0, –1 ≤ θ < 0,

F(μ,φ), θ = 0.

Then system (14) can be written as follows:

u̇(t) = A(μ)ut + R(μ)ut . (18)

For ϕ ∈ C1([0, 1], (R5)∗), define the adjoint operator of A(0)

A∗(ϕ) =

⎧
⎨

⎩

– dϕ(s)
ds , 0 < s ≤ 1,

∫ 0
–1 dηT (s, 0)ϕ(–s), s = 0,

and a bilinear product

〈
ϕ(s),φ(θ )

〉
= ϕ̄(0)φ(0) –

∫ 0

θ=–1

∫ θ

ξ=0
ϕ̄(ξ – θ ) dη(θ )φ(ξ ) dξ , (19)

where η(θ ) = η(θ , 0).
According to the analysis in Sect. 2, ±iτ0ω0 are eigenvalues of A(0) , so they are also

eigenvalues of A∗. Then A(0)q(θ ) = iτ0ω0q(θ ) and A∗q∗(s) = –iτ0ω0q∗(s). Suppose that
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q(θ ) = (1, q2, q3, q4, q5)T eiτ0ω0θ and q∗(s) = D(1, q∗
2, q∗

3, q∗
4, q∗

5)eiτ0ω0s are the corresponding
eigenvectors. By calculation we can obtain

q2 =
g21(iω0 – g33 – h33e–iτ0ω0 )

(iω0 – g22)(iω0 – g33 – h33e–iτ0ω0 ) – g32h23e–iτ0ω0
,

q3 =
g32q2

iω0 – g33 – h33e–iτ0ω0
, q4 =

g42q2

iω0 – g44
, q5 =

g52q2

iω0 – g55
,

q∗
2 = –

iω0 + g11

g21
, q∗

3 =
h23eiτ0ω0 (iω0 + g11)

g21(iω0 + g33 + h33eiτ0ω0 )
, q∗

4 = 0, q∗
5 = 0.

(20)

From 〈q∗(s), q(θ )〉 = 1, we have

D̄ =

[

1 +
5∑

i=1

q̄∗
i qi + τ0e–iτ0ω0 q3

(
h23q̄∗

2 + h33q̄∗
3
)
]–1

.

In the following, according to the algorithm given in [31] and the computation process
as that in [24, 32–34], we can obtain

v20 = 2τ0D̄
[
g13 + g14q2 + g15q2

2 + q̄∗
2
(
g23 + g24q2 + g25q2

2
)]

,

v11 = τ0D̄
[
2g13 + g14(q2 + q̄2) + 2g15q2q̄2 + q̄∗

2
(
2g23 + g24(q2 + q̄2) + 2g25q2q̄2

)]
,

v02 = 2τ0D̄
[
g13 + g14q̄2 + g15q̄2

2 + q̄∗
2
(
g23 + g24q̄2 + g25q̄2

2
)]

,

v21 = 2τ0D̄
[

g13
(
2W (0)

11 + W (1)
20 (0)

)

+ g14

(

W (1)
11 (0)q2 +

1
2

W (1)
20 (0)q̄2 + W (2)

11 (0) +
1
2

W (2)
20 (0)

)

+ g15
(
2W (2)

11 (0)q2 + W (2)
20 (0)q̄2

)

+ 3g16 + g17(q̄2 + 2q2) + g18
(
q2

2 + 2q2q̄2
)

+ 3g19q2
2q̄2

+ q̄∗
2

(

g23
(
2W (0)

11 + W (1)
20 (0)

)

+ g24

(

W (1)
11 (0)q2 +

1
2

W (1)
20 (0)q̄2 + W (2)

11 (0) +
1
2

W (2)
20 (0)

)

+ g25
(
2W (2)

11 (0)q2 + W (2)
20 (0)q̄2

)

+ 3g16 + g17(q̄2 + 2q2) + g18
(
q2

2 + 2q2q̄2
)

+ 3g19q2
2q̄2

)]

with

W20(θ ) =
iv20q(0)
τ0ω0

eiτ0ω0θ +
iv̄02q̄(0)
3τ0ω0

e–iτ0ω0θ + E1e2iτ0ω0θ ,

W11(θ ) = –
iv11q(0)
τ0ω0

eiτ0ω0θ +
iv̄11q̄(0)
τ0ω0

e–iτ0ω0θ + E2,
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where

E1 = 2

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

g∗
11 –g12 0 0 0

–g21e–2iτ0ω0 g∗
22 –g23e–2iτ0ω0 0 0

0 –g32 g∗
33 0 0

0 –g42 0 g∗
44 0

0 –g52 0 0 g∗
55

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

–1

×

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

g13 + g14q2 + g15q2
2

g23 + g24q2 + g25q2
2

0
0
0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

E2 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

g11 g12 0 0 0
g21 g22 h23 0 0
0 g32 g33 + h33 0 0
0 g42 0 g44 0
0 g52 0 0 g55

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

–1

×

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

2g13 + g14(q2 + q̄2) + 2g15q2q̄2

2g23 + g24(q2 + q̄2) + 2g25q2q̄2

0
0
0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

and

g∗
11 = 2iω0 – g11, g∗

22 = 2iω0 – g22, g∗
33 = 2iω0 – g33 – h33e–2iτ0ω0 ,

g∗
44 = 2iω0 – g44, g∗

55 = 2iω0 – g55.

Thus, we can conclude that v20, v11, v02, and v21 in Eq. (13) can be obtained. The proof
is completed. �

4 Numerical simulations
In this section, we verify the correctness of the obtained theoretical results by using nu-
merical simulations. Choosing α = 0.8, β = 0.005, γ = 0.0000391, δ = 0.00913, ε = 0.00458,
ζ = 0.02, η = 0.001, ϑ = 0.0457, we obtain the following specific case of system (2):

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

dP(t)
dt = 0.8 – 0.005

√
P(t)S(t) – 0.0000391P(t),

dS(t)
dt = 0.005

√
P(t)S(t) – 0.0137491S(t) + 0.02X(t – τ ),

dX(t)
dt = 0.009121S(t) – 0.0000391X(t) – 0.02X(t – τ ),

dY (t)
dt = 9.1300e – 006S(t) – 0.0000391Y (t),

dZ(t)
dt = 0.00458S(t) – 0.0457391Z(t).

(21)

Thus, the unique positive equilibrium is E∗(147.6003, 170.9480, 77.8076, 39.9170,
17.1176). By calculating, we can obtain that ν0 = 0.00023516, ω0 = 0.01533623, and
τ0 = 118.1368, f ′(ν0) = 0.00052229 > 0. Obviously, the parameters in system (21) fulfill as-
sumptions S1 and S2. From Theorem 1, when τ ∈ (0, τ0), E∗(147.6003, 170.9480, 77.8076,
39.9170, 17.1176) is locally asymptotically stable, which can be illustrated in Figs. 2–3.
While as τ is increased to pass τ0, we can see the effect of time delay that destabilizes
system (21) and a Hopf bifurcation occurs and a periodic oscillation appears around
E∗(147.6003, 170.9480, 77.8076, 39.9170, 17.1176). This can be shown as in Figs. 4–5.

Now, we are interested in studying the effect of some other parameters on the dynamics
of system (21). (i) The number of smokers associated with some illness decreases as the
value of β decreases, whereas the value of η increases, which can be demonstrated by
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Figure 2 The equilibrium E∗ of system (21) is asymptotically stable for τ = 114.685 < τ0

Figs. 6–7. (ii) The number of smokers associated with some illness decreases when the
value of ζ decreases, which can be depicted by Fig. 8. In addition, it is easy to check in
Fig. 9 that system (21) shows the limit cycle behavior from the stable state due to increase
in ζ .
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Figure 3 The phase plots of system (2) for τ = 114.685 < τ0

5 Conclusions
In the current paper, a delayed smoking model in which the population is divided into
five classes is investigated by incorporating the time delay due to the immunity period,
after which the temporarily quit smokers return to the class of smokers, into the proposed
model by Din et al. [21]. It is found that the delayed smoking model is locally asymptotically
stable when the time delay is suitably small under some certain conditions. In this case, it
is easy to control smoking. However, once the value of the time delay passes through the
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Figure 4 The equilibrium E∗ of system (21) is unstable for τ = 122.905 > τ0

critical value τ0, a Hopf bifurcation occurs and smoking will be out of control. Particularly,
properties such as direction and stability of the Hopf bifurcation are examined with the
aid of the center manifold theorem and normal form theory.

It has been observed from our simulations that the number of smokers associated with
some illness decreases as we decrease the value of β or increase the value of η. Therefore, it



Zhang et al. Advances in Difference Equations        (2019) 2019:505 Page 14 of 17

Figure 5 The phase plots of system (2) for τ = 122.905 > τ0

can be concluded that we should actively propagandize the harm of smoking, so that more
and more people can stay away from tobacco and quit smoking timely and permanently.
It has also been shown that the number of smokers associated with some illness decreases
when we decrease the value of ζ , and the model changes its behavior from stable focus to
limit cycle as we increase the value of ζ . Thus, it is strongly recommended that the smokers
who have quitted smoking should have strong will and resolutely prevent relapse, which
is also meaningful for controlling tobacco epidemic.
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Figure 6 Time plot of Z for different β at
τ = 114.685. The rest of the parameters are taken as
given in the text

Figure 7 Time plot of Z for different η at
τ = 114.685. The rest of the parameters are taken as
given in the text

Figure 8 Time plot of Z for different ζ at
τ = 114.685. The rest of the parameters are taken as
given in the text

Figure 9 Dynamic behavior of system (21):
projection on S–X–Z for different ζ at τ = 122.905.
The rest of the parameters are taken as given in the
text
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At last, it should be noted that similar to smoking addiction, the other public health
problem is excessive drinking, which is not only harmful to personal health, but also leads
to a range of negative social effects [35–37]. Therefore, we will try to complete some work
about drink modeling in the near future.
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