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Abstract
In this work, we establish an approach to constructing compact operators between
arbitrary infinite-dimensional Banach spaces without a Schauder basis. For this
purpose, we use a countable number of basic sequences for the sake of verifying the
result of Morrell and Retherford. We also use a nuclear operator, represented as an
infinite-dimensional matrix defined over the space �1 of all absolutely summable
sequences. Examples of nuclear operators over the space �1 are given and used to
construct operators over general Banach spaces with specific approximation
numbers.
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1 Introduction and basic definitions
Banach spaces, which are separable and reflexive, can exist without a Schauder basis as
proved by Enflo in 1973 [11]. However, in 1972, Morrell and Retherford [8] showed that
in each infinite-dimensional Banach space and for any sequence of positive numbers, that
is, monotonically convergent to zero (λi)i∈N , where N = {1, 2, 3, . . .}, one can construct a
weakly square-summable basic sequence whose norms equal to (λi)i∈N .

In 1977, Makarov and Faried [7] showed how to construct compact operators of the
form

∑
i∈N μifi ⊗ xi between arbitrary infinite-dimensional Banach spaces such that its

sequence of approximation numbers has a specific rate of convergence to zero. It was
also proved that the operator ideal, whose sequence of approximation numbers are p-
summable, is a small ideal; see [4, 10, 11].

In this work, we show how to construct compact operators between arbitrary infinite-
dimensional Banach spaces using a countable number of basic sequences and nuclear op-
erators, represented in the form of an infinite-dimensional matrix (μij)i,j∈N defined over
the space �1 of all absolutely summable sequences, which verifies

lim
j

μij = 0

for every i ∈ N . For such double-summation operators, a choice of matrix elements is more
convenient than choosing sequence elements in the case of single-summation operators.
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Such a construction will help give counterexamples of operators between Banach spaces
without a Schauder basis. An upper estimate of the sequence of approximation numbers
is given for such double-summation operators. For basic notions and some related results,
one can see [1, 6, 9, 13].

The following notations are used throughout this study. The normed space of bounded
linear operators from a normed space X into a normed space Y is denoted by L(X, Y ),
while the dual space of the normed space X is denoted by X∗ = L(X, R), where R is the set
of real numbers.

Also as mentioned before, the space {x = (xi)∞i=1 :
∑

i |xi|p < ∞} of all sequences of real
numbers that are p-absolutely summable, is denoted by �p, which is equipped with the
norm ‖x‖ = (

∑
i∈N |xi|p)

1
p . The space {x = (xi)∞i=1 : lim xi = 0} of all sequences of real num-

bers that are convergent to zero, is denoted by co, which is equipped with the norm
‖x‖ = supi∈N |xi|.

Definition 1.1 ([12]) A map s, which assigns a unique sequence {sr(T)}∞r=0 of real numbers
to every operator T ∈ L(X, Y ), is called an s-number sequence if the following conditions
are verified:

1. ‖T‖ = s0(T) ≥ s1(T) ≥ · · · ≥ 0 for T ∈ L(X, Y ).
2. sr+m(U + V ) ≤ sr(U) + sm(V ) for U , V ∈ L(X, Y ).
3. sr(UTV ) ≤ ‖U‖sr(T)‖V‖ for V ∈ L(X0, X), T ∈ L(X, Y ) and

U ∈ L(Y , Y0).
4. sr(T) = 0 if and only if rank(T) ≤ r for T ∈ L(X, Y ).
5. sr(Ik) =

{ 1, for r < k;
0, for r ≥ k,

where Ik is the identity operator on Euclidean space �k
2.

As an examples of s-numbers, we mention the approximation numbers αr(T), Gelfand
numbers cr(T), Kolmogorov numbers dr(T), and Tikhomirov numbers d∗

r (T), defined by
1. αr(T) = inf{‖T – A‖ : A ∈ L(X, Y ) and rank(A) ≤ r}. Clearly, we always have

‖T‖ = α0(T) ≥ α1(T) ≥ α2(T) ≥ · · · ≥ 0.
2. cr(T) = αr(JY T), where JY is a metric injection from the space Y into a higher space

�∞(Λ) of all bounded-real functions for a suitable index set Λ.
3.

dr(T) = inf
dim K≤r

sup
‖x‖≤1

inf
y∈K

‖Tx – y‖,

where K ⊆ Y .
4. d∗

r (T) = dr(JY T).

Definition 1.2 ([11]) An operator T ∈ L(X, Y ) is nuclear if and only if it can be represented
in the form

T(x) =
∞∑

i=1

ai(x)yi,

with a1, a2, . . . ∈ X∗ and y1, y2, . . . ∈ Y , such that

∞∑

i=1

‖ai‖‖yi‖ < ∞.
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On the class N(X, Y ) of all nuclear operators from X into Y , a norm ν(T) is defined by

ν(T) = inf

{∑

i

‖ai‖‖yi‖
}

,

where the inf is taken over all possible representations of the operator T .

2 Basic theorems and technical lemmas
It is well known that an infinite matrix defines a linear continuous operator from the space
�1 into itself if its columns are absolutely uniformly-summable; see [3, 4, 10].

Lemma 2.1 ([11], 6.3.6) An operator T ∈ L(�1,�1) is nuclear if and only if there is an infinite
matrix (σik)i,k∈N such that

T(x) =

( ∞∑

k=1

σikxk

)∞

i=1

for x = (xk)∞k=1 ∈ �1

and

∞∑

i=1

sup
k

|σik| < ∞.

In this case

ν(T) =
∞∑

i=1

sup
k

|σik|.

Lemma 2.2 ([3]) If (Ti)∞i=1 is an absolutely summable sequence of bounded linear operators
then

αn

( ∞∑

i=1

Ti

)

≤ inf

{ ∞∑

i=1

αni (Ti) :
∞∑

i=1

ni = n

}

,

where the inf is taken over all possible representations for

∞∑

i=1

ni = n.

The following is a consequence of Lemma 2 in [2].

Theorem 2.3 Let (xi)∞i=1 be a sequence in a Banach space X such that

∞∑

i=1

∣
∣f (xi)

∣
∣ < ∞ for every f ∈ X∗,

then the series
∑∞

i=1 λixi converges unconditionally in X for every sequence (λi)∞i=1 ∈ co.
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Theorem 2.4 (Morrell and Retherford [8]) Let X be an infinite-dimensional Banach space
and let (λi)∞i=1 ∈ co with 0 < λi < 1, then there is a basic sequence (xi)∞i=1 in X such that
‖xi‖ = λi for all i = 1, 2, . . . that verifies

∞∑

i=1

∣
∣f (xi)

∣
∣2 ≤ ‖f ‖2 for every f ∈ X∗.

Remark 2.5 Theorem 2.4 is valuable in the case of sequences that are slowly convergent
to zero (λi)∞i=1. Indeed, if (λi)∞i=1 converges rapidly to zero then

∑∞
i=1 ‖xi‖ < ∞ and hence,

one can write

∞∑

i=1

∣
∣f (xi)

∣
∣2 ≤

∞∑

i=1

‖f ‖2‖xi‖2 ≤ C‖f ‖2 for every f ∈ X∗.

Theorem 2.6 (Dini’s theorem [5]) For a convergent series
∑∞

i=1 ai of positive real numbers,
the series

∞∑

i=1

ai

Rm
i

is

⎧
⎨

⎩

convergent for m < 1;

divergent for m ≥ 1,

where Ri =
∑∞

j=i aj is the remainder of the series
∑∞

i=1 ai.

Theorem 2.7 ([7]) Let X and Y be infinite-dimensional Banach spaces and let (λr)∞r=1 be
a monotonically decreasing sequence of positive real numbers, then there is a completely
continuous operator A ∈ L(X, Y ) verifying

2–4λ3r ≤ d∗
r (A) ≤ αr(A) ≤ 8λr for every r ∈ {1, 2, . . .}.

Lemma 2.8 ([3]) Let {ξi}i∈N be a bounded family of real numbers and let K ⊆ N
be an arbitrary subset of indices, such that card K is the number of elements in K .
Then

sup
card K=r+1

inf
i∈K

ξi = inf
card K=r

sup
i /∈K

ξi.

3 Main results
Proposition 3.1 Let X and Y be infinite-dimensional Banach spaces and let M = (μij)i,j∈N

be an infinite matrix verifying that:
1. limj μij = 0 for every i ∈ N .
2

∑∞
i=1 sup∞

j=1 |μij| < ∞.
Let (fij)i,j∈N be a matrix of functionals in X∗ and (zij)i,j∈N be a matrix of elements in Y that
verifies

∞
sup
i=1

∞∑

j=1

∣
∣fij(x)F(zij)

∣
∣ < ∞ (1)
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for every F in Y ∗ and every x in X. Then the expression

T(x) =
∞∑

i=1

∞∑

j=1

μijfij(x)zij

defines a linear continuous operator from X into Y .

Proof Let

λn =
∑

i≥n

∞
sup
j=1

|μij|,

then from Dini’s theorem 2.6 we get

∞∑

i=1

sup∞
j=1 |μij|√

λi
< ∞.

From condition (1) and Theorem 2.3, the formula

Ti(x) =
∞∑

j=1

μij√
λi

fij(x)zij (2)

defines a linear continuous operator Ti ∈ L(X, Y ) for every i = 1, 2, . . . .
Now we need to prove the unconditional convergence of the series

T(x) =
∞∑

i=1

√
λiTi(x).

In order to do so, it is enough to apply again Theorem 2.3, noting that λn → 0 and we only
have to verify that

∞∑

i=1

∣
∣gTi(x)

∣
∣ < ∞, for every g ∈ Y ∗.

In fact,

∞∑

i=1

∞∑

j=1

∣
∣
∣
∣

μij√
λi

fij(x)g(zij)
∣
∣
∣
∣ ≤

∞∑

i=1

∞
sup
j=1

|μij|√
λi

∞∑

j=1

∣
∣fij(x)g(zij)

∣
∣

≤
∞∑

i=1

∞
sup
j=1

|μij|√
λi

[
∞

sup
i=1

∞∑

j=1

∣
∣fij(x)g(zij)

∣
∣

]

< ∞.

Then the expression

T(x) =
∞∑

i=1

∞∑

j=1

μijfij(x)zij

defines a linear continuous operator from X into Y . �
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Remark 3.2 From Theorem 2.4 and for every i = 1, 2, . . . , there exist a basic sequence of
functionals {fij}∞j=1 in X∗ and a basic sequence of elements {zij}∞j=1 in Y such that

∞∑

j=1

∣
∣fij(x)

∣
∣2 ≤ ‖x‖2 for every x ∈ X

and

∞∑

j=1

∣
∣F(zij)

∣
∣2 ≤ ‖F‖2 for every F ∈ Y ∗.

Basic sequences can be found by choosing different convergent to zero sequences (λi)∞i=1 ∈
co, as mentioned in Theorem 2.4, according to their rate of convergence.

As a consequence of Proposition 3.1 and Remark 3.2 we get the following result.

Theorem 3.3 Let X and Y be Banach spaces and let {fij}∞j=1 and {zij}∞j=1, where i ∈ N , be
basic sequences in X∗ and Y , respectively. Verifying the following,

1.
∑∞

j=1 |fij(x)|2 < ‖x‖2 for every x ∈ X , and i ∈ N .
2.

∑∞
j=1 |F(zij)|2 < ‖F‖2 for every F ∈ Y ∗ and i ∈ N , then every nuclear operator

M = {μij} : �1 → �1, with lim
j

μij = 0,

defines an operator T : X → Y of the form

T(x) =
∞∑

i=1

∞∑

j=1

μijfij(x)zij.

Proof The proof follows directly from Proposition 3.1 and Remark 3.2. �

Theorem 3.4 Let X and Y be infinite-dimensional Banach spaces and let {μi}∞i=1 be a se-
quence of real numbers that is convergent to zero and {fi}∞i=1, {zi}∞i=1 be sequences in X∗ and
Y , respectively. Verifying that

∞∑

i=1

∣
∣fi(x)

∣
∣2 ≤ ‖x‖2 for every x ∈ X,

and

∞∑

i=1

∣
∣F(zi)

∣
∣2 ≤ ‖F‖2 for every F ∈ Y ∗.

Then for the operator

T =
∞∑

i=1

μifi ⊗ zi
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we have

αn(T) ≤ inf
card K≤n

sup
i /∈K

|μi|,

where K is any subset of the index set N with card K ≤ n.

Proof For every operator T ∈ L(X, Y ) and every subset of indices K ⊂ N with card K ≤ n,
we define a finite rank operator

AK =
∑

i∈K

μifi ⊗ zi

with rank(AK ) ≤ n. From the definition of approximation numbers we get

αn(T) ≤ ‖T – AK‖ =
∥
∥
∥
∥

∑

i /∈K

μifi ⊗ zi

∥
∥
∥
∥

= sup
‖x‖=1

sup
‖F‖=1

∣
∣
∣
∣

∑

i /∈K

μifi(x)F(zi)
∣
∣
∣
∣

≤ sup
‖x‖=1

sup
‖F‖=1

∑

i /∈K

∣
∣μifi(x)F(zi)

∣
∣

≤ sup
i /∈K

|μi| sup
‖x‖=1

sup
‖F‖=1

∑

i /∈K

∣
∣fi(x)F(zi)

∣
∣

≤ sup
i /∈K

|μi|.

Since this relation is true for every index subset K with card K ≤ n,

αn(T) ≤ inf
card K≤n

sup
i /∈K

|μi|. �

Remark 3.5 As a consequence of Theorem 3.4 and by using Lemma 2.8, we can get the
following similar result:

αn(T) ≤ sup
card K=n+1

inf
i∈K

|μi|.

Theorem 3.6 Let X and Y be infinite-dimensional Banach spaces and let (μij)i,j∈N be an
infinite matrix with linearly independent rows such that conditions of Proposition 3.1 are
verified, and let {fij}∞j=1, {zij}∞j=1 for i = 1, 2, . . . , be sequences in X∗ and Y , respectively, such
that conditions of Theorem 3.4 are fulfilled for all i = 1, 2, . . . . Then for the operator

T =
∞∑

i=1

∞∑

j=1

μijfij ⊗ zij

we have

αn(T) ≤ inf
Σni=n

∞∑

i=1

{
inf

card K≤ni
sup
j /∈K

|μij|
}

, (3)

where K is a subset of the index set N with card K ≤ ni.
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Proof From Lemma 2.2, Theorem 3.4 and by using the same operator Ti defined by Eq. (2)
throughout the proof of Proposition 3.1, we get

αn(T) = αn

( ∞∑

i=1

Ti

)

≤
∞∑

i=1

αni (Ti) ≤
∞∑

i=1

inf
card K≤ni

sup
j /∈K

|μij|.

This relation is true for every Σni = n, then we get the proof.
In the following, we are going to give two examples of nuclear operators over �1 and

use them to construct operators over general Banach spaces with specific approximation
numbers. �

Example 3.7 Consider the operator A ∈ L(c0,�1) such that A = (aij)∞i,j=1, where

aij = 0 for i 
= j,

aii =
1

2k(k + 1)2 for 2k ≤ i < 2k+1.

Also, consider B ∈ L(�1, c0), such that

B =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

B0 0 0 · · ·
0 B1 0 · · ·
0 0 B2 · · ·
· · ·
· · ·
· · ·

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

where

B0 = (1),

Bk =

(
Bk–1 Bk–1

Bk–1 –Bk–1

)

is a 2k × 2k matrix for k = 1, 2, 3, . . . .

Thus we have D = AB ∈ L(�1,�1), such that

D =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

D0 0 0 · · ·
0 D1 0 · · ·
0 0 D2 · · ·
· · ·
· · ·
· · ·

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

where

D0 = (1),

Dk =
k2

2(1 + k)2

(
Dk–1 Dk–1

Dk–1 –Dk–1

)

is a 2k × 2k matrix for k = 1, 2, 3, . . . .
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Let D = (μij)∞i,j=1, then this operator has the following properties:
1.

∞∑

i=1

|μii| = 1 +
(

1
8

+
1
8

)

+
(

1
36

+
1

36
+

1
36

+
1

36

)

+
(

1
128

+
1

128
+ · · ·

)

+ · · ·

=
∞∑

i=1

1
i2 =

π2

6
.

2.

ν(D) =
∞∑

i=1

sup
j

|μij| =
π2

6
< ∞,

then by using Lemma 2.1 D is a nuclear operator.
3. Trac(D) = 1 + ( 1

8 – 1
8 ) + ( 1

36 – 1
36 + 1

36 – 1
36 ) + ( 1

128 – 1
128 + · · · ) + · · · = 1.

4. D = (μij)∞i,j=1 is having linearly independent rows.
Now, for D = (μij)∞i,j=1 and by using Proposition 3.1 and Theorem 3.6 one can construct an
operator T ∈ L(X, Y ) for any Banach spaces X, Y of the form

T =
∞∑

i=1

∞∑

j=1

μijfij ⊗ zij,

where {fij}∞i,j=1, {zij}∞i,j=1, are basic sequences in X∗ and Y , respectively, such that conditions
of Theorem 3.4 are fulfilled for all i = 1, 2, . . . .

Now by applying Eq. (3), one can get

αn(T) ≤ π2

6
–

k+1∑

i=1

1
i2 for n = 1, 2, 3, . . . where 2k ≤ n < 2k+1.

Hence, we have

lim
n→∞αn(T) ≤ π2

6
–

∞∑

i=1

1
i2 = 0,

which is consistent with the properties of the approximation numbers.
By applying Eq. (3) in the case of n = 0, we get

α0(T) = ‖T‖ ≤ 1 +
(

1
8

+
1
8

)

+
(

1
36

+
1

36
+

1
36

+
1

36

)

+
(

1
128

+
1

128
+ · · ·

)

+ · · ·

=
∞∑

i=1

1
i2 =

π2

6
.

Example 3.8 Consider the operator J ∈ L(�1,�1) such that J = (λij)∞i,j=1 where λij = ij
2i+j , then

this operator has the following properties:
1. ν(J) =

∑∞
i=1 supj |λij| =

∑∞
i=1

i
2i supj(

j
2j ) = 1 < ∞, then by using Lemma 2.1 J is a

nuclear operator.
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2. J = (λij)∞i,j=1 has linearly independent rows.
Now for J = (λij)∞i,j=1 and by using Proposition 3.1 and Theorem 3.6, one can construct an
operator T ∈ L(X, Y ) for any Banach spaces X, Y on the form,

T =
∞∑

i=1

∞∑

j=1

λijfij ⊗ zij,

where {fij}∞i,j=1 and {zij}∞i,j=1 are basic sequences in X∗ and Y , respectively, such that condi-
tions of Theorem 3.4 are fulfilled for all i = 1, 2, . . . .

Applying Eq. (3) yields

αn(T) ≤ n + 1
2n for n = 1, 2, 3, . . . .

Thus, we have (αn(T))∞n=1 ∈ �1 because

∞∑

n=1

αn(T) ≤
∞∑

n=1

n + 1
2n = 3 < ∞.

Applying Eq. (3) in the case of n = 0 yields

α0(T) = ‖T‖ ≤ 1
2

∞∑

i=1

i
2i =

1
2

× 2 = 1,

noting that this is independent of the selection of {fij}∞i,j=1 and {zij}∞i,j=1.
If we choose {fij}∞i,j=1 and {zij}∞i,j=1 such that

‖fij‖ = ‖zij‖ =
1

√
ij

,

then we get

ν(T) ≤
∞∑

i,j=1

λij‖fij‖‖zij‖ =
∞∑

i,j=1

(
ij

2i+j

)(
1
ij

)

= 1 < ∞,

which means that T , in this case, is a nuclear operator.

4 Conclusion
By using nuclear operators defined over �1 with particular representation, one can con-
struct compact operators over general Banach spaces with specific approximation num-
bers. Such compact operators are been constructed using a countable number of basic
sequences and nuclear operators. For such nuclear operators, its construction in a matrix
form will yield to double-summation operators. This double-summation gives more free-
dom rather than choosing sequence elements in the case of single-summation operators.
Such a construction will help give counterexamples of operators between Banach spaces
without a Schauder basis.
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