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Abstract
In this work, the exponential stability problem of impulsive recurrent neural networks
is investigated; discrete time delay, continuously distributed delay and stochastic
noise are simultaneously taken into consideration. In order to guarantee the
exponential stability of our considered recurrent neural networks, two distinct types
of sufficient conditions are derived on the basis of the Lyapunov functional and
coefficient of our given system and also to construct a Lyapunov function for a large
scale system a novel graph-theoretic approach is considered, which is derived by
utilizing the Lyapunov functional as well as graph theory. In this approach a global
Lyapunov functional is constructed which is more related to the topological structure
of the given system. We present a numerical example and simulation figures to show
the effectiveness of our proposed work.
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1 Introduction
The differential dynamics model is one of the basic tools in the characterization of natural
and engineering processes [7, 14, 19, 22, 40, 41], and it is also a basic block of the com-
plicated neural network [18, 65]. A simplified mathematical description of natural neural
networks is known as the artificial neural networks (ANNs) model. Since 1940, due to
its application, network modeling has been used in the area of pattern recognition, op-
timization, classification, parallel computation, signal and image processing, associative
memory, system identification and control, sequence recognition, medical diagnosis, data
mining, and visualization [2, 13, 17, 21, 23, 30, 35, 46, 47, 60, 61]. Over the past few years,
several types of neural networks (NNs) have been applied in many areas, while in 1984
Hopfield proposed the following differential equations model [10]:

⎧
⎨

⎩

żi(t) = –dizi(t) +
∑n

j=1 αijfj(zj(t)) + Ii(t),

zi(t) = ηi(t), –∞ < t ≤ 0.

© The Author(s) 2019. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use,
sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other
third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

https://doi.org/10.1186/s13662-019-2443-3
http://crossmark.crossref.org/dialog/?doi=10.1186/s13662-019-2443-3&domain=pdf
http://orcid.org/0000-0002-0732-226X
mailto:jdcao@seu.edu.cn
mailto:cxiahuang@126.com


Iswarya et al. Advances in Difference Equations        (2019) 2019:502 Page 2 of 21

Here zi(t) denotes the state vector at time t, for t ≥ 0, i, j = 1, 2, 3, . . . , n; ηi(t) represents
the initial value; di > 0; αij is a positive constants; the activation function is denoted by
fj and the external input is Ii(t). At the same time, the dynamical nature of bifurcation,
attractors, oscillation, chaotic, almost periodic solution, periodic solution, stability, syn-
chronisation and instability of various types of differential equations models is focused by
lots of researchers [4, 12, 15, 49, 52–54, 58, 64].

Till now, the time delay of dynamics systems also has received interest from many re-
searchers [5, 6, 8, 11, 15, 16, 20, 24–28, 42, 51, 55, 56, 63]. From the practical perspective, it
is familiar that the natural NNs as well as ANNs due to the information processing, delay
appears. Frequently, it may originate in the network system and leads to instability, oscilla-
tion and chaos. Because of the finite switching speed of amplifiers, the delay occurs in the
transmission and responses of the neuron, more particularly in the electronic application
of analog NNs. In recent days, the dynamical behavior of RNNs with discrete time-varying
delays has been extensively studied [3, 34, 38].

Huang, Cao and Wang [28] investigate the following RNN with constant time delays:

⎧
⎨

⎩

żi(t) = –dizi(t) +
∑n

j=1 αijfj(zj(t)) +
∑n

j=1 βijgj(zj(t – τi)) + Ii(t),

zi(t) = ηi(t), –∞ < t ≤ 0.

For i = 1, 2, 3, . . . , n; and t ≥ 0, zi(t) indicates the state vector, di,αij,βij > 0; the activation
functions are represented by fj, gj, the constant delay is τi > 0 and the external input is Ii(t).

In addition, NNs are of a spatial nature because of its parallel pathways having various
sizes and lengths of axons, which entails that the signal propagation no longer is instanta-
neous but distributed during a certain period of time. Even though it is observed that in
the propagation of signals distributed over certain duration of time which can be modeled
as distributed time delays, it may also be instantaneous in some moment so that the dis-
tributed delay should be incorporated. It is necessary to introduce the infinite distributed
delay during a certain period of time in such a manner that the current behavior of the
state is in contrast to the distant past, which has less influence. Several research works are
related to the stability of mixed delay, for instance, see [1, 8, 34, 37, 39, 43, 49, 58, 62] for
the case of continuously distributed delay. In 2009 Xiang and Cao [58] discussed the RNN
with continuously distributed delays,

⎧
⎪⎪⎨

⎪⎪⎩

żi(t) = –dizi(t) +
∑n

j=1 αijfj(zj(t)) +
∑n

j=1 βijgj(zj(t – τi(t)))

+
∑n

j=1 γij
∫ t

–∞ κij(t – s)hj(zj(s)) ds,

zi(t) = ηi(t), –∞ < t ≤ 0.

Here, for i = 1, 2, 3, . . . , n; and t ≥ 0, di, αij, βij, γij are all positive constants; the state re-
sponse is denoted by zi(t), the activation functions are represented by fj, gj, hj, τi(t) > 0
denotes the time-varying delays and κij indicates the delay kernels.

Furthermore, the release of neurotransmitters and other probability causes in the synap-
sis transmission is a noisy process induced by the random fluctuation. In the literature [45]
Mao demonstrated the stabilization and destabilization of NN systems with stochastic in-
put. In this work, the NN models with external random perturbations are viewed as non-
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linear dynamical systems with white noise (perturbation of Brownian motion). In 2007,
Sun and Cao [51] investigate the following stochastic recurrent neural networks (SRNNs)
with discrete and distributed time-varying delays:

⎧
⎪⎪⎨

⎪⎪⎩

dzi(t) = (–dizi(t) +
∑n

j=1 αijfj(zj(t)) +
∑n

j=1 βijgj(zj(t – τi(t))) + Ii(t)) dt

+ σij(t, zj(t), zj(t – τi(t))) dωj(t),

zi(t) = ηi(t), –∞ < t ≤ 0,

where di > 0; αij, βij are all positive constants; the activation functions are represented by fj,
gj, the discrete time-varying transmission delays τi(t), stochastic noise ωj and the external
input is Ii(t).

Moreover, the transformation process of the state of neurons changes instantaneously or
abruptly at particular instants of time. These effects of the dynamical system are known as
impulsive effects. Owing to its application in the fields like electronics, biology, economics,
medicine, and telecommunication, impulsive effects of NNs receive more attention [1, 29,
31, 59]. In 2016, Tang and Wu studied the following impulsive RNNs:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

dzi(t) = (–dizi(t) +
∑n

j=1 αijfj(zj(t)) +
∑n

j=1 βijgj(zj(t – τi(t)))) dt

+ σij(t, zj(t), zj(t – τi(t))) dωj(t),


zi(tk) = zi(t+
k ) – zi(t–

k ) = Pik(zi(tk)), k = 1, 2, 3, . . . ,

zi(t) = ηi(t), –∞ < t ≤ 0.

Here, for i, j = 1, 2, 3, . . . , n; the state vector is denoted by zi(t); di > 0 and positive constants
αij, βij, γij. The activation functions are denoted by fj, gj, hj. The instantaneous change
of the state at the impulsive moment tk , k = 1, 2, 3, . . . , n is represented by the impulsive
function Pik(zi(tk)).

In recent years, exponential stability analysis of neural networks with time-varying de-
lays, stochastic, impulsive effects was investigated by many researchers. Among them
there exist various approaches to showing the stability of neural networks. For instance,
[29, 45] Raja et al. investigate the exponential stability of neural networks by using Lya-
punov and linear matrix inequality; in [59] Congcong et al. study the exponential stability
by using the Lyapunov and impulsive delay differentiable inequality techniques, Li et al.
[31] investigate exponential stability by using Razumikhin techniques and the Lyapunov
functional approach as well as stochastic analysis. In [1] one studies the fixed point theo-
rem, the generalized Gronwall–Bellman inequality and differential inequalities and in [36]
Li et al. investigate the exponential neural networks system by utilizing the L-operator de-
lay differential inequality with impulses and using the stochastic analysis technique. More-
over, the stability of neural networks has been applied in various areas [44] like image en-
cryption [57] and character recognition, forecasting, marketing, retails and sales, banking
and finance, and medicine.

It is well known that in stability theory the Lyapunov method plays a major role, but the
construction of a suitable Lyapunov function for large scale systems is quite harder, so in
order to overcome this problem a novel technique was explored on the basis of Kirchhoff’s
matrix tree theorem and the Lyapunov function, which is originated by Li et al. [33]. More
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specifically, a mathematical representation of the NNs is viewed as a directed graph with
a vertex system as a single neuron, and interaction or interconnection among neurons in
the synaptic connections as directed arcs. The main advantage of this work is to construct
a global Lyapunov function to the large scale system that is more related to the topological
structure of the framework. The benefit of this approach is to avoid constructing a partic-
ular Lyapunov function for a particular system directly. Utilizing the achievements of the
pioneering works, few researchers have initiated their work and applied this approach. For
instance, in [48], exponential synchronization of stochastic reaction–diffusion Cohen–
Grossberg neural networks with time-varying delays was studied by using graph theory
and the Lyapunov functional method; in [9], global exponential stability for multi-group
neutral delayed systems was studied based on Razumikhin method and graph theory, in
[50] exponential stability of BAM neural networks with delays and reaction–diffusion
was studied with the help of a graph-theoretic approach. In this novel approach, to the
best of the authors’ knowledge, researchers have not correlated them with NNs; there are
one or two of them that are used in NNs. However, this novel approach was frequently
used.

Compared with the outcome of some existing research work, in this work we concen-
trated on the pth moment’s exponential stability issues of ISRNNs with continuous time
delay through the novel graph-theoretic approach. We proceed by applying some inequal-
ity techniques and also constructing a systematic method of a global Lyapunov function
for ISRNNs by using the combination of graph theory and the Lyapunov function. The
main contribution of this proposed work is as follows:

• To the best of the authors’ knowledge, the problem of exponential stability of RNNs
with continuously distributed delay and impulsive effects in the sense of a
graph-theoretic approach is still open. Hence we desire to solve this complicated
problem.

• In this considered RNNs model impulse, discrete time delay, continuously distributed
delay and white noise are simultaneously taken into consideration to show the pth
moment’s exponential stability.

• By using the results in graph theory, we construct a suitable Lyapunov function for the
vertex system to avoid the complication in construction of the Lyapunov function
straightly.

• Using the combination of graph theory and the Lyapunov function as well as some
inequality techniques, novel sufficient conditions are provided in terms of Lyapunov
and coefficient-type theorems, respectively.

• To illustrate the exactness of our proposed work, we provide a numerical example and
some simulations.

The remainder of this work is summarized as follows: In the upcoming section, we
present the mathematical description of the impulsive stochastic recurrent neural net-
works with mixed delays (ISRNNMDs), preliminaries which correspond to the given work,
some assumptions and basic notations are given. The main results of this work is presented
in the third section, which yields the sufficient condition to ensure the exponential stability
of the given system. Finally, an example and numerical simulations are given to illustrate
the effectiveness of our present study.
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2 Mathematical model of impulsive stochastic recurrent neural networks
Inspired by the above analysis, we consider the system of RNNs with mixed time-varying
delays, stochastic and impulsive effects described as follows:

dzi(t) =

[

–dizi(t) +
n∑

j=1

αijfj
(
zj(t)

)
+

n∑

j=1

βijgj
(
zj
(
t – τi(t)

))

+
n∑

j=1

γij

∫ t

–∞
κij(t – s)hj

(
zj(s)

)
ds

]

dt

+ σij

(

t, zj(t), zj
(
t – τi(t)

)
,
∫ t

–∞
κij(t – s)hj

(
zj(s)

)
ds
)

dωj; t �= tk ,


zi(tk) = zi
(
t+
k
)

– zi
(
t–
k
)

= Pik
(
zi(tk)

)
, k = 1, 2, 3, . . . , n,

(1)

for i, j = 1, 2, 3, . . . , n, in which n ≥ 2 indicates the number of components in the NNs, at
time t > 0 the state vector of the ith component is denoted by zi(t) ∈ R. We have the pos-
itive constant di > 0; the positive weight matrices A = (αij)n×n, B = (βij)n×n, C = (γij)n×n

denotes the connection strength and delayed connection strength of the jth neuron to ith
neuron separately. Neuronal activation functions of the jth neurons are represented by
fj : Rn →R

n, gj : Rn →R
n, hj : Rn →R

n. The time-varying transmission delays τi > 0 with
the condition 0 < τi(t) < τ and the non-negative continuous real-valued delay kernel func-
tion κij(·) > 0 is defined on [0,∞). Moreover, a Borel measure function σij : R×R

n ×R
n →

R
m×n indicates the diffusion coefficient of the stochastic effects; the ωj(t) identify Brown-

ian motion on a complete probability space (Ω , f,P) with natural filtration ft≥0. In addition
the second part is the discrete part of (1), where Pik(zi(tk)) represents the impulsive per-
turbation of the sudden change of the state zi at the impulsive moment tk , the discrete
set of impulsive moments satisfy 0 = t0 < t1 < t2 < · · · < tk < · · · and limk→∞ tk = ∞. The
left and right hand side limits at the moment tk are represented individually by zi(t–

k ) and
zi(t+

k ). For the system (1) the initial conditions are given in the form

zi(t) = �i(t), –∞ < t ≤ 0. (2)

Remark 2.1 Assume that if gj = hj = σij = 0 (i, j = 1, 2, 3, . . . , n) (1) is simplified to

żi(t) = –dizi(t) +
n∑

j=1

αijfj
(
zj(t)

)
, i = 1, 2, 3, . . . , n. (3)

Hence, the outcome of our study generalizes the one in [39] strictly.

3 Preliminaries
In this work, we investigate the exponential stability analysis of ISRNNMD, for the whole
of this work we consider the following: In this article we consider D = {1, 2, . . . , n}, R =
(–∞, +∞) to represent the set of real numbers, R+ = (0, +∞), N indicates the set of natural
numbers, the n-dimensional Euclidean space is Rn and the set of all n × m real matrices
is Rn×m. We represent the mathematical expectation E(·) with respect to the probability
measure P, the Euclidean norm for any vector z and the trace norm for any matrix A are
denoted |z| and

√
trace(AT A), respectively. Denote the n-dimensional Brownian motion
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as ω(t) = (ω1(t),ω2(t), . . . ,ωn(t))T for t ≥ 0, which is defined on the complete probability
space (Ω , f,E,P) with the natural filtration {ft}fort ≥ 0.

Graph theory
• A non-empty directed graph G = (V ,E) consists of vertices or nodes V = {1, 2, . . . , n}

and the set of all edges or links E consist of the arcs (i, j) from the nodes i to the node j.
• If we allocate a positive weight wij for every arc (i, j) then the digraph is said to be

weighted digraph. The product of the weights on all of its arcs in subgraphs H is
denoted by W(H).

• A dipath P = (I ,X ) is a subgraph of G which connects the sequence of nodes
(hi, hi+1),∀i ∈D where all hi are distinct and all the arcs are oriented in the same
direction. Moreover, the directed path P is said to be dicycle C if the initial and
terminal nodes are similar, that is, h1 = hn.

• A subgraph T of G is said to be a tree if T is a connected digraph without directed
cycle. The node i is called the root of the rooted tree of T , if for any arc, i is not an end
vertex of exactly one arc. A subgraph U of G is unicyclic if it is a disjoint union of
rooted trees whose roots form a directed cyclic.

• The Laplacian matrix of G is defined as

Lp =

⎧
⎨

⎩

–wij, if i �= j,
∑

h�=j wih, i = j.

• A directed G is called strongly connected if for any two distinct pair of nodes (i, j)
there exist directed paths from i to j and vice versa.

For the Lyapunov function vi(t, zi) ∈ C1,2(R+ ×R
n;R+), i ∈D, which is differentiable and

continuous at t and twice differentiable at zi we define the differential operator Lvi(t, zi)
conjoined with the ith vertex of (1) by

Lvi
(
t, zi(t)

)
=

∂vi(t, zi(t))
∂t

+
∂vi(t, zi(t))

∂zi(t)

[

–dizi(t) +
n∑

j=1

αijfj
(
zj(t)

)

+
n∑

j=1

βijgj
(
zj
(
t – τi(t)

))
+

n∑

j=1

γij

∫ t

–∞
κij(t – s)hj

(
zj(s)

)
ds

]

+
1
2

Tr

[

σ T
ij

(

t, zj(t), zj
(
t – τi(t)

)
,
∫ t

–∞
κij(t – s)

× hj
(
zj(s)

)
ds
)

∂2vi(t, zi(t))
∂z2

i (t)

× σij

(

t, zj(t), zj
(
t – τi(t)

)
∫ t

–∞
κij(t – s)hj

(
zj(s)

)
ds
)]

. (4)

Here

∂vi(t, zi(t))
∂zi(t)

=
(

∂vi(t, zi(t))
∂z(1)

i (t)
,
∂vi(t, zi(t))

∂z(2)
i (t)

, . . . ,
∂vi(t, zi(t))

∂z(n)
i (t)

)

,

∂2vi(t, zi(t))
∂z2

i (t)
=
(

∂2vi(t, zi(t))
∂z(k)

i (t)∂z(h)
i (t)

)

n×n
.
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4 Basic definition and lemmas in graph theory
Definition 4.1 ([26]) I f for any given ε > 0, there exist a positive constant δ and a > 0 such
that

E
∣
∣z(t)

∣
∣p ≤ eatξ whenever

∣
∣z(t)

∣
∣p < δ,

for all t ≥ 0, then the given system (1) is as regards the pth moment exponentially stable.
If p = 2 the given system is exponentially stable in the mean square sense.

Definition 4.2 The function vi(t, zi(t)) ∈ C1,2(R+ × R
n;R+), i ∈ D, is said to be a vertex-

Lyapunov function for system (1) if the following conditions are satisfied:
(D1) Let us assume that ai, bi be the positive constants such that

ai|zi|p ≤ vi
(
zi(t), t

)≤ bi|zi|p. (5)

(D2) If there exist positive scalars σi, λiandηi, (aij)n×n is a matrix, for aij > 0 and an arbi-
trary function Fij(zi(t), zj(t), t) for every i, j, then

Lvi
(
zi(t), t

)≤ –σivi
(
zi(t), t

)
+ λivi

(
zi
(
t – τi(t)

)
, t
)

+
n∑

j=1

aijFij
(
zi(t), zj(t), t

)

+ ηi

∫ t

–∞
Kij(t – s)vi

(
s, zi(s)

)
ds, for t �= tk . (6)

(D3) Along the directed cycle C of the directed graph (G,A)

∑

(k,h)∈E(C)

Fkh
(
zk(t), zh(t), t

)≤ 0. (7)

Lemma 4.3 (Young’s inequality) Let s, t ≥ 0, m ≥ n ≥ 0. Then

sm–ntn ≤ (m – n)sm + ntm

m
.

Lemma 4.4 ([32]) Let the number of vertices be n ≥ 2 and the weighted digraph (G,A) with
A = (aij)n×n. Let the set of all spanning unicyclic graphs of (G,A) be U and the ith diagonal
element of cofactor of the Lp be denoted as ck , then the following identity holds:

n∑

i,j=1

ciaiFij
(
t, zi(t), zj(t)

)≤
∑

U∈U
W(U )

∑

(k,h)∈ECU

Fkh
(
t, zk(t), zh(t)

)
.

Here, for k, h ∈ D, an arbitrary function Fkh(t, zk(t), zh(t)), the set of all spanning unicyclic
graph U, W(U ) and U , CU denotes, respectively, the weight and dicycle of U . Additionally,
ci > 0 if (G,A) is strongly connected for i = 1, 2, . . . , n.

5 Main results
Throughout this work, to get our main results for the given ISRNNMD (1), we suggest the
following standard postulations:
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(P1) For every j ∈ D the functions fj(·), gj(·) and hj(·) are Lipschitz continuous with Lips-
chitz constants Lj(·), Mj(·) and Nj(·) individually.

(P2) For any positive constant ν such that V (tk , z + Pik(z)) ≤ νiV (t–
k , z) for t = tk .

(P3) There exist non-negative constants μi, φi, ψi(i ∈D), such that

tr
(
σ T

ij (t, uj, vj, wj)σij(t, uj, vj, wj)
)≤ μi|uj|2 + φi|vj|2 + ψi|wj|2.

(P4) There exist a delay kernel function κij and a non-negative constant χij and Kij such
that

∣
∣κij(t)

∣
∣≤ χij, t ∈ [0,∞) (i, j ∈D).

(P5)
∫ ∞

0
κij(t) dt = 1 and

∫ ∞

0
ertκij(t) dt = Kij < ∞.

(P6) fj(0) = gj(0) = hj(0) = 0 and σij(0, 0, 0) = 0.
(P7) For every k ∈ L there exist scalars υi such that

∣
∣Pik
(
zi
(
t–
k
))∣
∣≤ υi

∣
∣zi
(
t–
k
)∣
∣.

Theorem 5.1 Let ζ = infk∈N{tk – tk–1} be finite and let (G,A) be strongly connected, there
exist constants σ , λ, ν , η, 1 < ν < e(σ–λν)ζ and suppose that the system (1) allows the vertex-
Lyapunov function vi(t, zi(t)) and the assumption (P2) holds, then the trivial solution of the
system (1) is exponentially stable in the pth moment.

Proof There exists a positive constant δ(ε) > 0, for any ε > 0 such that biδ < νiaiε. We
assign z(t) = z(t, t0, ξ ) to be the solution of (1) by means of (t0, ξ ), for some t0 ≥ 0 and
z(t0) = zt0 = ξ which is in PCb

F0(δ). We will show that

E
∣
∣zi(t)

∣
∣p < ε, ∀t ≥ t0.

Let us consider the global Lyapunov function

V
(
t, z(t)

)
=

n∑

i=1

civi
(
t, zi(t)

)
.

Here ci indicates the cofactor element of Lp of the digraph (G,A), since the digraph is
strongly connected, by Lemma 4.4 we have ci > 0 for any i ∈ D. Choose an arbitrary con-
stant θ and we set

W
(
t, z(t)

)
= eθ tV

(
t, z(t)

)
.

When t �= tk , we use Itô’s formula,

dW
(
t, z(t)

)
= LW

(
t, z(t)

)
dt

+
∂W (t, z(t))

∂z(t)
σ

(

t, z(t), z
(
t – τ (t)

)
,
∫ t

–∞
κ(t – s)h

(
z(s)
)

ds
)

dω(t),
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where t ∈ [tk–1, tk), k ∈ N. By integrating the above expression from tk to t + 
t for small
enough 
t > 0 and taking the mathematical expectation, we obtain, for t ≥ 0, t + 
t ∈
[tk , tk+1),

EW (t + 
t) = EW (tk) + E

∫ t

tk

LW
(
t, z(t)

)
dt,

which implies that

ED+W
(
t, z(t)

)
= ELW

(
t, z(t)

)
, t ∈ [tk–1, tk), k ∈D.

Here, D+W (t, z(t)) denotes the upper-right Dini derivative of W (t, z(t)) defined by

D+W
(
t, z(t)

)
= lim sup

h→0+

EW (t + h, z(t + h)) – EW (t, z(t))
h

.

Also

ELW
(
t, z(t)

)
= θeθ t

EV
(
t, z(t)

)
+ eθ t

ELV
(
t, z(t)

)

and we can choose δ > 0 for any given ε > 0, such that biδ < νiaiε. Currently, we assign
E‖ξ‖p < δ. By (3) we obtain

EW
(
t, z(t)

)≤ biE‖ξ‖p < biδ < νiaiε, t ∈ [t0 – τ , t0].

We mainly prove that

EW
(
t, z(t)

)≤ aiε, t ∈ (t0, t1). (8)

Suppose, on the contrary, that we have s ∈ (t0, t1) such that

EW
(
t, z(t)

)
> aiε.

Set

s1 = inf
{

t ∈ (t0, t1) : EW
(
t, z(t)

)
> aiε

}
, then s1 ∈ (t0, t1)

s2 = sup

{

t ∈ [t0, s1) : EW
(
t, z(t)

)
<

1
νi

aiε

}

.

In such a way it is obvious for t ∈ [s2, s1], for zi(t –τi(t)) = (z1(t –τ1(t)), z2(t –τ2(t)), . . . , zn(t –
τn(t))), where τ = max1≤j≤n{τj}, for t ∈ [s2, s1] that

EW
(
t, z
(
t – τ (t)

))≤ aiε =
1
νi

νiaiε ≤ νiEW
(
t, z(t)

)
, ∀ – τ ≤ θ ≤ 0.

Hence,

EV
(
t, z
(
t – τ (t)

))≤ νieθτ
EV
(
t, z(t)

)
, ∀t ∈ [s2, s1].
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Therefore from (6), t ∈ [s2, s1], we induce that

D+
EW

(
t, z(t)

)≤LEW
(
t, z(t)

)

≤
n∑

i=1

cieθ t
E

[

–σivi
(
t, zi(t)

)
+ λivi

(
t, zi
(
t – τ (t)

))

+
n∑

j=1

aijFij
(
t, zi(t), zj(t)

)

+ ηi

∫ t

–∞
κij(t – s)vi

(
s, zi(s)

)
ds

]

+
n∑

i=1

θcieθ t
Evi
(
t, zi(t)

)

≤ [–σi + λiνieθτ + ηi + θ
]
EW

(
t, z(t)

)
.

Integrating the above inequality, for t ∈ [s1, s2], we get

∫ s1

s2

D+
EW (t, z(t))

EW (t, z(t))
≤ E

∫ s1

s2

[
–σi + λiνieθτ + ηi + θ

]
dt,

EW
(
s1, z(s1)

)≤ EW
(
s2, z(s2)

)
e(–σi+θ+ηi+λiνieθτ )ζ

≤ νiaiεe(–σi+θ+ηi+λiνieθτ )ζ

< aiε.

Hence,

EW
(
s1, z(s1)

)
< aiε

which is a contradiction with

EW
(
t, z(t)

)≤ aiε.

Next, we consider, for m = 1, 2, 3, . . . , k and k ∈N,

EW
(
t, z(t)

)≤ aiε, ∀t ∈ [tm–1, tm) (9)

We want to prove that

EW
(
t, z(t)

)≤ aiε, ∀t ∈ [tk , tk+1). (10)

On the contrary, there exist some t ∈ [tk , tk+1) such that

EW
(
t, z(t)

)
> aiε.

By using assumption (P2) and (9), we obtain

EW
(
tk , z(tk)

)
= E
(
eθ tk V

(
tk , z(tk)

))

≤ E
(
eθ tk V

(
tk , z + Pik(z)

))
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≤ νiEW
(
t–
k , z
(
t–
k
))

≤ aiνiε.

Now, set

s1 = inf
{

t ∈ (tk , tk+1) : EW
(
t, z(t)

)
> aiε

}
, then s1 ∈ (tk , tk+1).

Let

s2 = sup
{

t ∈ [tk , s1) : EW
(
t, z(t)

)
< νiaiε

}
.

For t ∈ (s2, s1), we get

EW
(
t, z
(
t – τ (t)

))≤ aiε ≤ 1
νi

νiaiε ≤ 1
νi

EW
(
t, z(t)

)
, –τ ≤ θ ≤ 0.

Hence,

EW
(
t, z
(
t – τ (t)

))≤ eaiτ

νi
EV
(
t, z(t)

)
.

Similarly, we can derive EW (s2, z(s2)) < aiε which is a contradiction to EW (t, z(t)) ≤ aiε

for tε[tk , tk+1). Hence the proof of the theorem is completed.
By mathematical induction EW (t, z(t)) ≤ aiε for t ≥ t0. Hence,

E
∣
∣z(t)

∣
∣p ≤ e–θ tε, t ≥ t0. �

Remark 5.2 In the study of the stability of ISNNMD, to construct a Lyapunov function
is a formidable task. However, Theorem 5.1 offers a technique to construct systemati-
cally a Lyapunov function for (1) by using the Lyapunov function vi(t, zi(t)) = vi1(t, zi(t)) +
vi2(t, zi(t)) + vi3(t, zi(t)) of each vertex system, which avoids the difficulty of finding a Lya-
punov function directly for ISNNMD. In the final section, an example is presented to show
the validity of the technique.

Remark 5.3 It should be noticed that Theorem 5.1 holds if ci > 0, that is, the graph (G,A)
is strongly connected, which means that exponential stability of RNNs has a close rela-
tionship with the topology property of the network. Therefore, we can get some better
results in the following.

Theorem 5.4 Assume that the assumptions (P1)–(P7) hold; then the considered system (1)
is exponentially stable.
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Proof Let us define the subsequent Lyapunov–Krasovskii functional for (1) as follows:

vi
(
t, zi(t)

)
= ert∣∣zi(t)

∣
∣p +

n∑

j=1

erτ
∫ t

t–τi(t)
ers∣∣zi(s)

∣
∣p–2g2

j
(
zj(s)

)
ds

+
n∑

j=1

n∑

l=1

ml

∫ ∞

0
κlj(θ )

×
∫ t

t–θ

er(s+θ )∣∣zi(s)
∣
∣p–2h2

j
(
zj(s)

)
ds dθ . (11)

Now, we can calculate the Lie derivative of vi(t, z1(t)) for t �= tk . By using Itô’s formula along
the trajectories of the model (1), we obtain

Lvi
(
t, zi(t)

)
= Lvi1

(
t, zi(t)

)
+ Lvi2

(
t, zi(t)

)
+ Lvi3

(
t, zi(t)

)
, (12)

where

Lvi1
(
t, zi(t)

)

≤ rert∣∣zi(t)
∣
∣p + pert∣∣zi(t)

∣
∣p–2zi(t)

[

–dizi(t) +
n∑

j=1

αijfj
(
zj(t)

)
+

n∑

j=1

βij

× gj
(
zj
(
t – τi(t)

))
+

n∑

j=1

γij

∫ t

–∞
κij(t – s)hj

(
zj(s)

)
ds

]

+
p(p – 1)

2
ert

× ∣∣zi(t)
∣
∣p–2

n∑

j=1

σ 2
ij

(

t, zi(t), zi
(
t – τi(t)

)
,
∫ t

–∞
κij(t – s)hj

(
zj(s)

)
ds
)

≤ rert∣∣zi(t)
∣
∣p – dipert∣∣zi(t)

∣
∣p–2z2

i (t) + pert
n∑

j=1

αij
∣
∣zi(t)

∣
∣p–2zi(t)fj

(
zj(t)

)

+ pert
n∑

j=1

βij
∣
∣zi(t)

∣
∣p–2zi(t)gj

(
zj
(
t – τi(t)

))

+
n∑

j=1

γijpert∣∣zi(t)
∣
∣p–2zi(t)

∫ t

–∞
κij(t – s)hj

(
zj(s)

)
ds

+
p(p – 1)

2
ert∣∣zi(t)

∣
∣p–2

× σ 2
ij

(

t, zi(t), zi
(
t – τi(t)

)
,
∫ t

–∞
κij(t – s)hj

(
zj(s)

)
ds
)

. (13)

By using Lemma 4.3, we obtain

pert
n∑

j=1

αij
∣
∣zi(t)

∣
∣p–2zi(t)fj

(
zj(t)

)

≤
n∑

j=1

|αij|pertLj
[∣
∣zi(t)

∣
∣p–2zi(t)

∣
∣zj(t)

∣
∣
]
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≤
n∑

j=1

|αij|pertLj

[
p – 1

p
∣
∣zi(t)

∣
∣p +

1
p
∣
∣zj(t)

∣
∣p
]

=
n∑

j=1

|αij|ertLj
[
(p – 1)

∣
∣zi(t)

∣
∣p +

∣
∣zj(t)

∣
∣p
]
. (14)

Similarly,

pert
n∑

j=1

βij
∣
∣zi(t)

∣
∣p–2zi(t)gj

(
zj
(
t – τi(t)

))

≤ pert
n∑

j=1

|βij|
∣
∣zi(t)

∣
∣p–1Mj

∣
∣zj
(
t – τi(t)

)∣
∣

≤ pert
n∑

j=1

|βij|Mj

[
p – 1

p
∣
∣zi(t)

∣
∣p +

1
p
∣
∣zj
(
t – τi(t)

)∣
∣p
]

≤
n∑

j=1

|βij|ertMj
[
(p – 1)

∣
∣zi(t)

∣
∣p +

∣
∣zj
(
t – τi(t)

)∣
∣p
]

(15)

and

n∑

j=1

γijpert∣∣zi(t)
∣
∣p–2zi(t)

∫ t

–∞
κij(t – s)hj

(
zj(s)

)
ds

≤
n∑

j=1

|γij|pert∣∣zi(t)
∣
∣p–1

∫ t

–∞
κij(t – s)Nj

∣
∣zj(s)

∣
∣ds

≤
n∑

j=1

|γij|pertNj

∫ t

–∞
κij(t – s)

∣
∣zi(t)

∣
∣p–1∣∣zj(s)

∣
∣ds

≤
n∑

j=1

(p – 1)|γij|ertNj
∣
∣zi(t)

∣
∣p
∫ t

–∞
κij(t – s) ds

+
n∑

j=1

|γij|ertNj

∫ t

–∞
κij(t – s)

∣
∣zj(s)

∣
∣p ds

≤
n∑

j=1

|γij|ertNj[(p – 1)
∣
∣zi(t)

∣
∣p +

n∑

j=1

|γij|

× ertNj

∫ t

–∞
κij(t – s)

∣
∣zj(s)

∣
∣p ds. (16)

We use the assumption and the well-known Cauchy–Schwartz inequality

p(p – 1)
2

ert∣∣zi(t)
∣
∣p–2

σ 2
ij

(

t, zi(t), zi
(
t – τi(t)

)
,
∫ t

–∞
κij(t – s)hj

(
zj(s)

)
ds
)

≤ p(p – 1)
2

ert∣∣zi(t)
∣
∣p–2
[

μi
(
zi(t)

)2 + φi

[
p – 2

p
∣
∣zi(t)

∣
∣p +

2
p
∣
∣zi
(
t – τi(t)

)∣
∣p
]

+ ψi

(∫ t

–∞
κij(t – s)hj

(
zj(s)

)
ds
)2]

. (17)
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Substituting (13)–(17) in (12) we get

Lv1i
(
t, zi(t)

)

≤ rert∣∣zi(t)
∣
∣p – dipert∣∣zi(t)

∣
∣p +

n∑

j=1

|αij|ertLj(p – 1)
∣
∣zi(t)

∣
∣p +

n∑

j=1

|αij|ertLj
∣
∣zj(t)

∣
∣p

+
n∑

j=1

|βij|(p – 1)ertMj
∣
∣zi(t)

∣
∣p +

n∑

j=1

|βij|ertMj
∣
∣zj
(
t – τi(t)

)∣
∣p +

n∑

j=1

(p – 1)|γij|

× ertNj
∣
∣zi(t)

∣
∣p +

n∑

j=1

|γij|ertNj

∫ t

–∞
κij(t – s)

∣
∣zj(s)

∣
∣p ds +

p(p – 1)
2

ert∣∣zi(t)
∣
∣p–2

×
[

μi
(
zi(t)

)2 + φi

[
p – 2

p
zi(t)|p +

2
p
∣
∣zi
(
t – τi(t)

)∣
∣p
]

+ ψi

(∫ t

–∞
κij(t – s)

× hj
(
zj(s)

)
ds
)2]

. (18)

Next,

Lv2i
(
t, zi(t)

)

≤
n∑

j=1

erτ [ert∣∣zi(t)
∣
∣p–2g2

j
(
zj(t)

)
– er(t–τi(t))∣∣zi

(
t – τij(t)

)∣
∣p–2g2

j
(
zj
(
t – τi(t)

))]

≤
n∑

j=1

M2
j er(t+τ )

[
p – 2

p
∣
∣zi(t)

∣
∣p +

2
p
∣
∣zj(t)

∣
∣p
]

–
n∑

j=1

M2
j ert
[

p – 2
p
∣
∣zi
(
t – τi(t)

)∣
∣p

+
2
p
∣
∣zj
(
t – τi(t)

)∣
∣p|
]

. (19)

And

Lv3i
(
t, zi(t)

)

=
n∑

j=1

n∑

l=1

ml

∫ ∞

0
κlj(θ )er(t+θ )∣∣zi(t)

∣
∣p–2h2

j
(
zj(t)

)
dθ –

n∑

j=1

n∑

l=1

ml

∫ ∞

0
κlj(θ )ert

× ∣∣zi(t – θ )
∣
∣p–2h2

j
(
zj(t – θ )

)
dθ

≤
n∑

j=1

n∑

l=1

mlN2
j

[
p – 2

p
∣
∣zi(t)

∣
∣p +

2
p
∣
∣zj(t)

∣
∣p
]∫ ∞

0
κlj(θ )erθ dθ –

n∑

j=1

n∑

l=1

mlert

×
(∫ t

–∞
κlj(t – s)

∣
∣zi(s)

∣
∣p–2h2

j
(
zj(s)

)
ds
)2

. (20)

Substituting (18)–(20) in (11) we get

Lvi
(
t, zi(t)

)

≤ rert∣∣zi(t)
∣
∣p – dipert∣∣zi(t)

∣
∣p +

n∑

j=1

|αij|ertLj(p – 1)
∣
∣zi(t)

∣
∣p +

n∑

j=1

|αij|ertLj
∣
∣zj(t)

∣
∣p
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+
n∑

j=1

|βij|(p – 1)ertMj
∣
∣zi(t)

∣
∣p +

n∑

j=1

|βij|ertMj
∣
∣zj
(
t – τij(t)

)∣
∣p +

n∑

j=1

(p – 1)|γij|

× ertNj
∣
∣zi(t)

∣
∣p +

n∑

j=1

|γij|ertNj

∫ t

–∞
κij(t – s)

∣
∣zj(s)

∣
∣p ds +

p(p – 1)
2

ert∣∣zi(t)
∣
∣p–2

×
[

μi
(
zi(t)

)2 + φi

[
p – 2

p
zi(t)|p +

2
p
∣
∣zi
(
t – τj(t)

)∣
∣p
]

+ ψi

(∫ t

–∞
κij(t – s)

× hi
(
zj(s)

)
ds
)2]

+
n∑

j=1

M2
j er(t+τ )

[
p – 2

p
∣
∣zi(t)

∣
∣p +

2
p
∣
∣zj(t)

∣
∣p
]

–
n∑

j=1

M2
j ert

×
[

p – 2
p
∣
∣zi
(
t – τij(t)

)∣
∣p +

2
p
∣
∣zj
(
t – τij(t)

)∣
∣p|
]

+
n∑

j=1

n∑

l=1

mlN2
j

[
p – 2

p
∣
∣zi(t)

∣
∣p

+
2
p
∣
∣zj(t)

∣
∣p
]∫ ∞

0
κlj(θ )erθ dθ –

n∑

j=1

n∑

l=1

mlert
(∫ t

–∞
κlj(t – s)

∣
∣zi(s)

∣
∣p–2

× h2
j
(
zj(s)

)
ds
)2

(21)

≤ ert∣∣zi(t)
∣
∣p[r + |di|p +

n∑

j=1

|αij|Lj(p – 1) +
n∑

j=1

|βij|(p – 1)Mj +
n∑

j=1

(p – 1)|γij|Nj

+
p(p – 1)

2
|μi| +

(p – 1)(p – 2)
2

φi +
n∑

j=1

p – 2
p

erτ M2
j +

p – 2
p

n∑

j=1

n∑

l=1

mlN2
j K

+ ert∣∣zj(t)
∣
∣p
[ n∑

j=1

|αij|Lj + erτ
n∑

j=1

2
p

M2
j +

n∑

j=1

n∑

l=1

mlN2
j

2
p
‖
]

+
∣
∣zj
(
t – τij(t)

)∣
∣pert

×
[ n∑

j=1

|βij|Mj –
2n
p

]

+

[

ert
n∑

j=1

|γij|ertNj

]∫ t

–∞
κij(t – s)

∣
∣zj(s)

∣
∣p ds

≤ –Ti1vi
(
t, zi(t)

)
+

n∑

j=1

aijFij
(
zi(t), zj(t), t

)
+ Ti2vi(t, zj

(
t – τi(t)

)
+ Ti3

∫ t

–∞
κij(t – s)

× ∣∣zj(s)
∣
∣p ds, for t �= tk . (22)

On the other hand, for t = tk ,

vi
(
tk , zi

(
t–
k + Pik

(
zi
(
t–
k
))))

= ertk
∣
∣zi
(
t–
k
)

+ Pik
(
zi
(
t–
k
))∣
∣p +

n∑

j=1

erτ
∫ tk

tk –τi(tk )
ers∣∣zi(s)

∣
∣p–2g2

j
(
zj(s)

)
ds

+
n∑

j=1

n∑

l=1

ml

∫ ∞

0
κlj(θ )

∫ tk

tk –θ

er(s+θ )∣∣zi(s)
∣
∣p–2h2

j
(
zj(s)

)
ds dθ

≤ ertk
∣
∣zi
(
t–
k
)∣
∣p +

n∑

j=1

erτ
∫ tk

tk –τi(tk )
ers∣∣zi(s)

∣
∣p–2g2

j
(
zj(s)

)
ds +

n∑

j=1

n∑

l=1

ml

×
∫ ∞

0
κlj(θ )

∫ tk

tk –θ

er(s+θ )∣∣zi(s)
∣
∣p–2h2

j
(
zj(s)

)
ds dθ +

∣
∣Pik
(
zi
(
t–
k
))∣
∣p
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≤ Vi
(
t–
k , zi
(
t–
k
))

+ υi
∣
∣zi
(
t–
k
)∣
∣p

≤ ΥiVi
(
t–
k , zi
(
t–
k
))

.

Now, we define vi(t, zi(t)) = ert|zi(t)|p and the suitable constants Ti1, Ti2, Ti3 such that the
condition (4) is satisfied, then by using Theorem 5.1 we ensure the pth moment’s expo-
nential stability of (1). Here

Ti1 = r + |di|p +
n∑

j=1

|αij|Lj(p – 1) +
n∑

j=1

|βij|(p – 1)Mj +
n∑

j=1

(p – 1)|γij|Nj

+
p(p – 1)

2
|μi| +

(p – 1)(p – 2)
2

φi +
n∑

j=1

p – 2
p

erτ M2
j +

p – 2
p

n∑

j=1

n∑

l=1

ml

× N2
j K +

n∑

i=1

|αij|Li + erτ
n∑

i=1

2
p

M2
i +

n∑

i=1

n∑

l=1

mlN2
i

2
p
‖,

Ti2 =
n∑

j=1

|βij|Mj –
2n
p

,

Ti3 = ert
n∑

j=1

|γij|ertNj,

n∑

j=1

Fij
(
zi(t), zj(t), t

)

= ert

[
∣
∣zj(t)

∣
∣p
[ n∑

j=1

|αij|Lj + erτ
n∑

j=1

2
p

M2
j +

n∑

j=1

n∑

l=1

mlN2
j

2
p
‖
]]

– ert

[
∣
∣zi(t)

∣
∣p
[ n∑

i=1

|αij|Li + erτ
n∑

i=1

2
p

M2
i +

n∑

i=1

n∑

l=1

mlN2
i

2
p
K
]]

. �

6 Example
To show the efficiency of our work we provide an example and some numerical simulations
in this section.

Example 6.1 Consider the following two-dimensional RNNs with impulse effects,
stochastic and mixed delays of two neurons:

dzi(t) =
(

–Dzi(t) + Afi
(
z(t)
)

+ Bg
(
zi
(
t – τ (t)

))
+ C

∫ t

–∞
κij(t – s)h

(
zi(s)

)
ds
)

+ σij

(

zi(t), zi
(
t – τ (t)

)
,
∫ t

–∞
κij(t – s)φi

(
zi(s)

)
ds
)

dωi(t),


zi(tk) = Pik
(
zi(tk)

)
, k = 1, 2, 3, . . . ,

(23)

where the state vector is zi = (z1, z2), (d1, d2) = (2.5, 0.2), and

A = (αkh)2×2 =

(
1.03 1.5
1.03 1.7

)

, B = (βkh)2×2 =

(
0.5 1.02
0.1 1.3

)

,
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C = (γkh)2×2 =

(
0.38 0.2
0.3 0.25

)

.

Here

f1
(
z1(t)

)
= g1

(
z1(t)

)
= h1

(
z1(t)

)
= tan z1(t),

f2
(
z2(t)

)
= g2

(
z2(t)

)
= h2

(
z2(t)

)
= tanh z2(t),

κij(t) = e–t for i, j = 1, 2 and

σ (t, x, y, z) =

(
σ11(t, x, y, z) σ12(t, x, y, z)
σ21(t, x, y, z) σ22(t, x, y, z)

)

=

⎛

⎜
⎜
⎜
⎝

3.3 0.25 1.04
1.5 0.03 1.2

0.002 1.5 2.75
2.75 0.0004 2.05

⎞

⎟
⎟
⎟
⎠

⎛

⎜
⎝

x
y
z

⎞

⎟
⎠ .

The impulsive function is

z1(tk) = e0.005 sin z1(tk),

z2(tk) = 0.34 tan z2(tk).

Then we check that the Lipschitz constants Lj = Mj = Nj = 1 and all the given assumptions
(P1)–(P7) are verified. Let us consider vi(t, zi(t)) = |zi(t)|2. It is easy to check that the con-
dition (D1) is true with the values α1 = 0.25, α2 = 0.1, β1 = 2.5, β2 = 4. Let us calculate the
Lvi(t, zi(t)) as follows:

Lvi
(
t, zi(t)

)
= 2zi(t)

[

–Dzi(t) + Af
(
zj(t)

)
+ Bg

(
zj
(
t – τj(t)

))
+ C

∫ t

–∞
κ(s – t)h

(
zj(s)

)
ds
]

+
∣
∣
∣
∣σ

(

t, zj(t), zj
(
t – τj(t)

)
,
∫ t

∞
κ(s)hj

(
zj(s)

)
ds
)∣
∣
∣
∣

2

≤ (–2D + 2|A| + |B| + |C|)z2
i (t) + |B|z2

j
(
t – τj(t)

)
+ |C|

∫ t

–∞
et–sz2

j (s) ds

+
2∑

j=1

aij
(
z2

j – z2
i (t)
)

+
∣
∣
∣
∣σ

(

t, zj(t), zj
(
t – τj(t)

)
,
∫ t

∞
κ(s)hj

(
zj(s)

)
ds
)∣
∣
∣
∣

2

.

If max(–2D + 2|A| + |B| + |C|) < 0, then we have

Lvi
(
t, zi(t)

)≤ –ai
∣
∣zi(t)

∣
∣2 + bi|zj|2 + ci

∫ t

–∞
et–s|zj|2(s) ds +

2∑

j=1

aij
(
z2

j – z2
i (t)
)
.

Here

ai = min
{(

–2D + 2|A| + |B| + |C|), |B|, |C|}

and

Fij
(
t, zi(t), zj(t)

)
=
(
z2

j – z2
i (t)
)
.
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Figure 1 For the initial condition η1(t) = 0.3, η2 = 0.5, the trajectory of z1(t) in (20) with infinite delay,
stochastic and impulsive effects

Figure 2 For the initial condition η1(t) = 0.3, η2 = 0.5, the trajectory of z2(t) in (20) with infinite delay,
stochastic and impulsive effects

Figure 3 Trajectory of the second moment of (20)
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Hence the conditions (D1)–(D3) satisfied. Therefore by Theorem 5.1 the given system (1)
is exponentially stable.

7 Conclusions
This paper mainly focuses on exploring a graph theory-based approach investigating the
pth moment’s exponential stability for a RNNs with impulse, discrete and continuously
distributed time-varying delays and stochastic disruptions. Here we successfully obtain
two new principles which guarantee the pth moment’s exponential stability of the RNNs.
Further it is pointed out that the method and techniques presented here are more pre-
cise variations of the previous methods and techniques such as using the linear matrix
inequality and the method of variation of parameters. As far as it is concerned, the graph-
theoretic approach could be extended to many kinds of neural networks, such as complex
neural networks, competitive neural networks, bidirectional memory neural networks,
with Markovian jumping, impulses, infinite delay, which are either in continuous or dis-
crete time neural networks. Such a kind of problems which occurred in the real-world
applications described by using this new approach could be discussed in the near future.
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