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Abstract
To improve the computing efficiency, a fourth-order difference scheme is proposed
and a fast algorithm is designed to simulate the nonlinear fractional Schrödinger
(FNLS) equation oriented from the fractional quantummechanics. The numerical
analysis and experiments conducted in this article show that the proposed difference
scheme has the optimal second-order and fourth-order convergence rates in time
and space respectively, reduces its computation cost toO(M logM), and recognizes
accurately its physical feature of FNLS such as the mass balance.
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1 Introduction
As is well known, numerous experiments have recognized that the fractional calculus can
provide more flexible descriptions than the counterpart of integer-order for the real-world
phenomena arising in various fields of science and engineering such as transmission of
malaria disease [1], the constrained systems [2], the exothermic reactions model [3], and
the spring pendulum [4], which has attracted a mounting number of valuable research
work both mathematically and numerically during the last few years, see [5–16] and the
references therein.

As one of the most significant applications of the fractional calculus in quantum me-
chanics, the fractional Schrödinger equation (FNLS) was derived from the Lévy path in-
tegrals instead of the Brownian path integrals as done in the classical Schrödinger equa-
tion given by Feynman and Hibbs [17]. The related mathematical analysis conducted in
the literature of FNLS proved the existence and uniqueness of ground state solution, the
global solution, and the well-posedness of the solution to Cauchy problem, see [18, 19].
For its computation, the implicitly conservative and split-step alternating direction differ-
ence methods, Galerkin finite element method in one- or two-dimensional space, were
proposed in [20–24], consecutively.

Checking carefully the existing numerical methods, we find that although the difference
methods are easily implemented, they possess low computing accuracy, which motivates
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us to design a high-order scheme to numerically solve the fractional Schrödinger. We also
find that the nonlocality of the fractional Laplacian operator in FNLS often generates a
non-sparse matrix of the discrete system, which makes the computation cost to be O(M2)
if CG-like algorithms are used.

The goals of this article are as follows: (1) to adopt a fourth-order difference scheme by
applying the Crank–Nicolson scheme to discrete the temporal derivative and truncating
the weighted and shifted difference formula, [25] to discrete the fractional Laplacian op-
erator; (2) to prove the solvability of the scheme and conduct numerical analysis to verify
the convergence rates, as well as to show that the proposed numerical scheme can inherit
the physical feature of FNLS such as the mass balance; (3) to design an efficient numerical
algorithm through combining the Toeplitz structure of the coefficient matrix and the fast
Fourier transform, which will reduce the computation cost from O(M2) to O(M log M);
and (4) to conduct numerical experiments to verify the theoretical results and the physical
properties.

The main novelties of this article at least are the following: (1) The scheme designed is
a linearized one, due to which only a linear system needs to be solved, and thus the com-
putational cost will be significantly reduced compared with the existing schemes; (2) The
scheme possesses temporal convergence of second order and spatial convergence of fourth
order, which, combining the fast stabilized bi-conjugate gradient (FSBiCG) algorithm, re-
duces the computational cost greatly, and thus improves the computational efficiency.

The remainder of this article is arranged as follows. In Sect. 2, we present the mathe-
matical formula for FNLS and some related lemmas. In Sect. 3, the fourth-order difference
scheme is constructed. In Sect. 4, we prove the solvability and convergence of the discrete
system. The mass conservation properties as well as the stability are discussed in Sect. 5. In
Sect. 6, a FSBiCG algorithm is proposed to reduce computation cost and storage. Several
numerical experiments are reported to confirm our theoretical analysis in Sect. 7.

Throughout the article we use C to denote a generic constant which may take different
values at different places.

2 Model problem and preliminaries
Consider the following fractional nonlinear Schrödinger equation (FNLS):

iut – (–�)
α
2 u + β|u|2u = 0, x ∈ (a, b), t ∈ [0, T], (2.1)

u(a, t) = u(b, t) = 0, t ∈ [0, T], (2.2)

u(x, 0) = u0(x), x ∈ [a, b]. (2.3)

Here, α ∈ (1, 2], i2 = –1; u = u(x, t) is a complex-valued wave function describing the state
of microscopic particles, which reflects the fluctuation of microscopic particles; the initial
condition u0(x) is a given smooth function vanishing at the end points x = a and x = b;
the parameter β is a real constant describing the strength of the local interactions be-
tween particles. FNLS is called focusing (attractive) or defocusing (repulsive), depending
on whether the minus or plus sign appears in the front of the nonlinearity above, respec-
tively. The Riesz fractional derivative (–�) α

2 is defined as

(–�)
α
2 u(x, t) =

1
2 cos απ

2

(
–∞Dα

x u(x, t) + xDα
∞u(x, t)

)
, (2.4)
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in which –∞Dα
x u(x, t) and xDα∞u(x, t) are expressed respectively by the following weighted

and shifted difference formula [25]:

–∞Dα
x u(x, t) = lim

h→0
h–α

∞∑

k=0

qku
(
x – (k – p)h, t

)
, (2.5)

xDα
∞u(x, t) = lim

h→0
h–α

∞∑

k=0

qku
(
x + (k – p)h, t

)
, (2.6)

where p is an integer, and

qk =
(

3
2

)α k∑

i=0

3–iωiωk–i (2.7)

with

ωi =
Γ (i – α)

Γ (–α)Γ (i + 1)
, i = 0, 1, . . . , k.

In fact, qk can be expressed as the coefficients of the power series of the function ( 3
2 –

2z + 1
2 z2)α ,

(
3
2

– 2z +
1
2

z2
)α

=
(

3
2

)α

(1 – z)α
(

1 –
1
3

z
)α

=
∞∑

k=0

qkzk . (2.8)

In this paper, we adopt the ideas of [25] to truncate the Riesz fractional derivative (2.4).
We first introduce several notations.

For positive integers M and N , we define a uniform partition for Ω = (a, b) by xj = a + jh,
j = 0, 1, 2, . . . , M, with h := b–a

M , and for the time interval [0, T] by tn = nτ for n = 0, 1, . . . , N
with τ := T

N . For a given grid function wn = {wn|n = 0, 1, . . . , N}, we introduce the following
notations:

wn+ 1
2 =

wn+1 + wn

2
, δtwn+ 1

2 =
wn+1 – wn

τ
.

Let Vh = {w|w = (w1, w2, . . . , wM–1)} be the space of the inner grid functions. For any two
grid functions u, w ∈ Vh, we define the discrete inner product and the associated l2-norm
as follows:

(u, w) = h
M–1∑

j=1

ujwj, ‖w‖2 = (w, w).

Collecting these notations introduced above, the fourth-order discretization for the
fractional derivatives is given as follows.

Lemma 2.1 ([25]) Suppose that α ∈ (1, 2), u ∈ L1(R), –∞Dα+4
x u, and its Fourier transform

belongs to L1(R). We denote the truncations of the weighted and shifted difference operators
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(2.5) and (2.6) by

LDα
p u =

4∑

s=1

λsA+,ps u, RDα
p u =

4∑

s=1

λsA–,ps u, (2.9)

in which u = (u1, u2, . . . , uM–1)T ∈ Vh, ps are mutually distinct integers chosen flexibly for
needs, λs satisfies the following system:

⎧
⎪⎪⎨

⎪⎪⎩

∑4
s=1 λs = 1,

∑4
s=1 λsps = 0,

∑4
s=1 λs(3p2

s – 2α) = 0,
∑4

s=1 λs(2p3
s – 4αps + 3α) = 0,

(2.10)

which yields

λs =
–9α – 4α

∑4
i=1,i�=s pi – 6

∏4
i=1,i�=s λi

6
∏4

i=1,i�=s(λs – λi)
for s = 1, . . . , 4.

The matrices A±,ps can be expressed by

A+,ps =
1

hα

⎡

⎢
⎢⎢
⎢⎢
⎢⎢
⎢⎢⎢
⎢⎢
⎢⎢
⎢⎢
⎢
⎣

qps qps–1 . . . q0

qps+1 qps qps–1 . . . q0

qps+2 qps+1 qps qps–1 . . . q0
...

. . . . . . . . . . . . . . .
. . .

qM–2 . . .
. . . qps+1 qps qps–1 . . . q0

...
. . . . . .

. . . . . . . . . . . .
...

qps+M–3 . . .
. . . . . .

. . . qpj+1 qps qps–1

qps+M–2 qps+M–3 . . . qM–2 . . . qps+2 qps+1 qps

⎤

⎥
⎥⎥
⎥⎥
⎥⎥
⎥⎥⎥
⎥⎥
⎥⎥
⎥⎥
⎥
⎦

,

and A–,ps = AT
+,ps . Then there holds

–∞Dα
x u = LDα

p u + O
(
h4), xDα

∞u = RDα
p u + O

(
h4). (2.11)

Remark 2.2 In real computation, for s = 1, . . . , 4, we often choose (p1, p2, p3, p4) = (1, –1, 2,
–2) confirming to ps = (–1)s–1([ s–1

2 ] + 1), and thus λs and the entries qps+k , k = –ps, –ps +
1, . . . , M – 2 of the Toeplitz matrix can be calculated from (2.10) and (2.7) respectively, that
is,

λ1 =
5

36
α +

2
3

, λ2 = –
13
36

α +
2
3

, λ3 = –
1

72
α –

1
6

, λ4 =
17
72

α –
1
6

,

qps+k =
(

3
2

)α ps+k∑

i=0

3–iωiωps+k–i.

It was proved in Lemma 7 of [25] that the linear combinations
∑4

s=1 λsA+,ps and
∑4

s=1 λsA–,ps are negative definite.
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3 A fourth-order difference scheme
In this section, we adopt the Crank–Nicolson discretization in the temporal direction as
well as the fourth-order difference discretization in the spatial direction to construct a
difference scheme for FNLS (2.1).

Denoting un
j := u(xj, tn) at the point xj and at time tn, and noticing (2.4) as well as the

homogeneous boundary condition (2.2), we obtain

(–�)
α
2 un

j =
1

2 cos απ
2

(
LDα

p un
j + RDα

p un
j
)

+ O
(
h4). (3.1)

Let Un
j be the numerical approximation to u(xj, tn) and

�α
h Un

j :=
1

2 cos απ
2

(
LDα

p Un
j + RDα

p Un
j
)
, 1 ≤ j ≤ M – 1, 0 ≤ n ≤ N .

Then we discrete FNLS (2.1) as follows:

iδtU
n+ 1

2
j – �α

h Un+ 1
2

j +
β

2
(
3|Un

j |2 – |Un–1
j |2)Un+ 1

2
j = 0,

1 ≤ j ≤ M – 1, 1 ≤ n ≤ N – 1, (3.2)

U0
j = u0(xj), 0 ≤ j ≤ M, (3.3)

Un
0 = Un

M = 0, 0 ≤ n ≤ N . (3.4)

It is worth noting that (3.2) is not a self-starting scheme, and the numerical solution at
n = 1 should be provided by other schemes. For this, we introduce the following scheme
to seek for U1

j , 1 ≤ j ≤ M – 1:

i
U (1)

j – U0
j

δ
– �α

h U (1)
j + β

∣
∣U0

j
∣
∣2U (1)

j = 0, (3.5a)

iδtU
1
2

j – �α
h U

1
2

j +
β

2
(
3
∣∣U (1)

j
∣∣2 –

∣∣U0
j
∣∣2)U

1
2

j = 0. (3.5b)

For scheme (3.2)–(3.5b), only a linear system needs to be solved at each step.

4 Numerical analysis
In this section, the solvability and convergence of the fourth-order difference scheme pro-
posed in (3.2)–(3.5b) will be analyzed. To start with, we introduce three lemmas which
will be used later.

4.1 Three lemmas
Lemma 4.1 Given two grid functions U , V ∈ Vh, there is a linear operator Λα

h such that

(
�α

h U , V
)

=
(
Λα

h U ,Λα
h V

)
. (4.1)

Proof From Remark 2.2, we know that the matrices A = 1
2 cos απ

2

∑4
s=1 λsA+,ps and B =

1
2 cos απ

2

∑4
s=1 λsA–,ps are positive definite for α ∈ (1, 2]. Let K = A + B, then K is a real sym-
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metric positive definite matrix satisfying

�α
h U = KU , ∀U ∈ Vh. (4.2)

According to the spectral theorem [26], there is a real orthogonal matrix P and a real
diagonal matrix D = diag(λ) satisfying

K = PDPT =
(
PD

1
2 PT)T(

PD
1
2 PT)

= LT L, (4.3)

where D 1
2 = diag(

√
λ) and L = PD 1

2 PT . It is easily shown that matrix L is a real symmetric
positive definite matrix. Recalling the definition of �α

h , we obtain

(
�α

h U , V
)

=
(
h–αKU , V

)
=

(
h– α

2 LU , h– α
2 LV

)
.

If we define the operator Λα
h by Λα

h U = h– α
2 LU , we could get (4.1). Thus, the proof is

completed. �

Lemma 4.2 Let Im(·) and Re(·) stand for the imaginary part and the real part of a complex
number ·, respectively. Then, for any grid function Un ∈ Vh, 0 ≤ n ≤ N , we have

Im
(
�α

h Un+ 1
2 , Un+ 1

2
)

= 0, (4.4)

Re
(
�α

h Un+ 1
2 , δtUn+ 1

2
)

=
1

2τ

(∥∥Λα
h Un+1∥∥2 –

∥∥Λα
h Un∥∥2). (4.5)

Proof Lemma 4.1 implies (4.4) obviously. Using relation (4.1), we obtain

Re
(
�α

h Un+ 1
2 , δtUn+ 1

2
)

= Re
(
Λα

h Un+ 1
2 ,Λα

hδtUn+ 1
2
)

=
1

2τ
Re

(
Λα

h Un+1 + Λα
h Un,Λα

h Un+1 – Λα
h Un)

=
1

2τ

(∥∥Λα
h Un+1∥∥2 –

∥
∥Λα

h Un∥∥2), 0 ≤ n ≤ N – 1. (4.6)

Thus, (4.5) is valid and the proof of the theorem is completed. �

Lemma 4.3 ([27]) For any grid function Un ∈ Vh, 0 ≤ n ≤ N , the inequality

∥
∥Un∥∥2

∞ ≤ 1
h
∥
∥Un∥∥2 (4.7)

holds.

4.2 Solvability and convergence
In this subsection, we prove the solvability and convergence of difference scheme (3.2)–
(3.5b) by induction.

Theorem 4.4 There exists a unique solution to difference scheme (3.2)–(3.5b).
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Proof Noticing that difference scheme (3.2)–(3.5b) is a linear system, it suffices to prove
that there exists a unique zero solution to its homogeneous system. For this purpose, we
let the solution Un = 0 for n = 0, (1), 1, . . . , m – 1, and prove Um = 0 by induction.

In fact, the homogeneous system of (3.2) at n = m – 1 is given by

Um
j = –i

τ

2
�α

h Um
j . (4.8)

Computing the discrete inner product of (4.8) with Um and then taking the real part yield

∥
∥Um∥

∥2 +
τ

2
Im

(
�α

h Um, Um)
= 0. (4.9)

Using Lemma 4.2, we obtain

∥∥Um∥∥ = 0, (4.10)

which implies Um = 0, and hence Um can be solved uniquely. This completes the proof. �

Before heading for the convergence analysis, we define the local truncation error Rn+ 1
2

j

of scheme (3.2) for 1 ≤ n ≤ N – 1, 1 ≤ j ≤ M – 1, as

Rn+ 1
2

j = iδtu
n+ 1

2
j – �α

h un+ 1
2

j +
β

2
(
3
∣∣un

j
∣∣2 –

∣∣un–1
j

∣∣2)un+ 1
2

j , (4.11)

and of scheme (3.5a)–(3.5b) for n = 0, 1 ≤ j ≤ M – 1, as

R(1)
j = i

U (1)
j – u0

j

δ
– �α

h U (1)
j + β

∣
∣u0

j
∣
∣2U (1)

j , (4.12a)

R
1
2
j = iδtu

1
2
j – �α

h u
1
2
j +

β

2
(
3
∣∣U (1)

j
∣∣2 –

∣∣u0
j
∣∣2)u

1
2
j . (4.12b)

From (3.1) and Taylor’s expansion, we have

∣∣R(1)
j

∣∣ ≤ Cδ

(
δ + h4), 1 ≤ j ≤ M – 1,

∣∣Rn+ 1
2

j
∣∣ ≤ CR

(
τ 2 + h4), 1 ≤ j ≤ M – 1, 0 ≤ n ≤ N – 1,

(4.13)

which gives

∥∥R(1)∥∥2 ≤ (b – a)
(
Cδ

(
δ + h4))2, (4.14)

∥∥Rn+ 1
2
∥∥2 ≤ (b – a)

(
CR

(
τ 2 + h4))2, 0 ≤ n ≤ N – 1. (4.15)

Based on the truncation error introduced, the convergence results can be discussed. To
start with, we define the error function en ∈ Vh for 0 ≤ n ≤ N as

en
j = un

j – Un
j , 1 ≤ j ≤ M – 1.

Then we have the following results.
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Theorem 4.5 Suppose that the original problem (2.1)–(2.3) has a smooth solution, and
assume that τ ≤ Ch2 and δ ≤ τ 2. Then there exist τ0 > 0 and h0 > 0 sufficiently small such
that, when 0 < τ ≤ τ0 and 0 < h ≤ h0, we have

∥∥un – Un∥∥ ≤ C
(
δ + τ 2 + h4), 0 ≤ n ≤ N , (4.16)

where C is a constant independent of τ , δ, h.

Proof We prove this theorem by induction. For n = 0, combining (2.3) with (3.3) implies
the validity of (4.16).

For t = δ, subtracting (3.5a) from (4.12a), we obtain the error equation

i
e(1)

j

δ
– �α

h e(1)
j + β

∣∣U0
j
∣∣2e(1)

j = R(1)
j . (4.17)

Computing the discrete inner product of (4.17) with e(1) yields

i
1
δ

(
e(1), e(1))

h –
(
�α

h e(1), e(1))
h + β

(∣∣U0
j
∣
∣2e(1), e(1))

h =
(
R(1), e(1))

h. (4.18)

Taking the imaginary part of (4.18), combining with the triangle inequalities and Cauchy
inequalities, as well as Lemma 4.2, we get

∥∥e(1)∥∥2 = δIm
(
R(1), e(1))

h

≤ δ
(∥∥e(1)∥∥2 +

∥∥R(1)∥∥2)

≤ δ
(∥∥e(1)∥∥2 + (b – a)

(
CR

(
δ + h4))2). (4.19)

When δ < τ < 1
2 , we obtain

∥∥e(1)∥∥ ≤ √
2(b – a)δCR

(
δ + h4) ≤ C

(
δ + τ 2 + h4). (4.20)

Assume that τ ≤ Ch2, then

∥
∥U (1)∥∥∞ ≤ ∥

∥u(1)∥∥∞ +
∥
∥e(1)∥∥∞ ≤ M0 + Ch

7
2 . (4.21)

When 0 < h ≤ h0 := C– 2
7 , it holds that

∥∥U (1)∥∥∞ ≤ M0 + 1. (4.22)

It follows from (4.20) and (4.22) that (4.16) is valid for n = δ. Now we prove that (4.16) is
valid for n = 1. Subtracting (3.5b) from (4.12b) yields

iδte
1
2
j – �α

h e
1
2
j +

β

2
(
3
∣
∣U (1)

j
∣
∣2 –

∣
∣U0

j
∣
∣2)e

1
2
j = Gδ

j + R
1
2
j , (4.23)

where

Gδ
j =

β

2
[(

3
∣∣U (1)

j
∣∣2 –

∣∣U0
j
∣∣2) –

(
3
∣∣U (1)

j
∣∣2 –

∣∣u0
j
∣∣2)]u

1
2
j
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=
β

2
[
3
(∣∣U (1)

j
∣∣2 –

∣∣U (1)
j

∣∣2) –
(∣∣U0

j
∣∣2 –

∣∣u0
j
∣∣2)]u

1
2
j . (4.24)

Noticing (3.3) as well as (2.3), we have

∣
∣Gδ

j
∣
∣ ≤ 3|β|M0(M1 + M0)

∣
∣e(1)

j
∣
∣, 1 ≤ j ≤ M – 1.

Set CM0 = 12β2M2
0(M1 + M0)2, then

∥∥Gδ
∥∥2 ≤ CM0

∥∥e(1)∥∥2. (4.25)

Computing the discrete inner product of (4.23) with e 1
2 and taking the imaginary part,

using the triangle inequalities and Cauchy inequalities, noticing (4.4), (4.13), and (4.25),
we obtain

∥∥e1∥∥2 –
∥∥e0∥∥2 = τ Im

(
Gδ + R

1
2 , e1)

≤ τ
(∥∥e1∥∥2 +

∥∥Gδ
∥∥2 +

∥∥R
1
2
∥∥2)

≤ τ
(∥∥e1∥∥2 + CM0

∥∥eδ
∥∥2 + (b – a)

(
CR

(
τ 2 + h4))2).

When τ ≤ 1
2 , it holds that

∥∥e1∥∥2 ≤ C
((

δ + τ 2 + h4)2 + (b – a)
(
CR

(
τ 2 + h4))2),

where C is a constant. Thus it holds that

∥
∥e1∥∥ ≤ C

(
δ + τ 2 + h4).

Again under the assumption τ ≤ Ch2 as well as δ ≤ τ 2, combining the above inequality
with (4.7) gives

∥∥U1∥∥∞ ≤ ∥∥u1∥∥∞ +
∥∥e1∥∥∞ ≤ M0 + h– 1

2
∥∥e1∥∥ ≤ M0 + Ch

7
2 , (4.26)

and consequently, when 0 < h ≤ h0, we have

∥∥U1∥∥∞ ≤ M0 + 1. (4.27)

Now we assume that (4.16) is valid for all 0 ≤ n ≤ m – 1 ≤ N – 1, we then need to show
that it is still valid for n = m. Subtracting (3.2) from (4.11) yields

iδte
n+ 1

2
j – �α

h en+ 1
2

j +
β

2
(
3
∣∣Un

j
∣∣2 –

∣∣Un–1
j

∣∣2)en+ 1
2

j = Gn
j + Rn+ 1

2
j , (4.28)

where

Gn
j =

β

2
[(

3
∣
∣Un

j
∣
∣2 –

∣
∣Un–1

j
∣
∣2) –

(
3
∣
∣un

j
∣
∣2 –

∣
∣un–1

j
∣
∣2)]un+ 1

2
j

=
β

2
[
3
(∣∣Un

j
∣∣2 –

∣∣un
j
∣∣2) –

(∣∣Un–1
j

∣∣2 –
∣∣un–1

j
∣∣2)]un+ 1

2
j . (4.29)
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Since (4.16) is valid for n ≤ m – 1, we have

∣
∣Gn

j
∣
∣ ≤ |β|M0(M1 + M0)

(
3
∣
∣en

j
∣
∣ +

∣
∣en–1

j
∣
∣), 1 ≤ j ≤ M – 1, 1 ≤ n ≤ m – 1, (4.30)

which implies

∥
∥Gn∥∥2 ≤ CM0

(∥∥en∥∥2 +
∥
∥en–1∥∥2). (4.31)

Computing the discrete inner product of (4.28) with en+ 1
2 and taking the imaginary part,

using the triangle inequalities and Cauchy inequalities, noticing (4.4), (4.13), and (4.31), we
have, for 1 ≤ n ≤ m – 1,

∥
∥en+1∥∥2 –

∥
∥en∥∥2

= τ Im
(
Gn + Rn+ 1

2 , en+1 + en)

≤ τ
(∥∥en+1∥∥2 +

∥∥en∥∥2 +
∥∥Gn∥∥2 +

∥∥Rn+ 1
2
∥∥2)

≤ τ
(∥∥en+1∥∥2 +

∥
∥en∥∥2 + CM0

(∥∥en∥∥2 +
∥
∥en–1∥∥2) + (b – a)

(
CR

(
τ 2 + h4))2).

When τ ≤ 1
2 , we obtain

∥∥en+1∥∥2 –
∥∥en∥∥2 ≤ (

1 + 2(1 + CM0 )τ
)∥∥en∥∥2 + 2CM0τ

∥∥en–1∥∥2

+ 2τ (b – a)
(
CR

(
τ 2 + h4))2.

Using the above inequality, noticing (4.16), we get

∥∥em∥∥2 ≤ (
2 + 2(1 + CM0 )τ

)∥∥em–1∥∥2 + 2CM0τ
∥∥em–2∥∥2 + 2τ (b – a)

(
CR

(
τ 2 + h4))2

≤ C
(
δ + τ 2 + h4)2[2 + 2(1 + CM0 )τ + 2CM0τ

]
+ 2τ (b – a)

(
CR

(
τ 2 + h4))2

≤ C
(
δ + τ 2 + h4)2[2 + 2τ + 4CM0τ + 2τ (b – a)

]
.

Let τ0 := 1
2+4CM0 +2(b–a) , and choose τ small enough such that τ ≤ τ0, then there is a constant

C such that

∥
∥em∥

∥2 ≤ C
(
δ + τ 2 + h4)2, (4.32)

which immediately implies

∥∥em∥∥ ≤ C
(
δ + τ 2 + h4).

Again under the assumption τ ≤ Ch2 as well as δ ≤ τ 2, combining the above inequality
with (4.7) gives

∥
∥Um∥

∥∞ ≤ ∥
∥um∥

∥∞ +
∥
∥em∥

∥∞ ≤ M0 + h– 1
2
∥
∥em∥

∥ ≤ M0 + Ch
7
2 , (4.33)
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and consequently, when 0 < h ≤ h0, we have

∥∥Um∥∥∞ ≤ M0 + 1. (4.34)

This together with (3.5a)–(3.5b) implies (4.16) for n = m. By taking δ = τ 2, it holds that
‖en‖ ≤ C(τ 2 +h4), i.e., ‖un –Un‖ ≤ C(τ 2 +h4). Thus the proof is completed by induction.�

5 Mass conservation
In this section, we demonstrate that the discrete solution preserves the mass conservation,
which further ensures the stability of the difference scheme proposed.

Theorem 5.1 Scheme (3.2)–(3.5b) preserves the mass in the following sense:

Qn = Q0, 0 ≤ n ≤ N , (5.1)

where

Qn :=
∥∥Un∥∥2 (5.2)

is the mass in the discrete sense.

Proof Computing the discrete inner product of (3.2) with Un+ 1
2 , then taking the imaginary

part, we obtain

∥∥Un+1∥∥2 =
∥∥Un∥∥2, 0 ≤ n ≤ N – 1, (5.3)

where (4.4) is used. This immediately implies (5.1). �

Remark 5.2 It follows from Theorem 5.1 that the numerical solution of (3.2)–(3.4) is long-
time bounded, i.e., there exists some constant C > 0 such that

∥
∥Un∥∥ ≤ C, 0 ≤ n ≤ N . (5.4)

Hence, scheme (3.2)–(3.5b) is unconditionally L2-stable.

6 Fast stabilized bi-conjugate gradient algorithm (FSBiCG)
In this section, we develop a fast algorithm to numerically solve (3.2)–(3.5b). For conve-
nience, we rewrite (3.2)–(3.5b) into the matrix form

(iI – δK + δβD0)U (1) = iU0, n = δ, (6.1a)
(

iI –
τ

2
K +

βτ

4
D1

)
U1 =

(
iI +

τ

2
K –

βτ

4
D1

)
U0, (6.1b)

(
iI –

τ

2
K +

βτ

4
D2

)
Un+1 =

(
iI +

τ

2
K –

βτ

4
D2

)
Un, n ≥ 1, (6.1c)
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where I is the unit matrix of size (M –1)× (M –1), K is the discrete matrix of the fractional
Laplace operator defined in Lemma 4.1, and D ( = 0, 1, 2) are diagonal matrices with
diagonal elements D(j, j), j = 1, 2, . . . , M – 1, given by

D0(j, j) =
∣∣U0

j
∣∣2, D1(j, j) =

1
2
(
3
∣∣U (1)

j
∣∣2 –

∣∣U0
j
∣∣2), D2(j, j) =

1
2
(
3
∣∣Un

j
∣∣2 –

∣∣Un–1
j

∣∣2).

It is easy to find that K is a non-sparse Toeplitz matrix, which requires O(M2) computa-
tions andO(M2) storages while solving linear system (6.1a)–(6.1c) by the CG-like iteration
method.

The aim for this section is to reduce the storage and calculation toO(M) andO(M log M),
respectively. For this, we shall combine the stabilized bi-conjugate gradient algorithm
(SBiCG) with the Toeplitz structure of the coefficient matrices to construct the fast stabi-
lized bi-conjugate gradient algorithm (FSBiCG) [28]. This needs the following three steps:

The decomposition of a circulant matrix. It is known that a circulant matrix
CM–1 can be diagonalized as follows [29, 30]:

CM–1 = F–1
M–1 diag(FM–1c)FM–1,

where c is the first column vector of C, FM–1 and F–1
M–1 are the discrete Fourier transform

matrix and its inverse with entries given by

FM–1(j, l) = exp

(
–

2π ijω
M – 1

)
and F–1

M–1(j, l) =
1

M – 1
exp

(
2π ijω
M – 1

)
,

0 ≤ j, l ≤ M – 1.

It has been shown in [28] that the decomposition of circulant matrix C could be carried
out within a computational cost of O(M log M).

Computations for circulant matrix-vector multiplication. According to
[30], a computational cost of O(M log M) and a memory of O(M) are required while seek-
ing for the circulant matrix-vector multiplication by FFT or iFFT.

Computations for Toeplitz matrix-vector multiplication. Notice that a (M –
1) × (M – 1) Toeplitz matrix TM–1 is a matrix whose each descending diagonal from left
to right is the same constant ti, i = 0,±1, . . . ,±(M – 2), which needs storage of O(M). On
the other hand, a (M – 1) × (M – 1) Toeplitz matrix TM–1 can be embedded into a 2(M –
1) × 2(M – 1) circulant matrix C2M–2. Hence, for a vector x ∈ RM–1, TM–1x can be drawn
from C2M–2(x, 0)T via

C2M–2X =

(
TM–1 DM–1

DM–1 TM–1

)(
x
0

)

=

(
TM–1x
DM–1x

)

(6.2)

with computational costO(M log M). Here DM–1 is a Toeplitz matrix whose each descend-
ing diagonal from left to right is qi, i = 1, . . . , M – 2, 0, 2 – M, . . . , –1.

Collecting these deductions above, we modify the traditional SBiCG to formulate our
fast SBiCG algorithm (FSBiCG), which is presented sentence by sentence in Algorithm 1,
and the conclusion concerning the efficiency of the FSBiCG is given in Theorem 6.1.
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Algorithm 1 The FSBiCG method for solving Ax = b
1: Given an initial guess X0 and stopping tolerance ε > 0
2: Given C = (A(1, 1), . . . , A(n, 1), 0, A(1, n), . . . , A(1, 2))T

3: Compute:
4: x = FFT(C); X̃0 = (X0; 0, . . . , 0)T

5: v = FFT(X̃0); y = v. ∗ x; z = iFFT(y); w = z(1 : n); r0 = b – w
6: choose r̃0 such that (r0, r̃0) �= 0
7: p1 = r0

8: for k = 1, 2 . . . do
9: p̃k = (pk ; 0, . . . , 0)T

10: v = FFT (̃pk); y = v. ∗ x; z = iFFT(y); w1 = z(1 : n)
11: αk = (rk–1, r̃0)/(w1, r̃0)
12: qk = rk–1 – αkw1

13: q̃k = (qk ; 0, . . . , 0)T

14: z = FFT (̃qk); w = z. ∗ x;μ = iFFT(z); w2 = μ(1 : n)
15: ωk = (qk , w2)/(w2, w2)
16: x(k) = x(k–1) + αkpk + ωkqk

17: rk = qk – ωkw2

18: if ‖rk‖2 < ε then
19: stop
20: end if
21: βk = αk/ωk · (rk , r̃0)/(rk–1, r̃0)
22: pk = rk + βk(pk – ωkw1)
23: end for

Theorem 6.1 Compared with the SBiCG method, the FSBiCG algorithm proposed here
reduces computational cost and storage from O(M2) and O(M2) to O(M log M) and O(M)
per iteration, respectively.

7 Numerical experiment
In this section, two numerical experiments are performed. In the first experiment, we pay
particular attention to verifying the convergence rates and computation cost as well as
the efficiency of the FBiCG compared with other algorithms. In the second experiment,
we test the abilities of scheme (3.2)–(3.5b) to hold the physical characteristics-mass con-
servation, subject to different initial values. These experiments are implemented by Mat-
lab program on a family computer with configuration: Intel(R) Core(TM) i5-4590 CPU
3.3 GHz and 4 GB RAM.

7.1 Tests on the efficiency of the finite difference procedure and FSBiCG
Example 7.1 Assume (a, b) = (0, 1), T = 1, β = 1, the analytic solution is prescribed to be

u(x, t) = x5(1 – x)5e–t (7.1)

subject to the initial condition

u(x, 0) = x5(1 – x)5 (7.2)
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Figure 1 The initial value, numerical and exact
solution at t = 1

and the right-hand source term f (x, t),

f (x, t) = –
e–t

2 cos( α
2 π )

[
Γ (6)

Γ (6 – α)
(
x5–α + (1 – x)5–α

)

– 5
Γ (7)

Γ (7 – α)
(
x6–α + (1 – x)6–α

)
+ 10

Γ (8)
Γ (8 – α)

(
x7–α + (1 – x)7–α

)

– 10
Γ (9)

Γ (9 – α)
(
x8–α + (1 – x)8–α

)
+ 5

Γ (10)
Γ (10 – α)

(
x9–α + (1 – x)9–α

)

–
Γ (11)

Γ (11 – α)
(
x10–α + (1 – x)10–α

)]
– ix5(1 – x)5e–t + x15(1 – x)15e–3t .

Here α ∈ (1, 2).

Remark 7.2 Considering the facts that the main aim of this numerical example is to ver-
ify the computing efficiency of FSBiCG, and the exact analytical solutions of (2.1) are
hardly available, we have to construct such an exact solution by attaching the nonzero
source terms to the original systems without weakening the computing difficulties result-
ing from the non-locality of the fractional operators. This equation may be thought of
as a transformed version of the corresponding fractional Schrödinger equation (2.1) with
non-homogeneous boundary conditions.

In this example, we calculate the convergence rates in space and time at t = 1, and com-
pare the computation time costs within different methods. Figure 1 depicts the initial con-
dition, the numerical solution, and the exact solution with α = 1.9, h = 1

26 , τ = h2. From
Fig. 1, we find that the curve of numerical solution agrees well with the exact one. Let uh

be the numerical solution. Tables 1 and 2 test the error ‖u – uh‖ as well as the spatial and
temporal convergence rates in the L2– and ∞– sense with the time increment τ = h2 for
α = 1.3 and α = 1.9, respectively. The numerical results in Tables 1 and 2 show that the
spatial and temporal convergence rates are 4 and 2 respectively, which is in accord with
the theoretical expectations of Theorem 4.5.

Table 3 tests the efficiency of the FSBiCG algorithm. We measure the time for the com-
plete simulation until t = 1 with the time increment τ = h2 for α = 1.3 and α = 1.9. We
easily see that as the space step h becomes smaller and smaller, the CPU time consumed
by the FSBiCG is much less than that of the Gauss elimination and the SBiCG, and the
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Table 1 Spatial convergence rates in L2 and temporal rates

α 1/h 1/τ ‖u – uh‖L2 Spatial rate Temporal rate

1.3 24 28 2.6919e-6
25 210 2.2419e-7 3.5858 1.7929
26 212 2.4566e-8 3.1899 1.5949
27 214 1.8398e-9 3.7390 1.8695

1.9 24 28 1.0250e-5
25 210 9.3139e-7 3.4601 1.7300
26 212 5.5518e-8 4.0683 2.0341
27 214 2.9951e-9 4.2122 2.1050

Table 2 Spatial convergence rates in L∞ and temporal rates

α 1/h 1/τ ‖u – uh‖∞ Spatial rate Temporal rate

1.3 24 28 6.8790e-6
25 210 3.9392e-7 4.1280 2.0640
26 212 5.4708e-8 2.8482 1.4241
27 214 4.2566e-9 3.6839 1.8733

1.9 24 28 1.5877e-5
25 210 1.5608e-6 3.3414 1.8357
26 212 1.1740e-7 3.7327 1.8663
27 214 6.9972e-9 4.0685 2.0342

Table 3 The CPU time consumed of the Gaussian elimination, the SBiCG method, and the FSBiCG
method

α 1/h Gauss CPU (s) SBiCG CPU (s) Iter FSBiCG CPU (s) Iter

1.3 24 0.61 s 1.45 s 6 0.5277 s 8
25 4.95 s 14.05 s 7 2.5201 s 5
26 1 min 47 s 2 min 48 s 4 14.05 s 3
27 54 min 5 s 23 min 47 s 3 1 min 54 s 3

1.9 24 0.45 s 1.54 s 9 0.59 s 9
25 5.02 s 39.98 s 15 5.28 s 16
26 2 min 46 s 4 min 30 s 7 21.32 s 7
27 1h1 min 54 s 46 min 25 s 7 3 min 1 s 7

iterations are the same as SBiCG’s, which do not scale with M. For example, the CPU time
of FSBiCG is 1 min 54 s compared to the SBiCG’s 23 min 47 s and the Gauss elimination’s
54 min 5 s as h = 1

27 , α = 1.3.

7.2 Tests on conservation of mass
Example 7.3 We take β = 1 and α = 1.5, 1.7, and 1.9, respectively, in (2.1) and select the
step lengths h = 0.25, τ = h2, the interval considered here is chosen to be [–20, 20]. The
initial values are described in the following two categories to display the fitness of the
numerical scheme for different systems. In the first category, the initial condition is chosen
to be

u(x, 0) = sec(x) · exp(2ix), x ∈ [–20, 20], (7.3)

corresponding to the certain initial value, and in the second category, the initial condition
is selected as the random sequence confirming to Poisson distribution corresponding to
the uncertain initial value.
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Figure 2 Evolution of mass Qn with initial values given
in (7.3)

Figure 3 Evolution of mass Qn with initial values
confirmed to Poisson distribution

The numerical results for the two initial values are presented in Figs. 2–3, respectively.
Figure 2 displays the mass subject to initial condition (7.3). To simulate the randomness of
real quantum mechanics, we select the initial conditions as random sequences that obey
the Poisson distribution and plot their mass in Fig. 3. We can find that in Figs. 2–3 the
curves of the mass are lines parallel to the t-axis, and we conclude that the mass is kept
very well.

In addition, it deserves noting that the mass Qn is an intrinsic property of the material
systems. Once the initial and boundary condition is given, mass is uniquely determined,
which does not change with the parameter α, as is proven in Lemma 5.1. As a result, the
mass lines in Figs. 2–3 intercover.

8 Concluding remarks
We have established the well-defined fourth-order difference scheme for the nonlinear
fractional Schrödinger equation to approximate the unknown function u. We found that
the highlights of our paper at least are as follows: (1) it improves the convergence rate
compared with the existing method by developing a fourth-order difference scheme to-
ward the fractional Riesz derivatives; (2) it proves the solvability of the scheme and the
mass balance property inherited by the difference solution; (3) the fast algorithm can be
designed to reduce the storage to O(M) and computational cost to O(M log M).

We remark that the problem studied in this manuscript can be solved by other numerical
methodologies such as those discussed in [31, 32], which needs to be further investigated.
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