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Abstract
Malaria is one of the world’s most serious health problems because of the increasing
number of cases every year. First, we discuss a deterministic model of epidemic SIR-SI
spread of malaria with the intervention of bed nets and fumigation. We found that
the malaria-free equilibrium is locally asymptotically stable (LAS) whenR0 < 1 and
unstable otherwise. A malaria endemic equilibrium exists and is LAS whenR0 > 1.
Sensitivity analysis ofR0 shows that the use of bed nets and fumigation can reduce
R0. We modify the previous model into a stochastic differential equation model to
understand the effect of random environmental factors on the spread of malaria.
Numerical simulations show that whenR0 > 1, a greater value of noise intensity σ
generates a solution that is different from a deterministic solution; whenR0 < 1,
regardless of the σ value, the solution approaches a deterministic solution. Then the
deterministic model was modified into an optimal control model to determine the
best strategy in controlling the spread of malaria by using fumigation as the control
variable. Numerical simulations show that periodic fumigations cost less than
constant intervention and can reduce the number of infected humans. Priority is
given to the endemic prevention strategy rather than to the endemic reduction
strategy. For more effective intervention, the value ofR0 should receive close
attention. A potentially endemic (R0 > 1) environment requires more frequent
fumigation than an environment that is not potentially endemic (R0 < 1).
A combination of the use of bed nets and fumigation can reduce the number of
infected individuals at minimal cost.

Keywords: Malaria; Optimal control problem; Fumigation; Stochastic differential
equation

1 Introduction
Malaria is a dangerous infectious disease caused by a Plasmodium parasite, which can
be transmitted to humans through bites from infected Anopheles female mosquitos. The
symptoms usually appear after one to two weeks and include fever, sweating, shivering or
cold, vomiting, headache, diarrhea, and muscle aches (Infodatin [14]). Based on the 2017
World Malaria Report, the number of malaria cases in the world increased to 216 million
in 2016. Those cases were mostly located in Africa (90%), Southeast Asia (7%), and the
Eastern Mediterranean (2%) (WHO [22]). From 2015 to 2016, malaria cases in Indone-
sia reached 217,025 and were mostly found in Papua, Papua Barat, West Nusa Tenggara,
Maluku, and North Maluku (Infodatin [14]).
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There are many methods of preventing malaria, the most popular of which are using bed
nets at night to prevent mosquito bites and using fumigation to reduce local mosquito
populations (WHO [22]). In recent studies, researchers have constructed mathematical
models to analyze malaria spread. These include mathematical models of malaria trans-
mission that consider climatic factors (Abebe et al. [4]), mathematical models of malaria
distribution by using mosquito nets (Agusto et al. [1]; Chitnis et al. [8]; Ngonghala et al.
[18]), and mathematical models of climate-based malaria with the use of mosquito nets
(Xiunan and Xiao-Qiang [25]), to which this paper refers.

Several factors should be considered when attempting to eliminate malaria vectors, such
as climate factors. In tropical areas, there are differences between mosquito life expectancy
in the dry and rainy seasons. Dembele et al. [9] state that there is a greater percentage of
deaths from malaria during the rainy season than during the dry season. Therefore this
climate factor will be considered in the model.

In this paper, we first include two malaria preventatives to the model, the use of bed
nets without insecticides and fumigation. First, we construct a deterministic model of the
spread of malaria with both fumigation and bed nets. We then determine the equilibrium
point and basic reproduction number R0 followed by numerical simulations to analyze
how both means of intervention affect the human population.

In practice, several factors have been found to affect the spread of malaria, such as hu-
man factors (body temperature and carbon dioxide content released by the body) as de-
scribed by Keyser [15] and residential factors (living close to stagnant water) as described
by Theresa et al. [19]. Both factors are influenced by unpredictable environmental factors
that cannot be explained by the deterministic model. Therefore the deterministic model
is extended to a malaria model with stochasticity factors. Next, the stochastic model is
discussed by Gray et al. [12], and numerical simulations are implemented to evaluate the
dynamics of stochastic factors in spreading malaria throughout the population.

However, some obstacles arose due to the use of fumigation, such as high costs and
adverse effects of continuous fumigation on the environment. Hence we ultimately devel-
oped the deterministic model into an optimal control problem. Then we analyzed the best
strategy for controlling the spread of malaria by using fumigation at minimal cost.

2 Malaria deterministic model with fumigation and bed nets
There are two mathematical models for the spread of malaria in humans: the susceptible
infected recovered (SIR) model is used on the human population (h), and the suscepti-
ble infected (SI) model is used on the Anopheles mosquito population (v). The difference
between the two models lies in the recovered (R) compartment, which only humans pos-
sess; Anopheles mosquitos’ lifespans are too short for them to enter this stage. Both human
and mosquito populations were assumed to be homogeneous closed populations; thus the
total populations of humans Nh and mosquitos Nv can be considered to be the sums of
all compartments of each population. Malaria may cause deaths in the human popula-
tion. According to WHO [23], in 2017, there were estimated 435,000 deaths from malaria
globally, compared with 451,000 estimated deaths in 2016. The WHO African region ac-
counted for 93% of all malaria deaths in 2017, but it also accounted for 88% of the 172,000
fewer global malaria deaths reported in 2017 compared with 2010. All WHO regions ex-
cept the WHO region of the America’s recorded reductions in mortality in 2017 compared
with 2010. Our proposed model in this paper aims to understand the behavior of malaria
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only in a short time period with considering a short time period of intervention. Therefore
we put aside the death rate due to malaria from our model. With this assumption, we have
that all human deaths are considered natural. Fumigation and the use of bed nets were
used in the models as means of intervention to eliminate malaria with the assumption
that no mosquitos are resistant to fumigation. Note that the long-term intervention of fu-
migation may lead to genetic mutation of mosquitoes as described by Bustamam, Aldila,
and Yuwanda [6].

The malaria infection process is assumed to happen with successful infection probabil-
ities ch and cv and with mosquito bite rates of βh and βv. The use of bed nets can decrease
the total number of mosquito bites. However, since not all people use bed nets at home,
the mosquito bite rate is defined as follows:

βi(k,η) = βikη + βi(1 – k),

where k indicates the proportion of humans who use bed net, and η indicates the effec-
tiveness of the bed nets. An increase in k indicates the increasing number of people using
bed nets. On the other hand, an increase in η results in poorer prevention of mosquito
bites related to the quality of the bed nets. Note that η and k are bounded parameters in
[0, 1]. Human and mosquito deaths in the model are only caused by natural deaths μh and
μv, respectively, although mosquito deaths are also caused by fumigation u.

The recovery rate of humans is γ and can revert to being susceptible at rate δ. The flow
diagram model is seen in Fig. 1.

According to Fig. 1, the SIR-SI mathematical model of malaria disease spread with fu-
migation and bed nets is as follows:

dSh

dt
= Ah –

chβh(k,η)ShIv

Nh
– μhSh + δRh,

dIh

dt
=

chβh(k,η)ShIv

Nh
– γ Ih – μhIh,

Figure 1 Transmission diagram for the SIR-SI model. The spread of malaria disease with fumigation and bed
nets as a means of intervention. The red arrows indicate the infection process, whereas black arrows indicate
the transition process
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Table 1 Parameters of SIR-SI model (1)

No Par Description Condition Dimension

1 Ah Daily human birth rate Ah > 0 person× day–1

2 Av Daily mosquito birth rate Av > 0 mosquito× day–1

3 μh Natural death rate of humans μh > 0 day–1

4 μv Natural death rate of mosquitos μv > 0 day–1

5 γ Recovery rate of humans γ > 0 day–1

6 δ Rate of transition back to vulnerable humans due
to the end of the immunity period

δ > 0 day–1

7 ch Successful infection probability from infectious
mosquitos to susceptible humans

ch > 0 (mosquito× day)–1

8 cv Successful infection probability from susceptible
mosquitos to infectious humans

cv > 0 (mosquito× day)–1

9 βh Biting rate βh ≥ 1 person
mosquito×day

10 βv Biting rate βv ≥ 1 day–1

11 u Fumigation rate u≥ 0 day–1

12 k Bed net proportion 0≤ k ≤ 1 –
13 η Bed net quality 0 < η < 1 –

dRh

dt
= γ Ih – δRh – μhRh, (1)

dSv

dt
= Av –

cvβv(k,η)SvIh

Nh
– μv(t)Sv – u(t)Sv,

dIv

dt
=

cvβv(k,η)SvIh

Nh
– μv(t)Iv – u(t)Iv,

where μv(t) and u(t) are functions depending on time, which describe seasonality and fu-
migation in mosquito population, respectively. Later we will discuss further details about
the dependency of these parameter on time. For the analysis of model (1) related to their
equilibrium point and their basic reproduction number, we assume that u(t) = u and
μv(t) = μv as constant parameters. The description of parameters in model (1) is given
in Table 1. Since we assume that without fumigation intervention, the total human and
mosquito populations are constant, we have that

d(Sh + Ih + Rh)
dt

=
dNh

dt
= Ah – μhNh, 0 = Ah – μhNh,

which gives us Nh = Ah
μh

, that is, Ah = μhNh. On the other hand, for mosquito population,
we have

d(Sv + Iv)
dt

=
dNv

dt
= Av – μvNv, 0 = Av – μvNv,

which gives us Nv = Av
μv

, that is, Av = μvNv. When u �= 0, we have that

d(Sv + Iv)
dt

=
dNv

dt
= Av – μvNv – uNv = –uNv < 0,

which indicates that the total number of mosquitoes decreases with respect to time.
Next, we analyze the equilibrium points and the corresponding basic reproduction num-

ber R0. The equilibrium points of the model are the malaria-free equilibrium (MFE) and
malaria endemic equilibrium (MEE). We end the analytic discussion with a discussion of
the stability of equilibrium points.
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MFE represents a condition where no individual is infected with malaria. Furthermore,
MFE is also used to analyze R0. From model (1) we obtain MFE as follows:

MFE =
(
S∗

h, I∗
h , R∗

h, S∗
v , I∗

v
)

=
(

Ah

μh
, 0, 0,

Av

u + μv
, 0

)
. (2)

MFE has positive values on R
+
5 , which means that it always exists biologically.

(a) The basic reproduction number R0 is used to analyze whether the malaria is
endemic (R0 ≥ 1) or not (R0 < 1). R0 can be constructed using the next-generation
matrix (NGM) method [10]. Please see [2, 3, 6] for further examples of the
construction of the NGM for epidemic models. First, we construct the Jacobian
matrix of infected compartments constructed from system (1):

J =

[
–μh – γ

chβh(k,η)Sh
Nh

cvβv(k,η)Sv
Nh

–u – μv

]

.

The matrix J is decomposed into a transmission matrix T that contains the
infectious parameter and a transition matrix V that does not contain the infectious
parameter as follows:

T =

[
0 chβh(k,η)Sh

Nh
cvβv(k,η)Sv

Nh
0

]

,

V =

[
–(γ + μh)–1 0

0 –(u + μv)–1

]

.

Therefore NGM is written as

NGM = –TV –1 =

[
0 chβh(k,η)Ah

μhNh(u+μv)
cvβv(k,η)Av

(μv+u)Nh(γ +μh) 0

]

, (3)

and R0 is the spectral radius of NGM,

R0 =

√
chβh(k,η)
γ + μh

cvβv(k,η)
u + μv

Nv

Nh
, (4)

where Nh = Ah
μh

and Nv = Av
u+μv

. Further discussion about R0 will be given later in this
section.

(b) MEE represents a condition in which malaria always persists in a population. The
MEE of the model is as follows:

MEE =
(
S∗∗

h , I∗∗
h , R∗∗

h , S∗∗
v , I∗∗

v
)

=
(

Ah

μh
–

(
I∗∗

h + R∗∗
h

)
, C1

(
R2

0 – 1
)
, C2

(
R2

0 – 1
)
,

Av

μv + u
– I∗∗

v , C3
(
R2

0 – 1
)
)

(5)
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with

C1 =
(δ + μh)K

cvβvμh
, C2 =

γ K
cvβvμh

,

C3 =
(δ + μh)K

chβh(u + μv)
, K =

(γ + μh)(u + μv)Nh

chβhγ Av + Nhμ
2
h(u + μv)

.

According to Eq. (5), MEE exists when R0 > 1.
(c) The stability of the two equilibrium points can be determined with eigenvalue

analysis from a system evaluated at the corresponding equilibrium point. To
determine the stability of MFE, system (1) must be linearized on MFE as follows:

JDFE =

⎛

⎜⎜
⎜⎜
⎜⎜
⎜
⎝

–μh 0 δ 0 – chβhAh
μhNh

0 –γ – μh 0 0 chβhAh
μhNh

0 γ –δ – μh 0 0
0 – cvβvAv

(μv+u)Nh
0 –u – μv 0

0 cvβvAv
(μv+u)Nh

0 0 –u – μv

⎞

⎟⎟
⎟⎟
⎟⎟
⎟
⎠

, (6)

where the characteristic polynomial of (6) is

(λ + δ + μh)(λ + μh)(λ + u + μv)
(
aλ2 + bλ + c

)
= 0 (7)

with

a = N2
hμh(u + μv),

b = N2
hμh(u + μv)(μv + γ + μh + u),

c = N2
hμh(μv + u)2(γ + μh)

(
1 – R2

0
)
.

According to Verhulst [20], the MFE is asymptotically stable when Re(λi) < 0,
∀i = 1, 2, . . . , n. From Eq. (7) it follows that the MFE is asymptotically stable when
R0 < 1.

Next, we analyze the stability of the MEE point. Substituting the MEE into the Jacobian
matrix of system (1), we obtain five eigenvalues, with two of them λ1 = –(μv + u) and λ2 =
–μh. The other three eigenvalues are taken from the root of the third-degree polynomial
given by

3∑

i=0

aiλ
i = 0, (8)

where

a3 = 1,

a0 = (δ + μh)(γ + μh)(u + μv)
(
R2

0 – 1
)
,

whereas a2 and a1 have long expressions, which cannot be written explicitly in this paper.
Nonetheless, we have that a3 and a2 are always positive, and a0 > 0 whenR0 > 1. According
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Table 2 Parameter values of SIR-SI model (1)

No Parameter Value Dimension Reference

1 Nh 10,000 mosquito Assumption
2 Nv 10,000 mosquito Assumption
3 μh 0.000039 day–1 Kim et al. [16]
4 μv 0.1 day–1 CDC [7]
5 γ 0.0035 day–1 Chitnis et al. [8]
6 δ 0.00274 day–1 Chitnis et al. [8]
7 ch 0.24 mosquito× day–1 Chitnis et al. [8]
8 cv 0.024 mosquito× day–1 Chitnis et al. [8]
9 βh 0.35 person

mosquito×day CDC [7]
10 βv 0.35 day–1 CDC [7]
11 u To be evaluated day–1

12 k To be evaluated –
13 η To be evaluated –

to the Routh–Hurwitz stability criteria, all roots of (8) are negative if a2 > 0, a0 > 0, and
a2a1 > a0. Therefore we have that the MEE of system (1) is locally asymptotically stable if
R0 > 1 and a2a1 > a0. On the other hand, when R0 < 1 or a2a1 ≤ a0, the MEE is unstable.

To understand the role of model parameters to the basic reproduction number R0, we
analyze the sensitivity ofR0 and perform autonomous simulation of the given intervention
parameter. According to Kim et al. [16], both simulations use the initial conditions Sh(0) =
0.5148Nh, Ih(0) = 0.2113Nh, Rh(0) = Nh – Sh(0) – Ih(0), Sv(0) = Nv – Iv(0), Iv(0) = 0.3267Nv,
and the parameter values used are listed in Table 2.

Sensitivity analysis of R0 is implemented because it is related to policies that might be
used by related parties. The first analysis is the R0 sensitivity of the mosquito biting rate
toward humans, βh(k,η) with k = 0, and without the use of bed nets. The second analysis
is R0 sensitivity toward the fumigation rate u. An analytical study on R0 can be obtained
as follows:

∂R0

∂βh(0,η)
=

1
2

√
chcvβvNv

βh(γ + μh)(u + μv)Nh
> 0, (9a)

∂R0

∂u
= –

1
2(u + μv)

√
chcvβvNv

(γ + μh)(u + μv)Nh
< 0. (9b)

Equation (9a) is always positive, which means that the curve of the biting rate parame-
ter toward R0 is increasing monotonically, or as βh increases, R0 also increases. On the
other hand, Eq. (9b) is always negative, which means that the curve of the fumigation rate
parameter toward R0 is decreasing monotonically, or as u increases, R0 decreases.

When we substitute all parameters value from Table 2 into R0 = 1, we have
0.238673939

√
βh

u+0.1 = 1. Figure 2 explains how R0 can be determined by relying on u and
βh qualitatively based on the previous equation. It can be seen from Fig. 2 that when
βh < 0.17554563, the population always achieves a malaria-free situation (R0 < 1), and
thus fumigation is not yet needed. When βh > 0.175545635, fumigation is needed to reach

R0 < 1. By solving 0.238673939
√

βh
u+0.1 = 1 with respect to u we have

umin = 0.238673929
√

βh – 0.1. (10)
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Figure 2 R0 sensitivity diagram is shown as a
height curve of the parameters βh and u with the
critical lineR0 = 1. The red colored area defines the
endemic condition of malaria, whereas the blue
colored area defines a condition with no malaria

Therefore, when βh > 0.175545635, we need u > umin to achieve the condition R0 < 1.
This study indicates that there is a possibility that fumigation is not needed to eliminate
malaria from humans. It is shown through the above simulation that when the infection
rate is lower than the minimum boundary of u that yieldsR0 < 1, fumigation is not needed.
Furthermore, there are other parameters to consider when fumigation should be imple-
mented in the field to yield R0 < 1, which is an infection rate.

The second analysis is R0 sensitivity toward the bed net parameter, which is the pro-
portion of the users k and the proportion of bed net effectiveness η. The analytical study
on R0 is as follows:

∂R0

∂k
= –

√
chβhcvβv(1 – η)2Nv

(γ + μv)(u + μv)Nh
, (11a)

∂R0

∂η
=

√
chβhcvβvkNv

(γ + μv)(u + μv)Nh
. (11b)

According to Table 1, the parameter η is in the interval (0, 1), and k is in the interval
[0, 1]; thus we can guarantee that (η – 1) < 0 and (1 – k) ≥ 0. This means that Eq. (11a)
shows that R0 decreases monotonically with respect to k; that is, as k increases, R0 de-
creases. Equation (11b) shows that R0 monotonically increases with respect to η; thus, as
η increases, R0 also increases.

Using the same approach as in Fig. 2, we substitute all parameters values from Table 2
except k and η, which gives us 4.034325733

√
(0.35(kη – k + 1))2 = 1. Figure 3 explains how

R0 can be determined by relying on k and η qualitatively. Figure 3 also further elucidates
the threshold of R0; the red colored area defines a condition with R0 > 1, and the blue
colored area defines a condition with R0 < 1.

It can be seen in Fig. 3 that when k ≤ k∗ = 0.2917917277, the bed net usage intervention
does not eliminate malaria; thus the proportion of bed net users must endeavor to achieve
k > k∗. In other words, the government needs to distribute bed nets to more than 29.18%
of the total endemic population. As the proportion of bed net user is less than 29.18%,
bed nets are not considered effective. Nonetheless, when using bed nets, the quality of the
bed nets is an important consideration. According to Fig. 3, when k > k∗, the quality of
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Figure 3 R0 sensitivity diagram is shown as the
height curve from parameters k and η with the
critical lineR0 = 1. The red colored area defines the
endemic condition of malaria, whereas the blue
colored area defines a condition with no malaria

the bed nets is important to achieve R0 < 1. Solving 4.034325733
√

(0.35(kη – k + 1))2 = 1
with respect to η, we have

ηmin =
k – 0.2917917277

k
. (12)

Therefore, when k > k∗, we need η > ηmin to achieve the condition R0 < 1. This means that
when providing bed nets, the quality of the bed nets needs to be considered. The better
the quality of the bed nets, the higher the chance that the bed nets decrease the number
of mosquito bites; thus the proportion of bed net use is lower when k � k∗.

The life expectancy of mosquitos is different during the rainy season than in the dry
one, making their natural death rates different as well. The natural death rate depends on
time or μv(t). For example, the rainy season happens in the first six months followed by
the dry season in the next six months on the interval [0, 365]. Assuming that the natural
death of mosquitos in the dry season is twice that in the rainy season, the natural death of
mosquitos can be formulated as follows:

μv(t)

⎧
⎨

⎩
μ1 = 0.1, 0 < t < 365

2 ,

μ2 = 0.2, 365
2 < t < 365,

(13)

where μ1 is the natural death rate of the mosquito during the rainy season, and μ2 is the
natural death rate during the dry season. In real circumstances, there is a transition season
between both seasons. Therefore Eq. (13) needs to be changed into a continuous function
by using a Fourier series (Wrede and Spiegel [24]). By including the transition season the
natural death rate of mosquitos can be stated as follows:

μv(t) = 0.15 – 0.06366197724 sin

(
2

365
π t

)
– 0.02122065908 sin

(
6

365
π t

)
. (14)

Changes in the natural death rate of mosquitos shown in (14) also cause changes in the
total population of the infected mosquitos. As a result, fumigation needs to be adjusted de-
pending on the season. Because the life expectancy of mosquitos is higher during the rainy
season, fumigation with substances that are more effective in killing mosquitos should be
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selected; in other words, the fumigation rate in the rainy season is higher than the rate
during the dry season. Next, to compare the impacts of different types of fumigation, we
performed an autonomous simulation for compartment models with differences in the fu-
migation parameter u. The simulation excludes the bed net intervention (k = 0). The first
fumigation parameter has a constant fumigation rate u = 0.05. The second fumigation rate
is given periodically on the first day of the month by considering the season in Eq. (13) for
720 days, and the fumigation rates during the dry and rainy seasons are u1 = 1 and u2 = 2,
respectively. The simulation does not include fumigation.

Fumigation is expected to suppress the mosquito populations so that there will be no
vectors that can spread malaria. In Fig. 4, there is a quite a significant difference in the
curves with fumigation compared to the curve without fumigation. Since no fumigation is
implemented (blue curve), the number of susceptible humans decreased, which is caused
by the high intensity of infections and is confirmed by the increased numbers of infected
humans. On the other hand, the natural number of mosquitos decreases with or with-
out fumigation. However, the implementation of fumigation accelerates the decrease of
infected mosquitos and suppresses the endemic point. The plot on the bottom right of
Fig. 4 shows the differences between no intervention, constant fumigation, and two sea-
sons fumigation and shows a significant drop in the green curve due to a difference in the
fumigation rates. With seasons, the total population of the mosquito tends to zero with
R0 = 0.9413426708 < 1, and the epidemic eventually disappears. However, with no inter-
vention, the value of R0 becomes R0 = 1.412014006 > 1; in other words, the endemic state
still exists.

Figure 4 Autonomous simulations of the effects of changes in parameter u. The blue curve represents no
fumigation, the red curve represents fumigation with constant u = 0.05, and the green curve represents two
seasons of impulse fumigation strategy
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Figure 5 Autonomous simulations with changes in parameter k. The blue curve represents no intervention,
the red curve indicates that the bed nets are not effective, and the green curve indicates that the bed nets are
effective

The use of bed nets in endemic areas is expected to be able to prevent the spread of
malaria through mosquito bites. In this simulation, to suppress the number of infected
people, we choose a situation where no fumigation is performed (u = 0). The autonomous
simulation of bed nets is shown in Fig. 5.

In Fig. 5, when the bed nets are used, the blue curve shows that malaria persists with
R0 = 1.412014007 > 1. The red curve describes a population with bed nets but without
taking into account the minimum quality η of the bed nets, resulting in ineffectiveness
with R0 = 1.059010505 > 1. However, if the value of η is chosen based on the previous R0

sensitivity (η = 0.4), then, as seen in the green curve, the population is freed from malaria
with R0 = 0.9884098046 < 1. Although the difference in R0 is not significant, overall, we
can state that not only should the proportion k of bed nets usage be considered, but also
the quality η of the bed nets should be considered. Note that bed nets are given to prevent
mosquitos from biting humans, not to reduce the number of mosquitos. Therefore the
difference in each scenario in the mosquito population is not significant.

3 Malaria model with environment stochasticity
In the previous sections, we used a deterministic model of malaria spread where all pa-
rameters are constant. In real-world conditions, there are environmental factors that are
crucial to the spread of malaria, such as body temperature, CO2 levels released by hu-
mans, and residing near stagnant water; these factors are all changeable and unpredictable.
Therefore, to observe the effect of random environmental factors on malaria spread, in this
section, we consider the approach of stochastic differential equations (SDEs).
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Since the above environmental factors are related to the influence of the mosquito biting
rate βi(k,η), a stochastic noise is introduced by replacing the parameter βi(k,η), i = h, v,
with

β̂h(k,η) dt = βh(k,η) dt + σ dWh(t),

β̂v(k,η) dt = βv(k,η) dt + σ dWv(t),
(15)

where σ is the noise intensity (a positive constant), and dWi(t) = Wi(t + dt) – Wi(t) is the
increment of a Brownian motion (Higham [13]).

By substituting Eqs. (15) into the deterministic model (1) we obtain the following SDEs:

dSh =
(

μhNh – chβh(k,η)
Sh

Nh
Iv – μhSh + δRh

)
dt –

(
σ ch

Sh

Nh
Iv

)
dWh(t),

dIh =
(

chβh(k,η)
Sh

Nh
Iv – γ Ih – μhIh

)
dt +

(
σ ch

Sh

Nh
Iv

)
dWh(t),

dRh = (γ Ih – μhRh – δRh) dt,

dSv =
(

μvNv –
(

cvβv(k,η)Sv
Ih

Nh

)
– μvSv – uSv

)
dt –

(
σ cvSv

Ih

Nh

)
dWv(t),

dIv =
(

cvβv(k,η)Sv
Ih

Nh
– μvIv – uIv

)
dt +

(
σ cvSv

Ih

Nh

)
dWv(t).

(16)

Next, we performed numerical simulations to determine the effects of stochastic factors
and the implications of parameter changes on the SDE model (16). Simulations were per-
formed for as many as 250 iterations using the Euler–Maruyama method for 4096 days
with two scenarios, a simulation of fumigation intervention and a simulation of bed net
intervention. In the following simulation results, the first three curves are for human pop-
ulations, and the last two curves are for mosquito populations.

Simulations of fumigation are divided into two cases, cases without (Figs. 6–7) and with
(Fig. 8) time-dependent mosquito death rates. Since the simulations focus on fumigation,
we set the parameter of the bed net proportion to k = 0. Based on Eq. (10), the fumigation
rate u = 0.02 is selected for R0 > 1, and u = 0.06 for R0 < 1. Figure 6 shows the conditions
for endemic disease (R0 > 1). The stochastic trends are quite different from the determin-
istic trends. The greater the value of noise intensity σ , the more significant the fluctuations
in the simulations, which means that when an epidemic occurs, the greater environmen-
tal factors significantly affect the dynamics of all subpopulations. The results in Fig. 7 are
quite different from those in Fig. 6, where the stochastic trend is approaching a determin-
istic trend. The noise intensity value does not significantly affect the fluctuations. In other
words, when R0 < 1, environmental factors will not significantly affect the dynamics of
the subpopulations. These situations appear because the environment stochasticity is in-
cluded in the infection term (βi) in our model. When R0 > 1, infected compartments tend
toward nonzero equilibrium, which makes it easy to capture the impact of σ . On the other
hand, when R0 < 1, where all infected compartments tend toward the zero-equilibrium
point, the impact of σ is lower, and all variables significantly fluctuate.

For the second case, we consider the influence of the season on the mosquito death rate
μv since the life expectancy of mosquitos during rainy and dry season is variable. A con-
stant mosquitos death rate μv is converted to a function μv(t) in Eq. (14). The intervention
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Figure 6 Model simulation with fumigation and without bed nets whenR0 > 1

Figure 7 Model simulation with fumigation and without bed nets whenR0 < 1

Figure 8 Model simulation with periodic fumigations and without bed nets with the influence of the season

is given on the first day of the month periodically for 720 days. In Fig. 8, the curves from
susceptible mosquitos and infected mosquitos oscillate every 30 days due to the season
and periodic fumigation. The dynamics of the human population also cause oscillations
with smaller fluctuations than those of the mosquito population because the dynamics of
the mosquito population dynamics gain stability more quickly than those of the human
population. We refer to this situation as a fast dynamics and slow dynamics for mosquitos
and humans, respectively, which means that when an epidemic of malaria occurs, the more
random the environment, the more unpredictable the dynamics of malaria over a short-
term period.

Analyzing the effects of bed net intervention, we set the fumigation parameter u equal
to 0. Based on Eq. (12), the proportion of bed nets is k = 0.5, and the effectiveness of bed
nets is η = 0.5 for R0 > 1, whereas η = 0.4 for R0 < 1. The results in Figs. 9 and 10 are
not significant. In Fig. 10 the infected human and mosquito populations decrease slightly
faster than in the corresponding population in Fig. 9 and tends toward zero because of the
effectiveness of bed nets. This result shows that higher quality bed nets more effectively
reduce the spread of malaria. This result is consistent with the results of the deterministic
model in Fig. 5.
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Figure 9 Model simulation with bed nets η = 0.5 and without fumigation whenR0 > 1

Figure 10 Model simulation with bed nets η = 0.4 and without fumigation whenR0 < 1

Figure 11 Model simulation with fumigation and without bed nets when R0 > 1

Note that all above simulations result from one of the stochastic simulations. Of interest
is that the mean of the 250 stochastic simulations shows a different performance. For ex-
ample, in the simulation in Fig. 11 the mean solution is quite similar to the deterministic
solution. In other words, the mean curve of the stochastic simulations is close to that of
the deterministic model. The same results also have been mentioned in previous studies
(Feng et al. [11]; Banks, Catenacci and Hu [5]). Simulations using other scenarios also have
the same characteristics as simulations in Fig. 11.

4 Optimal control problem
There are several obstacles in using fumigation. One of these is the high cost of fumigation.
To overcome this problem, the deterministic model (1) can be developed into an optimal
control problem where the fumigation parameter u, which was previously set as a con-
stant, now changes into a control variable u(t) that depends on time. The purpose of this
optimal control problem is determining the continuous piecewise function of the control
variable u(t) in the interval t0 = 0 through t1 = T , which reduces infected populations at a
minimum cost.

We assume the costs to reduce the numbers of infected individuals with malaria Ih(t) and
Iv(t) are linear functions because of the assumption that the incurred costs are directly
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proportional to the numbers of infected humans and mosquitos. However, the cost of
fumigation is a nonlinear function because a wider area of intervention causes a sharp,
nonlinear cost increase. Therefore the objective function of the spread of malaria with
fumigation can be written as follows:

J
(
u(t)

)
=

∫ T

0

( 5∑

i=1

ωixi(t) + ωuu(t)2

)

dt,

where xi, i = 1, 2, . . . , 5, present Sh, Ih, Rh, Sv, and Iv, respectively. Since we only want to
minimize the number of infected individuals, we set ω2 and ω5 greater than 0, whereas the
other parameters are set to 0. Since higher numbers of fumigations elevate the intervention
cost, we set ωv > 0. Therefore we have

J
(
u(t)

)
=

∫ T

0

(
ω2Ih(t) + ω5Iv(t) + ωuu(t)2)dt. (17)

We assume that the control u(t) is not carried out all the time; instead, it is periodically
used every h days for T days. Therefore u(t) can be represented as a semidiscrete function
(Wijaya et al. [21])

ûopt(t) =
∑

0≤j≤	( T
h )


û(t)1[th.j ,th.j+1). (18)

In Eq. (18), 1[th.j ,th.j+1) is the characteristic function in the interval [th.j, th.j + 1), and û(t)
is the value of the control variable at time t given in Eq. (21).

Next, we define the Hamiltonian (Lenhart et al. [17]). The Hamiltonian consists of the
sum of the integrand of the objective function in Eq. (17) and the inner products of the
state in Eq. (1) with the adjoint variable λk , k = 1, 2, 3, 4, 5. The Hamiltonian H(xi, u,λk) can
be stated as follows:

H(xi, u,λk) =
(
ω2Ih(t) + ω5Iv(t) + ωuu(t)2)

+ λ1

(
μhNh –

Chβ1(k)Sh(t)Iv(t)
Nh

– μhSh(t) + δRh(t)
)

+ λ2

(
Chβ1(k)Sh(t)Iv(t)

Nh
– γhIh(t) – μhIh(t)

)

+ λ3
(
–δRh(t) + Ih(t)γh – Rh(t)μh

)

+ λ4

(
μvNv –

Cvβ2(k)Ih(t)Sv(t)
Nh

– μvSv(t) – u(t)Sv(t)
)

+ λ5

(
Cvβ2(k)Ih(t)Sv(t)

Nh
– μvIv(t) – u(t)Iv(t)

)
. (19)

Theorem 1 Given an optimal control variable u(t) that minimizes objective function J
(17) and the solutions for Sh, Ih, Rh, Sv, Iv of the corresponding system (1), there exist adjoint
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variables

λ̇1 = –
∂H

∂Sh(t)
= (λ1 – λ2)

(
Chβ1(k)Iv(t)

Nh

)
+ λ1μh,

λ̇2 = –
∂H

∂Ih(t)
= λ2(γh + μh) – λ3γh + (λ4 – λ5)

(
Cvβ2(k)Sv(t)

Nh

)
– ω2,

λ̇3 = –
∂H

∂Rh(t)
= λ3(δ + μh) – λ1δ,

λ̇4 = –
∂H

∂Sv(t)
= (λ4 – λ5)

(
Cvβ2(k)Ih(t)

Nh

)
+ λ4

(
μv + u(t)

)
,

λ̇5 = –
∂H

∂Iv(t)
= (λ1 – λ2)

(
Chβ1(k)Sh(t)

Nh

)
+ λ5

(
μv + u(t)

)
– ω5,

(20)

with the transversality condition for adjoint variables

λk(t) = 0, k = 1, 2, 3, 4, 5.

Since the admissible control should be bounded with umin and umax as the lower and upper
bounds of u(t), respectively, the control variable u(t) is represented by

û(t) = min

(
umax, max

(
umin,

λ4Sv(t) + λ5Iv(t)
2ωu(t)

))
. (21)

Proof We first differentiate the negative of the Hamiltonian (19) with respect to each state
variable, so the adjoint variables have the following form:

λ̇1 = –
∂H

∂Sh(t)
= (λ1 – λ2)

(
Chβ1(k)Iv(t)

Nh

)
+ λ1μh,

λ̇2 = –
∂H

∂Ih(t)
= λ2(γh + μh) – λ3γh + (λ4 – λ5)

(
Cvβ2(k)Sv(t)

Nh

)
– ω2,

λ̇3 = –
∂H

∂Rh(t)
= λ3(δ + μh) – λ1δ,

λ̇4 = –
∂H

∂Sv(t)
= (λ4 – λ5)

(
Cvβ2(k)Ih(t)

Nh

)
+ λ4

(
μv + u(t)

)
,

λ̇5 = –
∂H

∂Iv(t)
= (λ1 – λ2)

(
Chβ1(k)Sh(t)

Nh

)
+ λ5

(
μv + u(t)

)
– ω5,

with the transversality condition for adjoint variables

λk(T) = 0, k = 1, 2, 3, 4, 5.

To obtain optimal conditions, we also differentiate the Hamiltonian (19) with respect to
u(t) and set these equations equal to zero:

∂H
∂u(t)

= 2ωu
(
u(t)

)
– λ4Sv(t) – λ5Iv(t) = 0. (22)
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Solving (22) with respect to the control variable, we obtain

u∗(t) =
λ4Sv(t) + λ5Iv(t)

2ωu
. (23)

The control variable u∗(t) in (23) must satisfy umin ≤ u∗(t) ≤ umax for all t ∈ [0, T], and
then the control variable û(t) can be written as

û(t) = min

(
umax, max

(
umin,

λ4Sv(t) + λ5Iv(t)
2ωu(t)

))
,

where umax and umin are the lower and upper bounds for the control variable, respec-
tively. �

Several scenarios are implemented in numerical simulations based on the results of The-
orem 1. The simulations are conducted using four different scenarios, that is, different val-
ues of R0 (e.g., seasonal influence, implementation of bed nets, and different initial con-
ditions). To find a balance between each component in the cost function (17), we choose
ω2 = 0.5, ω5 = 0.0025, and ωu = 0.01. Note that our control variable is a rate of interven-
tion, which can tend to ∞. Therefore we can choose the interval value of fumigation is
0 ≤ u(t) ≤ 5 with the time interval of 0 ≤ t ≤ 500 days. Fumigations are conducted peri-
odically every 30 days for 500 days. It is assumed that one intervention will have an impact
for the next three days. In numerical simulations we used the iterative gradient descent
algorithm to accelerate the convergence of the control variable u(t).

Numerical simulations are conducted with and without fumigation when R0 > 1
and R0 < 1 and for the purpose of comparing the reductions of infected humans and
mosquitos. The R0 formula refers to Eq. (6). The initial values of each population are
Sh(0) = 8000, Ih(0) = 1900, Rh(0) = 100, Sv(0) = 8000, and Iv(0) = 2000.

Based on the results in Fig. 2, the biting rate value of mosquitos must satisfy βh <
0.17554563 to satisfy R0 < 1; thus we choose the parameter values βh = βv = 0.17, which
gives R0 = 0.6868. On the other hand, in the case where R0 > 1, which describes an epi-
demic that still exists in the environment, we have chosen the value for βh = βv = 0.35,
which gives the result for R0 = 1.412.

Figure 12 shows changes in the number of infected humans and mosquitos for 500 days.
The dynamics of the control variables u(t) in the cases of R0 > 1 and R0 < 1 have similar
behavior; that is, when infected mosquitos exist, fumigation must be performed. However,
when the number of infected mosquitos begins to decrease, the intervention must be re-
duced. The intervention in the case ofR0 < 1 decreases faster due to rapidly reduced num-
bers of infected mosquitos compared to the case of R0 > 1. As a result, the cost function
of R0 > 1 is 3.4632225 × 105, whereas in the case of R0 < 1, it is only 2.535228 × 105. This
result appears because, under the condition R0 < 1, the environment most likely tends to
a malaria-free equilibrium even though fumigation is not implemented. However, this fu-
migation policy faster achieves the malaria-free equilibrium. Therefore, the cost function
when R0 < 1 is much lower than when R0 > 1.

In Table 3, in the cases of R0 > 1 and R0 < 1, fumigation is equally successful in reducing
the number of infected mosquito populations. In the case of R0 > 1 the reduction in the
infected mosquito population on the 500th day after the intervention is 79.48%, whereas
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Figure 12 Numerical simulations in the cases ofR0 > 1 andR0 < 1

Table 3 Number of infected individuals on day 500 in the cases ofR0 < 1 andR0 > 1

Population R0 > 1 R0 < 1
Without
intervention

With
intervention

Percentage
reduction

Without
intervention

With
intervention

Percentage
reduction

Infected mosquitos 234 48 ↓79.48% 21 13 ↓38.05%
Infected humans 2367 865 ↓63.45% 577 362 ↓37.26%

in the case of R0 < 1, it was 38.05%. The results are similar for the number of infected
humans.

In the following simulations, we aim to determine the dynamics for infected humans
and mosquitos with and without fumigation by seasonal and nonseasonal influence. As in
Sect. 2, the mosquito mortality rate μv, which was constant, is converted into a function
as in Eq. (14).

Based on Figs. 13 and 14, a fumigation intervention is successful in reducing the num-
ber of infected humans and mosquitos, and the number of reductions is shown in Table 4.
However, when the seasonal influence is considered, the intervention effects decrease sig-
nificantly when the rainy season period ends (t = 182). The cost function when there is
a seasonal influence is 3.3577 × 105, whereas when there is no seasonal influence, it is
3.4632225 × 105.

Next, we performed numerical simulations by combining fumigation with nonseasonal
influences and the use of bed nets. The purpose is to see whether the use of bed nets
can help to reduce the number of infected humans and mosquitos more effectively than
fumigation alone. In this simulation, two cases of bed net use were considered; the first
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Figure 13 Numerical simulation results with and without fumigation in cases of nonseasonal influence

Figure 14 Numerical simulation results with and without fumigation in cases of seasonal influence



Handari et al. Advances in Difference Equations        (2019) 2019:497 Page 20 of 25

Table 4 Number of humans and mosquitos infected on day 500 with seasonal influence

Populations R0 > 1 R0 < 1
Without
intervention

With
intervention

Percentage
reduction

Without
intervention

With
intervention

Percentage
reduction

Infected mosquitos 168 45 ↓73.21% 197 64 ↓67.51%
Infected humans 1905 803 ↓57.84% 2367 923 ↓61.00%

Figure 15 Results of simulations with and without fumigation intervention when k = 0 and k = 0.2

case is where there are no people using bed nets (k = 0), and in the second case, 20% of
the total population uses bed nets (k = 0.2).

Changes in the number of infected humans and mosquitos and the dynamics of the con-
trol variable u(t) can be seen in Fig. 15. The dynamics of the control variables show similar
behavior in both cases. However, the fumigation used for case k = 0 is greater than the in-
tervention in the case of k = 0.2. The cost function for the case of k = 0 is 3.46322 × 105

compared to that for the case of k = 0.2, which is 3.73323 × 105. Therefore the combina-
tion of bed nets and fumigation can reduce the number of infected mosquitos and humans
with minimal cost compared to the numbers from the case without the combination.

Table 5 shows that the intervention of bed nets along with fumigation successfully re-
duces the number of infected humans and mosquitos. Even though using fumigation only
for preventing malaria yielded a higher reduction of infected humans and mosquitos than
using fumigation and bed nets together, the total number of infected individuals in case of
fumigation and bed nets being used together is fewer than that achieved with fumigation
only. This is highly related to how the use of bed nets can reduce R0.
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Table 5 The number of infected individuals on day 500 when k = 0 and k = 0.2

Population k = 0 k = 0.2
Without
intervention

With
intervention

Percentage
reduction

Without
intervention

With
intervention

Percentage
reduction

Infected mosquitos 168 45 ↓73.21% 114 31 ↓72.8%
Infected humans 1905 803 ↓57.84% 1659 627 ↓62.2%

Figure 16 Numerical simulation results with and without fumigation in the endemic reduction scenario

Finally, we want to understand the influence of fumigation under two conditions that ex-
ist in the human population, endemic reduction and endemic prevention. The difference
between the two conditions is the number of mosquitos and humans infected at the initial
condition t = 0, where in the endemic reduction scenario the number of infected individu-
als is relatively high as compared to the endemic prevention condition. Here we use initial
conditions to illustrate the possible situations that occur in the field. In the endemic re-
duction scenario the initial values are Sh(0) = 8000, Ih(0) = 1900, Rh(0) = 100, Sv(0) = 8000,
and Iv(0) = 2000. In the endemic prevention scenario, the initial values are Sh(0) = 9900,
Ih(0) = 80, Rh(0) = 20, Sv(0) = 9950, and Iv(0) = 50.

The endemic reduction scenario illustrates cases that occur in the field when malaria
infection has spread. The number of infected individuals (humans and mosquitos) and
the dynamics of the control variable u(t) are shown in Fig. 16. Table 6 shows the reduction
in the number of infected individuals for this scenario after a period of time.

In the endemic prevention scenario the number of infected individuals is still relatively
low (80), which describes malaria infections when it begins to spread. Changes in the
number of infected individuals and the dynamics of the control variable u(t) are shown
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Table 6 The numbers of each population of infected individuals on the 500th day of the endemic
reduction scenario

Population Without
intervention

With
intervention

Percentage
reduction

Infected mosquitos 168 45 ↓73.21%
Infected humans 1905 803 ↓57.84%

Figure 17 Numerical simulation results with and without fumigation in the endemic prevention scenario

Table 7 The number of each population of infected individuals on the 500th day of the endemic
prevention scenario

Population Without
intervention

With
intervention

Percentage
reduction

Infected mosquitos 35 5 ↓85.71%
Infected humans 434 59 ↓86.41%

in Fig. 17. Table 7 contains information on the reduction numbers for infected individuals
at the 500th day.

Based on Figs. 16 and 17, fumigation has successfully reduced the number of infected
humans and mosquitos. The dynamic control variable u(t) for both scenarios shows that
for increase in the number of infected mosquitos, fumigation must be performed, and
when the number of infected mosquitos begins to decrease, fumigation must be reduced.
From the result of endemic prevention, the value of the intervention is 0 < u(t) < 2.5, which
is smaller than the results of the endemic reduction 0 < u(t) ≤ 5. The cost function of the
endemic reduction scenario is 3.46322 × 105, which is greater than the cost function for
endemic prevention of 1.740746 ×104. This means that the prevention of malaria is much
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better if it is performed during the early stages of the endemic. Therefore an early warning
system for malaria endemics should be considered to achieve better malaria prevention
results.

Tables 6 and 7 show that the percentage reduction of the endemic prevention scenario
is larger than that of the endemic reduction scenario. This is because the number of in-
fected individuals to be reduced in an endemic reduction scenario is greater than that in
an endemic prevention scenario.

5 Conclusion
The deterministic model of epidemic spread of malaria with bed nets and fumigation
interventions has a malaria-free equilibrium (MFE), which always exists biologically,
whereas the malaria endemic equilibrium (MEE) exists when R0 > 1. The MFE is asymp-
totically stable when R0 < 1, whereas MEE can be stated as a stable point under the con-
dition R0 ≥ 1. The simulation results show that fumigation is not needed when the in-
fection rate is less than the minimum boundary of the fumigation rate such that R0 < 1.
In bed net interventions, when the proportion of bed nets used is less than the minimum
value, bed nets will not eliminate malaria; thus the proportion of bed net users needs to
be evaluated. Additionally, the better the quality of the bed nets, the higher the chance
of reducing the number of mosquito bites. Simulations also show that when fumigation
is not performed, many healthy humans become infected. Additionally, fumigation needs
to be adjusted depending on season. By incorporating the seasonal influence the popula-
tion of mosquitos reduces with R0 = 0.9413426708 < 1. However, with no intervention,
R0 = 1.412014006 > 1; in other words, the malaria epidemic will still exist.

To observe the effect of random environmental factors on the spread of malaria, we
considered a stochastic model. Numerical simulations were performed to determine the
effects of stochastic factors and the implications of parameter changes on the model. The
simulations show that when an epidemic exists, the environmental factors significantly
affect the dynamics within all subpopulations. However, when R0 < 1, the environmental
factors do not greatly affect the dynamics of the subpopulations.

When the intervention is performed every 30 days, the numbers of susceptible and in-
fected mosquitos oscillate every 30 days due to the influence of the season and fumigation.
Reducing the infected population requires using smaller values for the effectiveness of bed
nets. These results are consistent with the analytic solution in the deterministic case.

To reduce the large cost of fumigation, the deterministic model was developed into an
optimal control problem where fumigation parameters, which were previously set as con-
stant, changed into control variables that depended on time. Fumigation was also con-
ducted every 30 days, and we assumed that an intervention will have an impact until the
following three days. The choice of parameter values also references the results of the
deterministic case. The simulations show that when infected mosquitos exist, fumigation
must be performed. However, when the number of infected mosquitos begins to decrease,
the level of the intervention must be reduced. When seasonal influences are considered,
the level of intervention decreases significantly when the rainy season ends. The cost func-
tion is lower with a seasonal influence than without it. Numerical simulations were also
performed by combining fumigation and the use of bed nets, and the combination of both
of these interventions can reduce the numbers of infected mosquitos and humans with
minimal cost. The influence of fumigation in endemic reduction and endemic prevention
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was also investigated. Fumigation has successfully reduced the numbers of infected hu-
mans and mosquitos. The dynamic control variable shows that if the number of infected
mosquitos increases, then fumigation is required; on the other hand, fumigation must be
performed less frequently if there are fewer infected mosquitos. The cost function for the
endemic reduction scenario is higher than the cost function for the endemic prevention
scenario.
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