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Abstract
This paper is concerned with periodic pulse control of Hopf bifurcation for a
fractional-order delay predator–prey model incorporating a prey refuge. The
existence and uniqueness of a solution for such system is studied. Taking the time
delay as the bifurcation parameter, critical values of the time delay for the emergence
of Hopf bifurcation are determined. A novel periodic pulse delay feedback controller
is introduced into the first equation of an uncontrolled system to successfully control
the delay-deduced Hopf bifurcation of such a system. Since the stability theory is not
well-developed for nonlinear fractional-order non-autonomous systems with delays,
we investigate the periodic pulse control problem of the original system by a
semi-analytical and semi-numerical method. Specifically, the stability of the linearized
averaging system of the controlled system is first investigated, and then it is shown by
numerical simulations that the controlled system has the same stability characteristics
as its linearized averaging system. The proposed periodic pulse delay feedback
controller has more flexibility than a classical linear delay feedback controller
guaranteeing the control effect, due to the fact that the pulse width in each control
period can be flexibly selected.

Keywords: Fractional-order; Time-delay; Hopf bifurcation; Periodic pulse control;
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1 Introduction
Long-range temporal memory exists in many population systems [1–4]. Ecological mem-
ory was originally defined as “the capacity of past states or experiences to influence present
or future responses of the community” [5], and as “the degree to which an ecological pro-
cess is shaped by its past modifications of a landscape” [6]. Since the Caputo fractional
derivative of q-order for the function f ∈ Cn([t0,∞),R) (n – 1 < q ≤ n ∈ Z+) at time t de-
pends on the total effect of the usual nth-order integer derivative on the interval [t0, t] [7,
8], a fractional-order derivative is associated with whole domain for a biological process
[9]. Due to this memory effect, fractional-order systems with Caputo fractional derivatives
have more advantages than classical integer-order systems in characterizing the tempo-
ral memory. In addition, the fractional theory appearing in various fields of viscoelasticity
and electrical engineering, rheology, electrochemistry, biophysics, biology and bioengi-
neering, mechanics, signal and image processing, mechatronics, physics, and control the-
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ory have been proposed and studied extensively because of their universal existence and
applicability [10]. Recently, Yang et al. proposed new and interesting fractional derivatives
without singular kernel [11, 12], and analytic and computational methods for solving non-
linear fractional-order partial differential equations [13, 14], which can be effectively used
in the modeling of the fractional-order heat flow [15, 16]. In the last decade, the dynam-
ics of fractional-order prey–predator systems, such as stability, bifurcations, chaos, have
been researched by many investigators [17–26]. In particular, Li et al. [19] investigated
the global asymptotic stability of predator-extinction equilibrium point and coexistence
equilibrium point for a fractional-order predator–prey model incorporating a prey refuge.
Panja [17] studied the stability and dynamics of a three-species predator–prey model with
prey, middle predator and top predator. Panja [20] also discussed the uniqueness, bound-
edness and non-negativity of solutions and the stability around equilibrium points of a
fractional-order predator–prey model with intraguild predation.

Due to its complexity and diversity, many systems, such as communication systems,
power systems, biological systems, network transmission systems, always inevitably show
hysteresis: the rate of change of the current state is not only related to the state of the cur-
rent moment, but it also depends on the state of a certain moment or a certain period of
time in the past. This property of the systems is called time delay, and researchers have
introduced differential equations with time delay to describe and study the time-delay
system. Especially, the dynamics of predator–prey (PP) systems with delay have been pro-
posed and studied extensively. Many researchers have considered the impact of the past
states of biological systems on the present and the future, i.e. incorporating time delay into
biological models to describe resource regeneration time, maturation time, reaction time,
capturing time, feeding time, gestation period [27, 28]. On the other hand, time-delay bi-
ological systems have more complex and richer dynamic behaviors: delays can cause the
loss of stability and can induce periodic solutions (Hopf bifurcation), chaos and various
oscillations [29–34].

In order to be more consistent with the actual development of biological populations,
many researchers combine the fractional-order derivative with the time delay in the model
to describe and investigate different complex systems, such as predator–prey interactions
with memory effect [35–38], and fractional-order neural networks with delays [39, 40].

Based on the above analysis, we will add a time delay into the model proposed by Li et
al. [19], and consider a fractional-order delay predator–prey model incorporating a prey
refuge in this paper.

More recently, Hopf bifurcations for delayed fractional-order system have received
growing attention. However, it should be noted that researchers pay little attention to
the control of bifurcation. Time-delayed feedback is one of the most important regula-
tory mechanisms in biology. Pyragas [41] initially proposed the delayed feedback control
(DFC) in nonlinear autonomous differential equations as a method for stabilizing unstable
periodic orbits by using the difference between the current state and the delayed state, that
is, K(y(t)–y(t –τ )), where K is called the feedback gain. Bifurcation dynamics for a nonlin-
ear system can be reduced or suppressed by designing an appropriate controller, thereby
achieving some desirable dynamical behaviors [42, 43]. Recently, several novel controllers
were introduced for the bifurcation control problem of some delayed fractional predator–
prey systems [44–46] and delayed fractional-order network models [47–49]. Huang et al.
[44, 45] introduced a linear delayed feedback controller and a generalized delayed feed-
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back controller, respectively, to successfully control the Hopf bifurcation in a delayed frac-
tional predator–prey system with incommensurate orders, and it is further certified that
the occurrence of the bifurcation can be delayed as feedback gain decreases.

However, to the best of our knowledge, there are few papers discussing the issue of pe-
riodic pulse controller in fractional biological population models. Wang et al. [50] intro-
duced a periodic pulse control for Chua’s circuit. Considering the periodic changing of
environment (e.g., seasonal effects of weather, food supplies and economic reasons, etc.),
periodic pulse control is an effective control strategy for the infrequent control. In or-
der to reduce the control time costs and to facilitate implementation, we also introduce
a periodic pulse controller in our proposed fractional-order delay predator–prey model
incorporating a prey refuge.

The main contributions of this paper are as follows. First, the existence and unique-
ness of the solution for our proposed system is studied by using the Banach contraction
principle. Second, Hopf bifurcation is studied by taking the time delay as the bifurcation
parameter, and sufficient conditions for the characteristic equation has at least one pair
of pure imaginary roots and the emergence of Hopf bifurcation are established. Finally, a
periodic pulse delay feedback controller is introduced into the first equation of the origi-
nal system to control the Hopf bifurcation successfully. The biological interpretations of
main theoretical results are also given.

The rest of this paper is organized as follows. In Sect. 2, Mathematical model is formu-
lated. In Sect. 3, some definitions are given. In Sect. 4, the existence and uniqueness of the
solution for our proposed system was studied, Hopf bifurcation of uncontrolled delayed
fractional-order predator–prey model incorporating a prey refuge is analyzed, and a pe-
riodic pulse delay feedback controller is designed to control the Hopf bifurcation for the
proposed model. In Sect. 5, numerical simulations are carried out to verify our theoreti-
cal findings. The conclusions and discussions are given in Sect. 6. Finally, sample Matlab
codes for the graphical solutions are listed in the appendices.

2 Model formulation
Li et al. [19] investigated the following fractional-order predator–prey model incorporat-
ing a prey refuge:

⎧
⎨

⎩

c
t0D

q
t x(t) = rx(t)(1 – x(t)

k ) – c(1 – m)x(t)y(t), x(t0) = xt0 ,
c
t0D

q
t y(t) = ec(1 – m)x(t)y(t) – dy(t), y(t0) = yt0 ,

(2.1)

where 0 < q < 1, c
t0D

q
t denotes the Caputo fractional derivative and t0 ≥ 0 denotes the initial

time; x(t) and y(t) denote the densities of prey and predator populations at time t, respec-
tively, and all constants r, k, c, d, e are positive, m ∈ [0, 1) is constant. For more detailed
description of the model, we refer to [19]. The dynamics of the prey–predator systems
incorporating a prey refuge are immensely valuable due to its realism, i.e. for a number
of prey populations there are some forms of refuge where they are safe and therefore the
prey species can be prevented well from extinction.

It is more realistic to consider the maturation time of the predator in the model (2.1).
In this paper, we consider the following fractional-order predator–prey model with time
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delay:
⎧
⎨

⎩

c
t0D

q
t x(t) = rx(t)(1 – x(t)

k ) – c(1 – m)x(t)y(t – τ ),
c
t0D

q
t y(t) = ec(1 – m)x(t)y(t – τ ) – dy(t),

(2.2)

where τ > 0 is regarded as the maturation time of the predator, other parameters r, k, c,
m, e, d have the same meaning as system (2.1), and initial conditions x(0) > 0 and y(t) =
φ(t) > 0 (t ∈ [–τ , 0]), where φ(t) is a smooth function. We will study the impact of the time
delay τ on the dynamics of the model (2.2).

Ecological control refers to the process of artificially interfering with the ecosystem to
make it dynamic. Compared with the real-time control, the periodic pulse control can
intermittently control the ecosystem according to periodic factors such as seasonal and
weather changes under guaranteeing the control stability effect. This periodically inter-
mittent control can fully exert and stimulate the self-regulation and self-recovery of the
ecosystem, which can improve its ability to cope with external intervention and destruc-
tion. It is of high biological importance for introducing periodic pulse delay feedback con-
trollers in ecosystems, since periodic pulse controls can enhance the long-term stable ex-
istence and development of ecosystems, thereby enriching species diversity.

This paper is concerned with periodic pulse control problem of Hopf bifurcation of sys-
tem (2.2). In order to reduce the control time costs and facilitate implementation in prac-
tice, we introduce a periodic pulse delay feedback controller of the form δ(x(t) – x(t –
τ ))PT ,p(t), where

PT ,p(t) =
T
p

+∞∑

n=0

Fn,T ,p(t), (2.3)

and

Fn,T ,p(t) =

⎧
⎨

⎩

1, nT ≤ t < nT + p,

0, elsewhere.

PT ,p(t) is a periodic pulse train with a pulse width of 0 < p ≤ T and a period of T > 0 [50].
It is easy to see that, when p = T , a periodic pulse delay feedback controller δ(x(t) – x(t –
τ ))PT ,p(t) can be reduced to a linear delay feedback controller δ(x(t) – x(t – τ )). Indeed,
we impose a linear control of the system during the time interval nT ≤ t < nT + p, and we
do not intervene the system during the time interval nT + p ≤ t < (n + 1)T . In practical
problems, we can adjust the size of p to realize expected effects. Thereby periodic pulse
control has more flexibility than classical linear control.

3 Preliminaries
In this section, we will introduce some fundamental definitions.

Definition 1 ([7, 8]) The Riemann–Liouville fractional integral operator of order q of a
continuous function f : [t0,∞) →R is defined as

Iqf (t) =
1

Γ (q)

∫ t

0
(t – ζ )q–1f (ζ ) dζ ,

where Γ (·) is the Gamma function, q > 0.
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Definition 2 ([7, 8]) The Caputo fractional derivative of order q of a function f ∈
Cn([t0,∞),R) is defined by

c
t0D

q
t f (t) =

1
Γ (n – q)

∫ t

t0

(t – ζ )n–q–1f (n)(ζ ) dζ ,

where n is a positive integer such that n – 1 < q ≤ n. In particular, when 0 < q ≤ 1, we have

c
t0D

q
t f (t) =

1
Γ (1 – q)

∫ t

t0

f ′(ζ )
(t – ζ )q dζ .

Definition 3 ([7, 8]) The Laplace transform of the Caputo fractional derivative of order
n – 1 < q ≤ n for a function f ∈ Cn([t0,∞),R) is

L
{c

t0D
q
t f (t); s

}
= sqF(s) –

∑n–1
k=0 sq–k–1f (k)(t0),

where F(s) is the Laplace transform of f (t), and f (k)(t0) (k = 0, . . . , n – 1) are the initial
conditions. Obviously

L
{c

t0D
q
t f (t); s

}
= sqF(s),

if f (k)(t0) = 0 for k = 0, . . . , n – 1.

Lemma 1 ([51]) Consider the following n-dimensional fractional-order system with delay:

c
t0D

q
t xj(t) = fj

(
x1(t), . . . , xn(t); τ

)
, j = 1, 2, . . . , n, (3.1)

where 0 < q < 1 and the time delay τ ≥ 0. System (3.1) undergoes a Hopf bifurcation at the
equilibrium x∗ = (x∗

1, . . . , x∗
n) when τ = τ0 if the following conditions are satisfied:

(1) All the eigenvalues λj (j = 1, 2, . . . , n) of the coefficient matrix A of the linearized
system of (3.1) with τ = 0 satisfy | arg(λj)| > qπ

2 .
(2) The characteristic equation of the linearized system of (3.1) has a pair of purely

imaginary roots ±iω0 when τ = τ0.
(3) Re [ ds(τ )

dτ
]|(τ=τ0,ω=ω0) > 0, where Re[·] denotes the real part of the complex number.

4 Main results
In this section, we first investigate the existence and uniqueness of a solution for system
(2.2). Next, we address the Hopf bifurcation of system (2.2) by taking the time delay τ as
the bifurcation parameter. Last, a periodic pulse delay feedback controller δ[x(t) – x(t –
τ )]PT ,p(t) is introduced into the first equation of an uncontrolled system (2.2) to control
the Hopf bifurcation of such a system.

4.1 Existence and uniqueness
We study the existence and uniqueness of a solution for the initial value problem

c
t0D

q
t x(t) = rx(t)

(

1 –
x(t)

k

)

– c(1 – m)x(t)y(t – τ ),

c
t0D

q
t y(t) = ec(1 – m)x(t)y(t – τ ) – dy(t), t ∈ [t0, t0 + H],

(
x(t), y(t)

)
= ψ(t) :=

(
ψ1(t),ψ2(t)

)
, t ∈ [t0 – τ , t0],

(4.1)
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where 0 < q ≤ 1, t0 ≥ 0, τ > 0, H > 0, and the initial value function ψ(t) ∈ C([t0 – τ , t0],
R

2).
Denote

X(t) =
(
x(t), y(t)

)
, f

(
X(t)

)
= (f1

(
X(t)

)
, f2

(
X(t)

)
,

where

f1
(
X(t)

)
= rx(t)

(

1 –
x(t)

k

)

– c(1 – m)x(t)y(t – τ ),

f2
(
X(t)

)
= ec(1 – m)x(t)y(t – τ ) – dy(t).

(4.2)

For X = (x, y) ∈R
2, take the norm ‖X‖ = |x|+ |y|. Take X = C([t0 –τ , t0 +H],R2), and define

the norm ‖X‖X = maxt∈[t0–τ ,t0+H] ‖X(t)‖ for X(t) = (x(t), y(t)) ∈ X.
Set

D =
{

X ∈ X : X(t) = ψ(t) for t ∈ [t0 – τ , t0], and max
t∈[t0,t0+H]

∥
∥X(t) – ψ(t0)

∥
∥ ≤ G

}

(G > 0).

Clearly, for any X(t) ∈ D , we have ‖X‖X ≤ M := max{maxt∈[t0–τ ,t0] ‖ψ(t)‖,‖ψ(t0)‖ + G}.
Therefore, for any X(t) = (x(t), y(t)), X̄(t) = (x̄(t), ȳ(t)) ∈ D , t ∈ [t0, t0 + H], we have

∥
∥f

(
X(t)

)
– f

(
X̄(t)

)∥
∥

=
∣
∣f1

(
X(t)

)
– f1

(
X̄(t)

)∣
∣ +

∣
∣f2

(
X(t)

)
– f2

(
X̄(t)

)∣
∣

=
∣
∣
∣
∣rx(t)

(

1 –
x(t)

k

)

– c(1 – m)x(t)y(t – τ ) – rx̄(t)
(

1 –
x̄(t)

k

)

+ c(1 – m)x̄(t)ȳ(t – τ )
∣
∣
∣
∣

+
∣
∣ec(1 – m)x(t)y(t – τ ) – dy(t) – ec(1 – m)x̄(t)ȳ(t – τ ) + dȳ(t)

∣
∣

=
∣
∣
∣
∣r

(
x(t) – x̄(t)

)
–

r
k
(
x(t) + x̄(t)

)(
x(t) – x̄(t)

)
– c(1 – m)y(t – τ )

(
x(t) – x̄(t)

)

– c(1 – m)x̄(t)
(
y(t – τ ) – ȳ(t – τ )

)
∣
∣
∣
∣ +

∣
∣ec(1 – m)y(t – τ )

(
x(t) – x̄(t)

)

+ ec(1 – m)x̄(t)
(
y(t – τ ) – ȳ(t – τ )

)
– d

(
y(t) – ȳ(t)

)∣
∣

≤
∣
∣
∣
∣r –

r
k
(
x(t) + x̄(t)

)
– c(1 – m)y(t – τ )

∣
∣
∣
∣ · ∣∣x(t) – x̄(t)

∣
∣

+
∣
∣c(1 – m)x̄(t)

∣
∣ · ∣∣y(t – τ ) – ȳ(t – τ )

∣
∣ +

∣
∣ec(1 – m)y(t – τ )

∣
∣ · ∣∣x(t) – x̄(t)

∣
∣

+
∣
∣ec(1 – m)x̄(t)

∣
∣ · ∣∣y(t – τ ) – ȳ(t – τ )

∣
∣ + d

∣
∣y(t) – ȳ(t)

∣
∣

≤
(

r +
2rM

k
+ c(1 + e)(1 – m)M

)
∣
∣x(t) – x̄(t)

∣
∣ + d

∣
∣y(t) – ȳ(t)

∣
∣

+ c(1 + e)(1 – m)M
∣
∣y(t – τ ) – ȳ(t – τ )

∣
∣

≤ L
(∥
∥X(t) – X̄(t)

∥
∥ +

∥
∥X(t – τ ) – X̄(t – τ )

∥
∥
)
, (4.3)

where L := max{r + 2rM
k + c(1 + e)(1 – m)M, d}.
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Similarly, for any X(t) ∈ D , t ∈ [t0, t0 + H], we have

∥
∥f

(
X(t)

)∥
∥ =

∣
∣f1

(
X(t)

)∣
∣ +

∣
∣f2

(
X(t)

)∣
∣

=
∣
∣
∣
∣rx(t)

(

1 –
x(t)

k

)

– c(1 – m)x(t)y(t – τ )
∣
∣
∣
∣

+
∣
∣ec(1 – m)x(t)y(t – τ ) – dy(t)

∣
∣

≤
(

r +
r|x(t)|

k
+ c(1 + e)(1 – m)

∣
∣y(t – τ )

∣
∣

)
∣
∣x(t)

∣
∣ + d

∣
∣y(t)

∣
∣

≤
(

r +
rM
k

+ c(1 + e)(1 – m)M
)

∣
∣x(t)

∣
∣ + d

∣
∣y(t)

∣
∣

≤ L
∥
∥X(t)

∥
∥. (4.4)

Next, by applying the fractional integral operator to system (4.1), (4.1) can be transformed
into the following equivalent Volterra equation of the second kind:

X(t) = ψ(t0) +
1

Γ (q)

∫ t

t0

(t – s)q–1f
(
X(s)

)
ds, t ∈ [t0, t0 + H],

X(t) = ψ(t) =
(
ψ1(t),ψ2(t)

)
, t ∈ [t0 – τ , t0].

Define the operator P : D → D , such that

P X(t) := ψ(t0) +
1

Γ (q)

∫ t

t0

(t – s)q–1f
(
X(s)

)
ds, t ∈ [t0, t0 + H],

P X(t) := ψ(t) =
(
ψ1(t),ψ2(t)

)
, t ∈ [t0 – τ , t0].

(4.5)

Then P has a unique fixed point in D implies that problem (4.1) has a unique solution.
By (4.3) and (4.5), for any X(t) = (x(t), y(t)), X̄(t) = (x̄(t), ȳ(t)) ∈ D , t ∈ [t0, t0 + H], we have

∥
∥P

(
X(t)

)
– P

(
X̄(t)

)∥
∥

≤ 1
Γ (q)

∫ t

t0

(t – s)q–1∥∥f
(
X(s)

)
– f

(
X̄(s)

)∥
∥ds

≤ L
Γ (q)

∫ t

t0

(t – s)q–1(∥∥X(s) – X̄(s)
∥
∥ +

∥
∥X(s – τ ) – X̄(s – τ )

∥
∥
)

ds

≤ L
Γ (q)

∫ t

t0

(t – s)q–1
(

max
s∈[t0,t0+H]

∥
∥X(s) – X̄(s)

∥
∥

+ max
{

max
s∈[t0–τ ,t0]

∥
∥X(s) – X̄(s)

∥
∥, max

s∈[t0,t0+H]

∥
∥X(s) – X̄(s)

∥
∥
})

ds

≤ 2L
Γ (q)

∫ t

t0

(t – s)q–1
(

max
s∈[t0,t0+H]

∥
∥X(s) – X̄(s)

∥
∥
)

ds

≤ 2LHq

Γ (q + 1)
‖X – X̄‖X.

So, we have ‖P (X(·))–P (X̄(·))‖X ≤ 2LHq

Γ (q+1)‖X – X̄‖X, which implies that P is a contraction
operator if H < ( Γ (q+1)

2L )1/q.
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For any X(t) ∈ D , t ∈ [t0, t0 + H], by (4.4) and (4.5), we have

∥
∥P

(
X(t)

)
– ψ(t0)

∥
∥ ≤ 1

Γ (q)

∫ t

t0

(t – s)q–1∥∥f
(
X(s)

)∥
∥ds

≤ L
Γ (q)

∫ t

t0

(t – s)q–1∥∥X(s)
∥
∥ds

≤ L
Γ (q)

∫ t

t0

(t – s)q–1 max
s∈[t0,t0+H]

∥
∥X(s)

∥
∥ds

≤ LHq

Γ (q + 1)
max

s∈[t0,t0+H]

∥
∥X(s)

∥
∥

≤ LHqM
Γ (q + 1)

. (4.6)

If H ≤ ( Γ (q+1)G
LM )1/q, then it follows from (4.6) that maxt∈[t0,t0+H] ‖P (X(t)) – ψ(t0)‖ ≤ G,

which implies P (X(t)) ∈ D for any X(t) ∈ D .
By the Banach contraction principle, P has a unique fixed point in D when H <

min{( Γ (q+1)G
LM )1/q, ( Γ (q+1)

2L )1/q}. From the above analysis, the following theorem can be ob-
tained.

Theorem 1 If H < min{( Γ (q+1)G
LM )1/q, ( Γ (q+1)

2L )1/q}, then the initial value problem (4.1) has a
unique solution.

4.2 Bifurcation analysis of the uncontrolled system
For convenience, we introduce the basic reproduction number of the integer-order coun-
terpart of system (2.1). The integer-order counterpart of system (2.1) can be written as

⎧
⎨

⎩

dx(t)
dt = rx(t)(1 – x(t)

k ) – c(1 – m)x(t)y(t),
dy(t)

dt = ec(1 – m)x(t)y(t) – dy(t).
(4.7)

Lemma 2 For the integer-order counterpart (4.7) of system (2.1), the basic reproduction
number is

R0 :=
ec(1 – m)k

d
. (4.8)

Proof The basic reproduction number of system (4.7) can be obtained by the next gener-
ation method [52]. Since the procedure of calculation is similar to that of Theorem 3 in
[24], we omit the details here. �

System (2.2) always has trivial equilibrium point ε0 = (0, 0) and predator-free equilib-
rium ε1 = (k, 0). When R0 > 1, system (2.2) has a unique coexistence equilibrium ε2 =
( k

R0
, rek

dR2
0

(R0 – 1)).
The linearized system of (2.2) at equilibrium point (x∗, y∗) is defined as

⎧
⎨

⎩

c
t0D

q
t x(t) = (r(1 – 2x∗

k ) – c(1 – m)y∗)(x(t) – x∗) – c(1 – m)x∗(y(t – τ ) – y∗),
c
t0D

q
t y(t) = ec(1 – m)y∗(x(t) – x∗) + ec(1 – m)x∗(y(t – τ ) – y∗) – d(y(t) – y∗).

(4.9)
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Denote

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

a1 = c(1 – m)y∗ – r(1 – 2x∗
k ),

a2 = c(1 – m)x∗,

a3 = –ec(1 – m)y∗,

a4 = –ec(1 – m)x∗,

a5 = d.

Taking the Laplace transform [53] on both sides of system (4.9) (for simplicity, taking
t0 = 0) gives

⎧
⎪⎪⎨

⎪⎪⎩

sqX̂(s) – sq–1x(0) = –a1X̂(s) + a1x∗
s – a2e–sτ (Ŷ (s) +

∫ 0
–τ

e–stφ(t) dt) + a2y∗
s ,

sqŶ (s) – sq–1y(0) = –a3X̂(s) + a3x∗
s – a4e–sτ (Ŷ (s) +

∫ 0
–τ

e–stφ(t) dt)

+ a4y∗
s – a5Ŷ (s) + a5y∗

s ,

(4.10)

where X̂(s), Ŷ (s) are the Laplace transform of x(t), y(t) with X̂(s) = L(x(t)), Ŷ (s) = L(y(t)),
x(0) > 0 and y(t) = φ(t) > 0 (t ∈ [–τ , 0]) are initial values. The system (4.10) can be rewritten
as follows:

�(s) ·
(

X̂(s)
Ŷ (s)

)

=

(
b1(s)
b2(s)

)

,

where

�(s) =

(
sq + a1 a2e–sτ

a3 sq + a4e–sτ + a5

)

(4.11)

and

(
b1(s)
b2(s)

)

=

(
sq–1x(0) + a1x∗

s – a2e–sτ ∫ 0
–τ

e–stφ(t) dt + a2y∗
s

sq–1y(0) + a3x∗
s – a4e–sτ ∫ 0

–τ
e–stφ(t) dt + (a4+a5)y∗

s

)

.

�(s) is considered as the characteristic matrix of system (4.9) for simplicity.
When τ = 0, the coefficient matrix of system (4.9) is recorded as

A =

(
–a1 –a2

–a3 –(a4 + a5)

)

. (4.12)

In the following, we look for the conditions of system (2.2) exhibiting a Hopf bifurcation
at coexistence equilibrium ε2 = ( k

R0
, rek

dR2
0

(R0 – 1)).
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For the coefficient matrix A at coexistence equilibrium ε2 = (x∗, y∗) = ( k
R0

, rek
dR2

0
(R0 – 1)),

ai (i = 1, 2, 3, 4, 5) are determined by

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

a1 = c(1 – m)y∗ – r(1 – 2x∗
k ) = r

R0
,

a2 = c(1 – m)x∗ = d
e ,

a3 = –ec(1 – m)y∗ = – er
R0

(R0 – 1),

a4 = –ec(1 – m)x∗ = –d,

a5 = d.

(4.13)

Then we have

det(A – λI) = λ2 + (a1 + a4 + a5)λ + a1(a4 + a5) – a2a3 = 0. (4.14)

If the following conditions are satisfied:

⎧
⎨

⎩

a1 + a4 + a5 = r
R0

> 0,

a1(a4 + a5) – a2a3 = dr
R0

(R0 – 1) > 0,

i.e. R0 > 1, then it is easy to check from the Routh–Hurwitz criterion that two eigenvalues
of the characteristic equation (4.14) have negative real parts. This implies that two eigen-
values of A satisfy the inequality | arg(λj)| > απ

2 (j = 1, 2). Thus, the condition (1) of Hopf
bifurcation in Lemma 1 is satisfied for system (2.2).

If τ > 0, then the characteristic matrix at coexistence equilibrium ε2 = (x∗, y∗) =
( k

R0
, rek

dR2
0

(R0 – 1)) is

�2(s) =

(
sq + a1 a2e–sτ

a3 sq + a4e–sτ + a5

)

,

where a1, . . . , a5 are determined as in (4.13). Therefore the characteristic equation at co-
existence equilibrium ε2 = ( k

R0
, rek

dR2
0

(R0 – 1)) is

det
(
�2(s)

)
= s2q + (a1 + a5)sq + a4e–sτ sq + (a1a4 – a2a3)e–sτ + a1a5 = 0. (4.15)

Next, we look for the conditions that guarantee the characteristic equation (4.15) has a
pair of pure imaginary roots s = ±ωi (ω > 0).

Assume that Eq. (4.15) has a pure imaginary root s = ωi (ω > 0), substituting s = ωi into
Eq. (4.15) gives

w2q(cos(qπ ) + i sin(qπ )
)

+ wq(a1 + a5)
(

cos

(
qπ

2

)

+ i sin

(
qπ

2

))

+ wqa4

(

cos

(
qπ

2

)

+ i sin

(
qπ

2

))
(
cos(ωτ ) – i sin(ωτ )

)

+ (a1a4 – a2a3)
(
cos(ωτ ) – i sin(ωτ )

)
+ a1a5 = 0. (4.16)
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Separating real and imaginary parts of Eq. (4.16) gives

w2q cos(qπ ) + wq(a1 + a5) cos

(
qπ

2

)

+ a1a5

= –wqa4 cos

(

ωτ –
qπ

2

)

– (a1a4 – a2a3) cos(ωτ ),

w2q sin(qπ ) + wq(a1 + a5) sin

(
qπ

2

)

= wqa4 sin

(

ωτ –
qπ

2

)

+ (a1a4 – a2a3) sin(ωτ ).

(4.17)

By squaring and adding both sides of (4.17), combining (4.13) we have

w4q + w3q · 2
(

r
R0

+ d
)

cos

(
qπ

2

)

+ w2q ·
[

r2

R2
0

+
2rd
R0

(
1 + cos(qπ )

)
]

+ wq ·
[

2rd
R0

(
r

R0
+ d(R0 – 1)

)

cos

(
qπ

2

)]

+
r2d2

R2
0

[
–(R0 – 1)(R0 – 3)

]
= 0. (4.18)

Since cos( qπ

2 ) > 0, ωq > 0, Eq. (4.18) has no real solutions if 1 < R0 < 3. Thus, if 1 < R0 < 3,
then Eq. (4.15) has no purely imaginary roots for any τ > 0.

It is easy to see that Eq. (4.15) has at least a pair of pure imaginary roots if and only if
Eq. (4.18) has at least a positive root. Put v = ωq, then Eq. (4.18) can be rewritten as

v4 + 2
(

r
R0

+ d
)

cos

(
qπ

2

)

v3 +
[

r2

R2
0

+
2rd
R0

(
1 + cos(qπ )

)
]

v2

+
[

2rd
R0

(
r

R0
+ d(R0 – 1)

)

cos

(
qπ

2

)]

v +
r2d2

R2
0

[
–(R0 – 1)(R0 – 3)

]
= 0. (4.19)

Then Eq. (4.18) has at least one positive root if and only if Eq. (4.19) has at least one positive
root. Write Eq. (4.19) as

v4 + p1v3 + p2v2 + p3v + p4 = 0,

where pi (i = 1, 2, 3, 4) are the corresponding coefficient in Eq. (4.19). Denote h(v) := v4 +
p1v3 + p2v2 + p3v + p4. If R0 > 3, then p4 = r2d2

R2
0

[–(R0 – 1)(R0 – 3)] < 0. Since h(0) = p4 < 0 and
limv→+∞ h(v) = +∞, there exists a v0 > 0 such that h(v0) = 0. Finally, we calculate the delay
τ0 which guarantees the existence of pure imaginary roots in Eq. (4.15). For simplicity,
denote C1 = a1 + a5, C2 = a4, D1 = a1a4 – a2a3, D2 = a1a5. Then Eq. (4.15) is equivalent to

s2q + C1sq + D2 +
(
C2sq + D1

)
e–sτ = 0. (4.20)

Set

A = s2q + C1sq + D2,

E = C2sq + D1.
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Then Eq. (4.20) is equivalent to

A + Ee–sτ = 0. (4.21)

Let s = ωi (ω > 0) and Ai, Ei (i = 1, 2) be the real and imaginary parts of A, E, respectively.
Thus, Eq. (4.21) can be written as

(A1 + iA2) + (E1 + iE2)
(
cos(ωτ ) – i sin(ωτ )

)
= 0, (4.22)

where

A1 = ω2q cos(qπ ) + C1ω
q cos

(
qπ

2

)

+ D2,

A2 = ω2q sin(qπ ) + C1ω
q sin

(
qπ

2

)

,

and

E1 = C2ω
q cos

(
qπ

2

)

+ D1,

E2 = C2ω
q sin

(
qπ

2

)

.

Separating the real imaginary parts of Eq. (4.22), one has

⎧
⎨

⎩

A1 + E1 cos(ωτ ) + E2 sin(ωτ ) = 0,

A2 + E2 cos(ωτ ) – E1 sin(ωτ ) = 0.

By calculation, one obtains

⎧
⎨

⎩

sin(ωτ ) = E1A2–E2A1
E2

1+E2
2

= H1(ω),

cos(ωτ ) = – E1A1+E2A2
E2

1+E2
2

= H2(ω).
(4.23)

When all parameters are given, by using the fact that H1(ω)2 + H2(ω)2 = 1, the value of ω

can be easily calculated. Without loss of generality, we assume that ωi (i = 1, 2, . . . , m) are
all positive roots of the equation H1(ω)2 + H2(ω)2 = 1. Note that the value τi calculated by
the two equations of Eq. (4.23), respectively, should be equal for each ωi. Considering the
fact that the codomain of arcsin(x) and arccos(x) are [–π/2,π/2] and [0,π ], respectively,
we need to consider the following four cases to find τi for each ωi.

Case (i) H1(ωi) > 0 and H2(ωi) > 0. In this case, ωiτ ∈ (0,π/2). One has

τ
(l)
i =

arcsin(H1(ωi)) + 2lπ
ωi

=
arccos(H2(ωi)) + 2lπ

ωi
, l = 0, 1, 2, . . . .

Case (ii) H1(ωi) > 0 and H2(ωi) < 0. In this case, ωiτ ∈ (π/2,π ). One has

τ
(l)
i =

π – arcsin(H1(ωi)) + 2lπ
ωi

=
arccos(H2(ωi)) + 2lπ

ωi
, l = 0, 1, 2, . . . .
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Case (iii) H1(ωi) < 0 and H2(ωi) > 0. In this case, ωiτ ∈ (3π/2, 2π ). One has

τ
(l)
i =

2π + arcsin(H1(ωi)) + 2lπ
ωi

=
2π – arccos(H2(ωi)) + 2lπ

ωi
, l = 0, 1, 2, . . . .

Case (iv) H1(ωi) < 0 and H2(ωi) < 0. In this case, ωiτ ∈ (π , 3π/2). One has

τ
(l)
i =

π – arcsin(H1(ωi)) + 2lπ
ωi

=
2π – arccos(H2(ωi)) + 2lπ

ωi
, l = 0, 1, 2, . . . .

Our only interest is the first bifurcation point τ0 > 0 in this paper. The bifurcation point is
defined as

τ0 = min
{
τ

(l)
i

}
, i = 1, . . . , m; l = 0, 1, . . . ;

and taking ω0 = ωi, where ωi corresponds to min{τ (l)
i }.

Based on the above analysis, we have the following lemma.

Lemma 3 If the basic reproduction number R0 > 3, then there exists a value τ0 > 0, such
that the characteristic equation (4.15) at coexistence equilibrium ε2 = ( k

R0
, rek

dR2
0

(R0 – 1)) has
at least a pair of pure imaginary roots.

From the previous discussion, to obtain the main results, the following two hypotheses
are imposed:

(H1) R0 > 3.
(H2) Re [ ds

dτ
]|(τ=τ0,ω=ω0) > 0.

Taking the derivative of s with respect to τ in Eq. (4.20), one gets

ds
dτ

=
X(s)
Y (s)

,

where

X(s) = s
(
C2sq + D1

)
e–sτ ,

Y (s) = 2qs2q–1 + qC1sq–1 +
[
qC2sq–1 – τ

(
C2sq + D1

)]
e–sτ .

Let X1, X2, Y1, Y2 be the real and imaginary parts of X(ω0i), Y (ω0i), respectively. Then, by
calculation, one can acquire

Re

[
ds
dτ

]∣
∣
∣
∣
(τ=τ0,ω=ω0)

=
X1Y1 + X2Y2

Y 2
1 + Y 2

2
.

In summary, we can get the following theorem.

Theorem 2 Suppose (H1)–(H2) hold. As τ increases from zero, there exists a value τ0 >
0 such that system (2.2) exhibits a Hopf bifurcation at coexistence equilibrium ε2 =
( k

R0
, rek

dR2
0

(R0 – 1)) when τ = τ0.
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4.3 Bifurcation control for the proposed system
In this subsection, we introduce a periodic pulse feedback controller δ(x(t)–x(t –τ ))PT ,p(t)
into the first equation of an uncontrolled system (2.2):

⎧
⎨

⎩

c
t0D

q
t x(t) = rx(t)(1 – x(t)

k ) – c(1 – m)x(t)y(t – τ ) + δ(x(t) – x(t – τ ))PT ,p(t),
c
t0D

q
t y(t) = ec(1 – m)x(t)y(t – τ ) – dy(t),

(4.24)

where PT ,p(t) is defined as (2.3), δ < 0.
In order to choose an optimal control strategy, it is necessary to evaluate the control

strength of the periodic pulse controller δ(x(t) – x(t – τ ))PT ,p(t) according to the control
effects.

If for some δ < 0, the controlled system (4.24) converges to the positive equilibrium
(x∗, y∗), then, for any ε > 0, there exists tε > 0 such that

∣
∣x(t) – x(t – τ )

∣
∣ ≤ ε, t ≥ tε .

In this case, the average control strength of the controller δ(x(t) – x(t – τ ))PT ,p(t) (δ < 0)
on each time interval [nT , nT + T) (n ≥ tε

T ) can be measured as follows:

–
δ

p

∫ nT+p

nT

∣
∣x(t) – x(t – τ )

∣
∣dt ≤ –δε.

Thus, the average control strength of the controller δ(x(t) – x(t – τ ))PT ,p(t) (δ < 0) is of
O(ε) for different pulse width p. This suggests that the control effect may be independent
of the pulse width p. This claim will be later verified by numerical simulations.

In order to choose an optimal control gain Lp := δT
p , it is necessary to study the stability

of the controlled system (4.24). Since the stability theory is not well-developed for non-
linear fractional-order non-autonomous systems with delays, we need to investigate the
linearized system of (4.24) at coexistence equilibrium

ε2 =
(
x∗, y∗) =

(
k

R0
,

rek
dR2

0
(R0 – 1)

)

(R0 > 1),

which is defined as
⎧
⎨

⎩

c
t0D

q
t x(t) = –a1(x(t) – x∗) – a2(y(t – τ ) – y∗) + δ(x(t) – x(t – τ ))PT ,p(t),

c
t0D

q
t y(t) = –a3(x(t) – x∗) – a4(y(t – τ ) – y∗) – a5(y(t) – y∗),

(4.25)

where a1, a2, a3, a4, a5 are defined as Eq. (4.13).
Noticing that the linearized system (4.25) of the controlled system (4.24) is still a peri-

odic impulse control system, we also need to derive an autonomous linear approximation
system of (4.25) so as to study Hopf bifurcation. For this purpose, we further consider an
average approximation of the linearized system (4.25).

Set L := 1
T

∫ T
0 δPT ,p(t) dt = δ, which can be regarded as the average control gain of the

controller δ(x(t) – x(t – τ ))PT ,p(t) (δ < 0) on each time interval [nT , nT + T) (n ≥ 0). Then,
by taking the average of the control gain in the linearized system (4.25), one can derive the
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following autonomous linear system:

⎧
⎨

⎩

c
t0D

q
t x̄(t) = –a1(x̄(t) – x∗) – a2(ȳ(t – τ ) – y∗) + L(x̄(t) – x̄(t – τ )),

c
t0D

q
t ȳ(t) = –a3(x̄(t) – x∗) – a4(ȳ(t – τ ) – y∗) – a5(ȳ(t) – y∗),

(4.26)

which is the average approximation of system (4.25). Therefore, (4.26) can be regarded as
the linearized averaging system of the controlled system (4.24).

Next we prove the equivalence of stability of (4.25) and (4.26) in the sense that

lim
t→+∞

∣
∣x̄(t) – x∗∣∣ = 0, lim

t→+∞
∣
∣ȳ(t) – y∗∣∣ = 0

is equivalent to

lim
t→+∞

∣
∣x(t) – x∗∣∣ = 0, lim

t→+∞
∣
∣y(t) – y∗∣∣ = 0,

where the initial values are taken as x(t) = x̄(t) = ρ(t) > 0 and y(t) = ȳ(t) = φ(t) > 0 (t ∈
[–τ , 0]).

Set e1(t) = x(t) – x̄(t), e2(t) = y(t) – ȳ(t). By (4.25) and (4.26), we obtain the error system

⎧
⎪⎪⎨

⎪⎪⎩

c
t0D

q
t e1(t) = –a1e1(t) – a2e2(t – τ ) + δPT ,p(t)(e1(t) – e1(t – τ ))

+ δ(PT ,p(t) – 1)(x̄(t) – x̄(t – τ )),
c
t0D

q
t e2(t) = –a3e1(t) – a4e2(t – τ ) – a5e2(t),

(4.27)

and

⎧
⎪⎪⎨

⎪⎪⎩

c
t0D

q
t e1(t) = –a1e1(t) – a2e2(t – τ ) + δ(PT ,p(t) – 1)(x(t) – x(t – τ ))

+ δ(e1(t) – e1(t – τ )),
c
t0D

q
t e2(t) = –a3e1(t) – a4e2(t – τ ) – a5e2(t).

(4.28)

Therefore, in order to prove the equivalence of stability of (4.25) and (4.26), it suffices to
prove that

lim
t→+∞ e1(t) = 0, lim

t→+∞ e2(t) = 0,

where the initial values are taken as e1(t) = 0 and e2(t) = 0 (t ∈ [–τ , 0]).
There are two cases to consider.

Claim A If the solutions x̄(t) and ȳ(t) of system (4.26) satisfy

lim
t→+∞

∣
∣x̄(t) – x∗∣∣ = 0, lim

t→+∞
∣
∣ȳ(t) – y∗∣∣ = 0,

then the solutions e1(t) and e2(t) of the error system (4.27) satisfy

lim
t→+∞ e1(t) = 0, lim

t→+∞ e2(t) = 0.
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By an argument similar to that used in theoretical analysis of [54], taking the Laplace
transform [53] on both sides of system (4.27) gives

⎧
⎪⎪⎨

⎪⎪⎩

sqE1(s) = –a1E1(s) – a2e–sτ E2(s) + L(δPT ,p(t)(e1(t) – e1(t – τ )))

+ L(δ(PT ,p(t) – 1)(x̄(t) – x̄(t – τ ))),

sqE2(s) = –a3E1(s) – a4e–sτ E2(s) – a5E2(s),

(4.29)

where E1(s), E2(s) are the Laplace transform of e1(t), e2(t) with E1(s) = L(e1(t)), E2(s) =
L(e2(t)).

By (4.29), one gets

E1(s) = –
(sq + a4e–sτ + a5)E2(s)

a3
(4.30)

and

E2(s) =
–sqE1(s) – a1E1(s) + L(δPT ,p(t)(e1(t) – e1(t – τ )))

a2e–sτ

+
L(δ(PT ,p(t) – 1)(x̄(t) – x̄(t – τ )))

a2e–sτ . (4.31)

Following the prior assumptions made in theoretical analysis of [54], we make the follow-
ing prior assumptions: E1(s), E2(s) are bounded. Then, by the final-value theorem of the
Laplace transformation [53], it follows from (4.30), (4.31) and (4.13) that

lim
t→+∞ e1(t) = lim

s→0
sE1(s) = –

(a4 + a5) lims→0 sE2(s)
a3

= 0, (4.32)

and hence

lim
t→+∞ e2(t) = lim

s→0
sE2(s) =

limt→+∞(δPT ,p(t)(e1(t) – e1(t – τ )))
a2

+
limt→+∞(δ(PT ,p(t) – 1)(x̄(t) – x̄(t – τ )))

a2
= 0. (4.33)

Similarly, by taking the Laplace transform [53] on both sides of system (4.28), we can also
prove the following.

Claim B If the solutions x(t) and y(t) of system (4.25) satisfy

lim
t→+∞

∣
∣x(t) – x∗∣∣ = 0, lim

t→+∞
∣
∣y(t) – y∗∣∣ = 0,

then the solutions e1(t) and e2(t) of the error system (4.28) satisfy

lim
t→+∞ e1(t) = 0, lim

t→+∞ e2(t) = 0.

Thus, by the equivalence of stability of system (4.25) and system (4.26), we verified the
reasonability of the above linearized average approximation from the viewpoint of stabil-
ity.
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Based on the existence of pure imaginary roots of the characteristic equation for the
linearized averaging system (4.26), critical values of the time delay and critical frequen-
cies for the emergence of Hopf bifurcation of system (4.24) can be determined effec-
tively.

Taking the Laplace transform on both sides of system (4.26), the characteristic matrix
can be obtained:

�3(s) =

(
sq + a1 – L + Le–sτ a2e–sτ

a3 sq + a4e–sτ + a5

)

. (4.34)

Then the characteristic equation of system (4.26) is given by

Q1(s) + Q2(s)e–sτ + Q3(s)e–2sτ = 0, (4.35)

where

Q1(s) = s2q + (a1 + a5 – L)sq + a5(a1 – L),

Q2(s) = (a4 + L)sq + (a5 – a4)L + a1a4 – a2a3,

Q3(s) = a4L.

By multiplying esτ on both sides of Eq. (4.35), we have

Q1(s)esτ + Q2(s) + Q3(s)e–sτ = 0. (4.36)

Lemma 4 Assume that τ > 0. Then the following conclusions hold:
(i) For 1 < R0 < 3, the characteristic equation (4.35) at coexistence equilibrium

ε2 = ( k
R0

, rek
dR2

0
(R0 – 1)) has at least a pair of pure imaginary roots if L ∈ ( r(3–R0)

2R0
, +∞).

(ii) For R0 > 3, the characteristic equation (4.35) at coexistence equilibrium
ε2 = ( k

R0
, rek

dR2
0

(R0 – 1)) has at least a pair of pure imaginary roots if L ∈ ( r(3–R0)
4R0

, +∞).

Proof It is assumed that s = ωi = ω(cos( π
2 ) + i sin( π

2 )) (ω > 0) is a root of Eq. (4.36). Thus,
Eq. (4.36) gives

(a4 + L)wq
(

cos

(
qπ

2

)

+ i sin

(
qπ

2

))

+ (a5 – a4)L + a1a4 – a2a3

= –
[

w2q(cos(qπ ) + i sin(qπ )
)

+ (a1 + a5 – L)wq
(

cos

(
qπ

2

)

+ i sin

(
qπ

2

))

+ a5(a1 – L)
]
(
cos(ωτ ) + i sin(ωτ )

)
– a4L

(
cos(ωτ ) – i sin(ωτ )

)
. (4.37)
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Separating real and imaginary parts of Eq. (4.37) gives

(a4 + L)wq cos

(
qπ

2

)

+ (a5 – a4)L + a1a4 – a2a3

= –w2q cos(qπ + ωτ ) – (a1 + a5 – L)wq cos

(
qπ

2
+ ωτ

)

– a5(a1 – L) cos(ωτ ) – a4L] cos(ωτ ),

(a4 + L)wq sin

(
qπ

2

)

= –w2q sin(qπ + ωτ ) – (a1 + a5 – L)wq sin

(
qπ

2
+ ωτ

)

– a5(a1 – L) sin(ωτ ) + a4L sin(ωτ ).

(4.38)

By squaring and adding both sides of (4.38), we have

w4q + 2(a1 + a5 – L) cos

(
qπ

2

)

w3q +
[
(a1 + a5 – L)2 – (a4 + L)2

+ 2a5(a1 – L) cos(qπ ) + 2a4L cos(qπ + 2ωτ )
]
w2q +

[

2a5(a1 – L)

· (a1 + a5 – L) cos

(
qπ

2

)

+ 2a4L(a1 + a5 – L) cos

(
qπ

2
+ 2ωτ

)

– 2(a4 + L)
(
(a5 – a4)L + a1a4 – a2a3

)
cos

(
qπ

2

)]

wq + a2
5(a1 – L)2

+ a2
4L2 + 2a5(a1 – L)a4L cos(2ωτ ) –

(
(a5 – a4)L + a1a4 – a2a3

)2 = 0. (4.39)

It suffices to prove that the constant term of Eq. (4.39) is negative, i.e.

a2
5(a1 – L)2 + a2

4L2 + 2a5(a1 – L)a4L cos(2ωτ )

–
(
(a5 – a4)L + a1a4 – a2a3

)2 < 0. (4.40)

Substituting ai (i = 1, 2, 3, 4, 5) into Eq. (4.40) and simplifying gives

(
r

R0
– L

)2

+ L2 – 2
(

r
R0

– L
)

L cos(2ωτ ) –
(

2L +
r

R0
(R0 – 2)

)2

< 0. (4.41)

There are two cases to consider.
Case (i) If L ≤ 0 or L > r

R0
, then we have

(
r

R0
– L

)2

+ L2 – 2
(

r
R0

– L
)

L cos(2ωτ ) –
(

2L +
r

R0
(R0 – 2)

)2

≤
((

r
R0

– L
)

– L
)2

–
(

2L +
r

R0
(R0 – 2)

)2

=
r

R0
(R0 – 1) ·

(
r

R0
(3 – R0) – 4L

)

.
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From this result, we make the inequality (4.41) hold, as long as

(R0 – 1) ·
(

r
R0

(3 – R0) – 4L
)

< 0. (4.42)

Therefore, for 1 < R0 < 3, when L > max{ r
R0

, r
4R0

(3 – R0)} = r
R0

, Eq. (4.42) holds; and when
L ≤ 0, Eq. (4.42) does not hold. For R0 > 3, when r

4R0
(3 – R0) < L ≤ 0 or L > r

R0
, Eq. (4.42)

holds.
Case (ii) If 0 < L ≤ r

R0
, then we have

(
r

R0
– L

)2

+ L2 – 2
(

r
R0

– L
)

L cos(2ωτ ) –
(

2L +
r

R0
(R0 – 2)

)2

≤
((

r
R0

– L
)

+ L
)2

–
(

2L +
r

R0
(R0 – 2)

)2

=
(

2L +
r

R0
(R0 – 1)

)

·
(

r
R0

(3 – R0) – 2L
)

.

From this result, we make the inequality (4.41) hold, as long as

(

2L +
r

R0
(R0 – 1)

)

·
(

r
R0

(3 – R0) – 2L
)

< 0. (4.43)

Therefore, for 1 < R0 < 3, when r
2R0

(3 – R0) < L ≤ r
R0

, Eq. (4.43) holds. For R0 > 3, when
0 < L ≤ r

R0
, Eq. (4.43) holds.

In summary, for 1 < R0 < 3, the characteristic equation (4.35) has at least a pair of pure
imaginary roots if L ∈ ( r(3–R0)

2R0
, r

R0
] ∪ ( r

R0
, +∞) = ( r(3–R0)

2R0
, +∞); and for R0 > 3, the character-

istic equation (4.35) has at least a pair of pure imaginary roots if L ∈ ( r(3–R0)
4R0

, 0] ∪ (0, r
R0

] ∪
( r

R0
, +∞) = ( r(3–R0)

4R0
, +∞). The proof is complete. �

It is assumed that s = ωi = ω(cos( π
2 ) + i sin( π

2 )) (ω > 0) is a root of Eq. (4.35). Let αi, βi be
the real and imaginary parts of Qi(s) (i = 1, 2, 3), respectively, one can obtain

α1 = ω2q cos(qπ ) + ωq(a1 + a5 – L) cos

(
qπ

2

)

+ a5(a1 – L),

β1 = ω2q sin(qπ ) + ωq(a1 + a5 – L) sin

(
qπ

2

)

,

α2 = ωq(a4 + L) cos

(
qπ

2

)

+ (a5 – a4)L + a1a4 – a2a3,

β2 = ωq(a4 + L) sin

(
qπ

2

)

,

α3 = a4L, β3 = 0.

It is evident that s = ωi = ω(cos( π
2 ) + i sin( π

2 )) (ω > 0) is a root of Eq. (4.36). By substituting
s = ωi into Eq. (4.36) and separating the real and imaginary parts of Eq. (4.36), one has

⎧
⎨

⎩

(α1 + α3) cos(ωτ ) – β1 sin(ωτ ) + α2 = 0,

β1 cos(ωτ ) + (α1 – α3) sin(ωτ ) + β2 = 0.
(4.44)
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It follows from Eq. (4.44) that

⎧
⎨

⎩

sin(ωτ ) = – β2(α1+α3)–β1α2
α2

1 +β2
1 –α2

3
= H1(ω),

cos(ωτ ) = – α2(α1–α3)+β1β2
α2

1 +β2
1 –α2

3
= H2(ω).

(4.45)

By Eq. (4.45), the first bifurcation point τ ∗
0 and the corresponding critical frequency ω∗

0

can be obtained by the method used in Sect. 4.2.
From the previous discussion, to obtain the main results, the following hypotheses are

imposed:
(H3) L ∈ ( r(3–R0)

2R0
, +∞) for 1 < R0 < 3, or L ∈ ( r(3–R0)

4R0
, +∞) for R0 > 3;

(H4) Re [ ds
dτ

]|(τ=τ∗
0 ,ω=ω∗

0) > 0.
Differentiating Eq. (4.35) with respect to τ , by implicit function theorem, we have

ds
dτ

=
M(s)
N(s)

,

where

M(s) = s
(
Q2(s)e–sτ + 2Q3(s)e–2sτ ),

N(s) = Q′
1(s) +

(
Q′

2(s) – τQ2(s)
)
e–sτ +

(
Q′

3(s) – 2τQ3(s)
)
e–2sτ ,

and Q′
i(s) is the derivative of Qi(s) (i = 1, 2, 3).

Set Mi, Ni (i = 1, 2) are the real and imaginary parts of M(ω∗
0i), N(ω∗

0i), respectively.
Then, by calculation, one can acquire

Re

[
ds
dτ

]∣
∣
∣
∣
(τ=τ∗

0 ,ω=ω∗
0)

=
M1N1 + M2N2

N2
1 + N2

2
.

Based on the above analysis, we can obtain the following theorem.

Theorem 3 Suppose that (H3), (H4) hold. As τ increases from zero, there exists a value
τ ∗

0 > 0 such that system (4.24) exhibits a Hopf bifurcation at coexistence equilibrium ε2 =
( k

R0
, rek

dR2
0

(R0 – 1)) when τ = τ ∗
0 .

5 Numerical simulations
In this section, two numerical examples are given to validate our theoretical results. The
Adama–Bashforth–Moulton predictor–corrector scheme in [55] is utilized.

Example 1 In this example, we choose time delay τ as a bifurcation parameter to investi-
gate Hopf bifurcation of system (2.2). The system parameter values are chosen as r = 1.2,
k = 20, c = 0.9, d = 0.3, e = 0.3, m = 0.8, q = 0.98. It is easy to get the basic reproduction
number R0 = kec(1–m)

d = 3.6 > 3 and the coexistence equilibrium ε2 = ( k
R0

, rek
dR2

0
(R0 – 1)) =

(5.5556, 4.8148). By calculating, we get the critical frequency ω0 = 0.2595 and the bifurca-
tion point τ0 = 4.9967. It is easy to verify that conditions of (H1), (H2) are satisfied. There-
fore, it follows from Theorem 2 that system (2.2) exhibits a Hopf bifurcation at coexistence
equilibrium ε2 = (5.5556, 4.8148) when τ = τ0 = 4.9967, which is displayed in Figs. 1–4.
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Figure 1 Waveform plots of system (2.2) with initial values (6.46, 5.1) in Example 1. The delay is chosen as:
τ = 3.8 < τ0 = 4.9967. This figure illustrates that the coexistence equilibrium ε2 = (5.5556, 4.8148) is
asymptotically stable

Figure 2 Portrait of system (2.2) with initial values
(6.46, 5.1) in Example 1. The delay is chosen as: τ = 3.8
< τ0 = 4.9967. This figure illustrates that the
coexistence equilibrium ε2 = (5.5556, 4.8148) is
asymptotically stable

Figure 3 Waveform plots of system (2.2) with initial values (6.46, 5.1) in Example 1. The delay is chosen as:
τ = 5.1 > τ0 = 4.9967. This figure illustrates that the coexistence equilibrium ε2 = (5.5556, 4.8148) is unstable

The biological significance of Hopf bifurcation in this model is that predator and prey
may coexist, showing cyclical oscillatory balance behavior.

Example 2 In order to highlight the control effect, all system parameters are the same as
in Example 1, that is, r = 1.2, k = 20, c = 0.9, d = 0.3, e = 0.3, m = 0.8, q = 0.98, τ = 5.1 > τ0

and T = 10. It is easy to get the basic reproduction number R0 = kec(1–m)
d = 3.6 > 3 and

the coexistence equilibrium ε2 = ( k
R0

, rek
dR2

0
(R0 – 1)) = (5.5556, 4.8148). To achieve desirable
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Figure 4 Portrait of system (2.2) with initial values (6.46,
5.1) in Example 1. The delay is chosen as: τ = 5.1 > τ0
= 4.9967. This figure illustrates that system (2.2) exhibits
a Hopf bifurcation

Table 1 The impact of the feedback gain L on the first bifurcation point τ ∗
0 and critical frequency ω∗

0
for the controlled system (4.24). This table lists the values of the first bifurcation point τ ∗

0 and critical
frequency ω∗

0 corresponding to some feedback gain L, which are calculated from the linearized
average system (4.26) of the controlled system (4.24) with the parameter values r = 1.2, k = 20, c = 0.9,
d = 0.3, e = 0.3,m = 0.8, q = 0.98

Feedback gain L Bifurcation point τ ∗
0 Critical frequency ω∗

0

–0.045 9.470591051 0.1737564826
–0.04 8.215802361 0.1901197022
–0.035 7.413432297 0.2027989139
–0.03 6.830468978 0.2134653512
–0.025 6.376632347 0.2228352248
–0.02 6.007515697 0.2312894556
–0.015 5.698047907 0.2390574929
–0.01 5.432721606 0.2462893820
–0.005 5.201297255 0.2530891673
0 4.996672114 0.2595322466
0.1 3.049979623 0.3549183506
0.2 2.293269224 0.4267425452
0.3 1.856580079 0.4895983980
0.4 1.564977940 0.5471409136
0.5 1.354249235 0.6009013984

dynamics, we next consider the effect of the feedback gain L on the bifurcation point. It
can be seen from Table 1 that the system (2.2) is successfully controlled and the stable do-
main becomes larger as the feedback gain decreases, and the values of bifurcation point
increases as the feedback gain decreases for L < 0. And the effects of bifurcation control
become better as the feedback gain L decreases, which is displayed in Fig. 5. However, for
L > 0, as L increases, the bifurcation point decreases, which implies that the Hopf bifur-
cation occurs in advance. When p and T are fixed, the feedback gain of the periodic pulse
feedback controller at nT ≤ t < nT + p is δT

p . As shown in Figs. 6–8, as δ decreases, the
system converges faster to a steady state.

Remark 1 From an ecological point of view, when the feedback gain δT
p < 0, there are two

different control effects. If x(t) – x(t – τ ) < 0, then δT
p (x(t) – x(t – τ )) > 0, which implies that

the control effect is the stocking of prey. If x(t) – x(t – τ ) > 0, then δT
p (x(t) – x(t – τ )) < 0,

which implies that the control effect is the harvesting of prey. As shown in Figs. 5–8, the
greater the proportion of stocking or harvesting is, the faster the system converges to a
steady state.
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Figure 5 Waveform plots of system (4.24) with initial values (6.46, 5.1) in Example 2. This figure illustrates the
control effects for the pulse width p = 10 and three different average control gain L = –0.005, –0.015, –0.045

Figure 6 Waveform plots of system (4.24) with initial values (6.46, 5.1) in Example 2. This figure illustrates the
control effects for the pulse width p = 2 and three different control gain δ = –0.005, –0.015, –0.045

Figure 7 Waveform plots of system (4.24) with initial values (6.46, 5.1) in Example 2. This figure illustrates the
control effects the pulse width p = 5 and three different control gain δ = –0.005, –0.015, –0.045

Remark 2 For a fixed period T , regardless of the values of the pulse width p, the con-
trollers always achieve the same control effect at the same time, as showed in Figs. 5–8.
Indeed, when the control time p in each period is decreased, the control force | δT

p | is also
increased correspondingly, which can guarantee the same control effect achieved by tak-
ing different p.
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Figure 8 Waveform plots of system (4.24) with initial values (6.46, 5.1) in Example 2. This figure illustrates the
control effects for the pulse width p = 8 and three different control gain δ = –0.005, –0.015, –0.045

6 Conclusions and discussions
In this paper, sufficient conditions on the existence and uniqueness of the solution, and
the emergence of Hopf bifurcation have been established for a fractional-order delay
predator–prey model incorporating a prey refuge. The periodic pulse delay feedback con-
trol issue of Hopf bifurcations for the model has also been investigated by theoretical anal-
ysis and numerical simulation.

This paper mainly studied two aspects: delay-induced Hopf bifurcation and periodic
pulse delay feedback control of Hopf bifurcation. Taking the time delay as the bifurcation
parameter, Hopf bifurcations for system (2.2) and (4.24) are studied. The explicit condi-
tions for the existence of pure imaginary roots of the characteristic equations for linearized
systems are given using the basic reproduction number R0. Critical values of the time delay
and critical frequencies for the emergence of Hopf bifurcation are determined.

From the perspective of ecological management and species richness, a stable positive
equilibrium is needed to maintain the sustainable development of ecosystems. We design
a periodic pulse delay feedback controller to drive the predator–prey system from periodic
oscillation to steady state by adjusting the harvesting and stocking work of the prey pop-
ulation. Managers can develop policies to encourage or restrain harvesting efforts, such
as adjusting market prices, subsidizing harvests, and reducing environmental pollution,
in order to maintain a steady state of biological populations. In order to control the onset
of the Hopf bifurcation, a periodic pulse delay feedback controller is introduced into un-
controlled system (2.2). It is shown that the Hopf bifurcation can be effectively controlled
by selecting appropriate feedback gain and pulse width.

The classic linear delay feedback controller requires real-time control, while our pro-
posed periodic pulse delay feedback controller, due to the characteristic of periodic in-
termittent control, is more flexible than the linear delay feedback controller. And under
the determined period, the periodic pulse delay feedback controller can achieve the same
control effect, regardless of the value of the pulse width p. To achieve the optimal time-
saving effect without reducing control effect, the control time interval in each period can
be flexibly selected according to the actual problem.

The relationship between stability of the nonlinear systems (2.2), (4.24) and their lin-
earized systems is not theoretically analyzed. Moreover, we only use numerical simula-
tion to illustrate the conclusion that the control effect of periodic pulse delay feedback
controller δ(x(t) – x(t – τ ))PT ,p(t) to system (2.2) is independent of the pulse width p. We
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guess that the conclusion can be proved by studying the stability of the controlled system
(4.24). These problems are still open and challenging, since the stability theory is not well-
developed for nonlinear fractional-order autonomous or non-autonomous systems with
delays.

Appendices
The following Matlab codes are compiling based on the Adama–Bashforth–Moulton
predictor–corrector scheme in [55].

A.1 A sample Matlab code for the graphical solutions of system (2.2)

clear all;
close all;
clc;

TSim=500; % Simulation duration
h=0.05; % Step size
N=fix(TSim/h); % Number of iterations
n=1:N+1;
t=(n-1)*h; % Discrete-time sequence
alpha=0.98; % Fractional order
tau=5.1; % Time delay
K=round(tau/h);

% Specifying arrays for storing plotting data
X=zeros(1,N+1);
Y=zeros(1,N+1);

% Initial values
x0=6.46;
y0=5.1;
X(1)=x0;
Y(1)=y0;
% Specifying arrays for storing initial values
ivx=zeros(1,K);
ivy=zeros(1,K);
for j=1:K

ivx(j)=x0;
ivy(j)=y0;

end

% Specifying arrays for storing the state variables x(t), y(t), x(t – τ ), y(t – τ )
x=zeros(1,N);
y=zeros(1,N);
xd=zeros(1,N);
yd=zeros(1,N);

% Specifying arrays for storing the right-side function values
fp=zeros(1,N);
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fn1d=zeros(1,N);
gp=zeros(1,N);
gn1d=zeros(1,N);

A=zeros(1,N); % An array storing weight coefficients ai,n+1 of the corrector term
B=zeros(1,N); % An array storing weight coefficients bi,n+1 of the predictor term
******************************************************************************
% Starting the first iteration
a01=alpha; % The weight coefficient a0,1 of the corrector term
b01=hˆalpha/alpha; % The weight coefficient b0,1 of the predictor term

% Calculate the function values without the predictive values at the first iteration
f10d= f(x0,ivy(K));
g10d= g(x0,y0,ivy(K));

% Calculate the predictive values of x(1), y(1)
xh(1)=x0+1/gamma(alpha)*b01*f10d;
yh(1)=y0+1/gamma(alpha)*b01*g10d;

% Calculate the function values with the predictive values at the first iteration
fp0d= f(xh(1),ivy(K-1));
gp0d= g(xh(1),yh(1),ivy(K-1));

% Calculate the values of the state variables x(t), y(t) at the first iteration
x(1)=x0+hˆalpha/gamma(alpha+2)*fp0d+hˆalpha/gamma(alpha+2)*a01*f10d;
y(1)=y0+hˆalpha/gamma(alpha+2)*gp0d+hˆalpha/gamma(alpha+2)*a01*g10d;
X(2)=x(1);
Y(2)=y(1);
% End of the first iteration
******************************************************************************
******************************The Main Loop******************************
for n=1:N-1

A0=nˆ(alpha+1)-(n-alpha)*(n+1)ˆalpha; % The weight coefficients a0,n+1 of the cor-
rector term

B0=hˆalpha/alpha*((n+1)ˆalpha-nˆalpha); % The weight coefficients b0,n+1 of the
predictor term

for i=1:n
A(i)=(n-i+2)ˆ(alpha+1)+(n-i)ˆ(alpha+1)-2*(n-i+1)ˆ(alpha+1); % The weight co-

efficients ai,n+1 of the corrector term
B(i)=hˆalpha*((n-i+1)ˆalpha-(n-i)ˆalpha)/alpha; % The weight coefficients bi,n+1

of the predictor term
end

% This loop is used for calculating the state variables with delay
for j=1:n+1

if j < K
xd(j)=ivx(K-j);
yd(j)=ivy(K-j);

elseif j==K
xd(j)=x0;



Liu and Fang Advances in Difference Equations        (2019) 2019:479 Page 27 of 30

yd(j)=y0;
else

xd(j)=x(j-K);
yd(j)=y(j-K);

end
end

% Calculate the function values without the predictive values at (n + 1)th iteration
fn1d(n)= f(x(n),yd(n));
gn1d(n)= g(x(n),y(n),yd(n));

% Calculate the predictive values of x(n + 1), y(n + 1)
xh(n+1)=x0+1/gamma(alpha)*(B0*f10d+B*fn1d′);
yh(n+1)=y0+1/gamma(alpha)*(B0*g10d+B*gn1d′);

% Calculate the function values with the predictive values at (n + 1)th iteration
fp(n+1)= f(xh(n+1),yd(n+1));
gp(n+1)= g(xh(n+1),yh(n+1),yd(n+1));

% Calculate the values of the state variables x(t), y(t) at (n + 1)th iteration
x(n+1)=x0+hˆalpha/gamma(alpha+2)*fp(n+1)

+hˆalpha/gamma(alpha+2)*(A0*f10d+A*fn1d′);
y(n+1)=y0+hˆalpha/gamma(alpha+2)*gp(n+1)

+hˆalpha/gamma(alpha+2)*(A0*g10d+A*gn1d′);
X(n+2)=x(n+1);
Y(n+2)=y(n+1);

end
******************************************************************************
figure(1)
plot(t(1:end),X(1:end),’b-’)
hold on
xlabel(’t’),ylabel(’x(t)’)
hold off

figure(2)
plot(t(1:end),Y(1:end),’b-’)
hold on
xlabel(’t’),ylabel(’y(t)’)
hold off

figure(3)
plot(X(1:end),Y(1:end),’b-’,’LineWidth’,0.5)
hold on
xlabel(’x’),ylabel(’y’)
hold off
******************************************************************************
% Define the functions f(x,yd), g(x,y,yd) used in the previous code
function U=f(x,yd) % The first function on the right side of the model

r=1.2; k=20; c=0.9; m=0.8; e=0.3; d=0.3; % Parameter values in the model
U = r*x*(1-x/k) - c*(1-m)*x*yd;
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end

function V=g(x,y,yd) % The second function on the right side of the model
r=1.2; k=20; c=0.9; m=0.8; e=0.3; d=0.3;
V = e*c*(1-m)*x*yd - d*y;

end

A.2 A sample Matlab code for the graphical solutions of system (4.24)
A sample Matlab code for system (4.24) can be easily obtained by modifying the first func-
tion in the previous code for system (2.2):
function U=f(t,x,xd,yd)

r=1.2; k=20; c=0.9; m=0.8; e=0.3; d=0.3; delta=-0.005; Period=10; p=8;
U = r*x*(1-x/k) - c*(1-m)*x*yd + delta*(Period/p)*(x-xd)*((mod(t,Period)>=0

&mod(t,Period)<p));
end

In this case, the parameter value TSim is taken as TSim = 200 ∗ Period.
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