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Abstract
In this paper, we consider the dynamics of a reaction–diffusion equation with fading
memory and nonlinearity satisfying arbitrary polynomial growth condition. Firstly, we
prove a criterion in a general setting as an alternative method (or technique) to the
existence of the bi-spaces attractors for the nonlinear evolutionary equations (see
Theorem 2.14). Secondly, we prove the asymptotic compactness of the semigroup on
L2(Ω )× L2μ(R;H

1
0(Ω )) by using the contractive function, and the global attractor is

confirmed. Finally, the bi-spaces global attractor is obtained by verifying the
asymptotic compactness of the semigroup on Lp(Ω )× L2μ(R;H

1
0(Ω )) with initial data

in L2(Ω )× L2μ(R;H
1
0(Ω )).
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1 Introduction
The aim of this paper is to analyze the long-time behavior of solutions of the following
semilinear reaction–diffusion equations with fading memory:

ut – �u –
∫ ∞

0
k(s)�u(t – s) ds + f (u) = g, (1.1)

with Dirichlet boundary condition, where g ∈ L2(Ω), Ω ⊂R
n (n ≥ 3) is a bounded domain

with smooth boundary, nonlinearity f , and the memory kernel function k(s) satisfying
posterior adaptation hypothesis which will be given below (see, e.g., [3, 4]).

This kind of integro-differential reaction–diffusion equation is well known and can be
interpreted, for instance, as a model of heat diffusion with memory which also accounts
for a reaction process depending on the temperature itself (see, e.g., [1, 8, 10, 11, 15, 16]
and the references therein). This equation also appears as the model of polymers and high
viscosity liquids, the diffusion process is influenced by the past historical growth, which
is mainly represented in the convolution term of fading memory characterizing diffusion
species to a suitable memory core [12]. The energy dissipative speed for equation (1.1) is
faster than the common reaction diffusion equation (k ≡ 0). The heat energy transmission
is not only affected by the present external force but also by the historical external force,
and as time elapses, this effect will gradually decline.

As k = 0, equation (1.1) reduces to usual reaction diffusion, the long-time behavior and
related issues of solutions of this problem have been extensively discussed in recent years
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(see, e.g., [2, 5, 14, 17, 19–23, 26] and the references therein). The above problem has
also been analyzed within the theory of infinite-dimensional dynamical systems [6, 8, 10],
following Dafermos’ idea of introducing an additional variable ηt , the past history of u,
whose evolution is ruled by a first-order hyperbolic equation (see, e.g., [7, 8] and the ref-
erences therein). Thus the original problem (1.1) can be transformed into a dynamical
system on a phase space with two components (1.13) or (1.15) (see, e.g., [3, 4]). In [9],
the existence of an absorbing set for heat conduction equation with memory has been
proved in L2(Ω) × L2

μ(R; H1
0 (Ω)) and H1

0 (Ω) × L2
μ(R; H1

0 (Ω) ∩ H2(Ω)). Next, in [8], when
the nonlinear term f satisfies critical growth, the existence of global attractor is obtained
in L2(Ω) × L2

μ(R; H1
0 (Ω)). In [10], when nonlinearity is subcritical, the author obtains the

existence of bounded absorbing sets in H1
0 (Ω) × L2

μ(R; H2(Ω) ∩ H1
0 (Ω)). In [25], the bi-

spaces global attractor A is confirmed in (L2(Ω)×L2
μ(R; H1

0 (Ω)), H1
0 (Ω)×L2

μ(R; H1
0 (Ω))),

the nonlinearity f satisfies the polynomial growth of arbitrary order and bi-spaces global
attractor A ⊂ H1

0 (Ω) ∩ H2(Ω) × L2
μ(R; H1

0 (Ω) ∩ H2(Ω)).
As we know, if we want to prove the existence of global attractors, the key point is to

obtain the compactness of the semigroup in some sense. Noticing that the nonlinear-
ity satisfies arbitrary polynomial growth condition and Eq. (1.1) has no higher regular-
ity owing to fading memory and the embedding L2

μ(R; H2(Ω) ∩ H1
0 (Ω)) ↪→ L2

μ(R; H1
0 (Ω))

is noncompact, so Sobolev embeddings are no longer compact and the asymptotic com-
pactness of solutions cannot be obtained by the usual method. To overcome the diffi-
culty of the noncompact embedding, in [18], using the idea of the contractive function
method, the authors consider the asymptotic behavior of nonautonomous wave equa-
tions, they prove that the family of processes is uniformly asymptotically compact under
the nonlinearity f satisfying critical growth (see, e.g., [18]). In [23, 24], the authors con-
sider the asymptotic behavior of nonclassical diffusion equations with the nonlinearity
satisfying arbitrary polynomial growth by the (uniform) asymptotic contractive function
method, but the initial data z0 and the solution z of Eq. (1.1) belong to the same space
z0, z(t) ∈ H1

0 (Ω)) × L2
μ(R; H1

0 (Ω)). Unfortunately, it is well known that we cannot get that
the semigroup {S(t)}t≥0 is the contractive semigroup on Lp(Ω) × L2

μ(R; H1
0 (Ω)) directly

when the nonlinearity f satisfies the polynomial growth of arbitrary order.
In this paper, we take the extension of the method in [18, 23, 24, 27, 28] to the norm-

to-weak continuous semigroup on a product space. The abstract result, which proves the
existence of bi-space global attractors, is obtained (see Theorem 2.9). As an application, we
confirm the existence of (L2(Ω)×L2

μ(R+, H1
0 (Ω)), Lp(Ω)×L2

μ(R+, H1
0 (Ω)))-global attractor

A for the reaction–diffusion equation with memory and arbitrarily growing nonlinearity.
The nonlinearity f satisfies f ∈ C1, f (0) = 0, and the arbitrary order exponential growth

condition

α1|s|p – β1 ≤ f (s)s ≤ α2|s|p + β2, ∀s ∈R, p ≥ 2, (1.2)

where αi,βi (i = 1, 2), and l are positive constants and dissipative conditions

f ′(s) ≥ –l, ∀s ∈ R. (1.3)

Let F(s) =
∫ s

0 f (τ ) dτ , by (1.2) there exist constants α̃i, β̃i > 0 (i = 1, 2) such that

α̃1|s|p – β̃1 ≤ F(s) ≤ α̃2|s|p + β̃2. (1.4)
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Concerning the memory kernel function k(s), let μ(s) = –k′(s). We hypothesize

μ ∈ C1(
R

+) ∩ L1(
R

+)
, μ(s) ≥ 0, μ′(s) ≤ 0, ∀s ∈R

+, (1.5)

and there are constants δ,γ > 0 such that

μ′(s) + δμ(s) ≤ 0, ∀s ∈R
+. (1.6)

From (1.5) and (1.6), we get

μ(∞) = lim
s→∞μ(s) = 0 (1.7)

and

m0 =
∫ ∞

0
μ(s) ds. (1.8)

Next, we introduce the past history of u, that is,

ηt = ηt(x, s) :=
∫ s

0
u(x, t – τ ) dτ , s ∈R

+, (1.9)

then ηt
t = ∂

∂t η
t ,ηt

s = ∂
∂sη

t , and

ηt
t = –ηt

s + u. (1.10)

Historical variable u0(·, –s) of u satisfies the following conditions: there exist positive
constant � and σ ≤ δ (δ is from (1.6)) such that

∫ ∞

0
e–σ s∥∥u0(–s)

∥∥2
0 ds ≤ �. (1.11)

Combining with (1.7) and (1.9), properties of Lebesgue integral and partial integral, we
get

∫ ∞

0
k(s)�u(t – s) ds =

∫ ∞

0
μ(s)�ηt(s) ds. (1.12)

Hence, (1.1) is transformed into the following system:

⎧⎨
⎩

ut – �u –
∫ ∞

0 μ(s)�ηt(s) ds + f (u) = g,

ηt
t = –ηt

s + u,
(1.13)

with initial-boundary conditions

⎧⎨
⎩

u(x, t)|∂Ω = 0, ηt(x, s)|∂Ω×R+ = 0, t ≥ 0,

u(x, 0) = u0(x), η0(x, s) =
∫ s

0 u0(x, –τ ) dτ , (x, s) ∈ Ω ×R
+.

(1.14)
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Now, denoting z(t) = (u(t),ηt) as the solution of problem (1.13) with initial data z0 =
(u0,η0) and setting

Qz =
(

�u +
∫ ∞

0
μ(s)�ηt(s) ds, u – ηt

s

)

and

G(z) = (g – f , 0),

problem (1.13) with initial-boundary conditions (1.14) assumes the compact form

⎧⎪⎪⎨
⎪⎪⎩

zt = Qz + G(z) in Ω ×R
+,

z(x, 0) = z0 in Ω ,

z(x, t) = 0 on ∂Ω ×R
+.

(1.15)

For convenience, hereafter the m(e) or |e| denote the Lebesgue measure of e ⊂ R
n, C is

an arbitrarily positive constant, which may be different from line to line, even in the same
line. Let |u| be the modular (or absolute value) of u, | · |p be the norm of Lp(Ω) (p ≥ 1)
(particular denoting H = L2(Ω)) and ‖ · ‖0 = |∇ · |2 be the equivalent norm of V = H1

0 (Ω).
Denote A = –�, D(A) = H1

0 (Ω) ∩ H2(Ω) with the equivalent norm of ‖ · ‖1 = |� · |2. Let X
be a Banach space, X∗ be the dual space of X, and L2

μ(R+, X) be Hilbert spaces of functions
ϕ: R→ X, endowed with the inner product and norm respectively:

〈ϕ,ψ〉μ,X =
∫ ∞

0
μ(s)

〈
ϕ(s),ψ(s)

〉
X ds, ∀ψ ∈ X∗.

‖ϕ‖2
μ,X =

∫ ∞

0
μ(s)

∥∥ϕ(s)
∥∥2

X ds.

In particular, ‖ϕ‖2
μ,0 as X = V and ‖ϕ‖2

μ,1 as X = D(A).

Lemma 1.1 ([24]) Let X be a Hilbert space, I = [0, T],∀T ≥ 0, memory kernel μ(s) satisfy
(1.4) and (1.5). Then, for any ηt ∈ C(I, L2

μ(R+, X)), the following estimate

〈
ηt ,ηt

s
〉
μ,X ≥ δ

2
∥∥ηt∥∥2

μ,X (1.16)

holds, where δ is from (1.6).

Let X, Y be two Banach spaces, we also define a class of Banach product spaces M =
X ×L2

μ(R+, Y ) with norm ‖(·, ·)‖2
M = ‖·‖2

X +‖·‖2
μ,Y . In particular,L2 = H ×L2

μ(R+, V ),Lp =
Lp(Ω) × L2

μ(R+, V ),M1 = V × L2
μ(R+, V ), and M2 = D(A) × L2

μ(R+, D(A)).

2 Abstract results
As mentioned earlier, our main work is to consider the existence of the (L2,Lp))-global
attractor for Eq. (1.1). Thus, we have to recall some basic concepts about the bi-space
global attractor and then give a new criterion for the existence of bi-space attractors.
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Definition 2.1 ([26]) Let X be a Banach space and {S(t)}t≥0 be a family of operators on X.
We say that {S(t)}t≥0 is a norm-to-weak continuous semigroup on X if {S(t)}t≥0 satisfies:

(i) S(0) = Id (the identity);
(ii) S(t)S(s) = S(t + s) ∀t, s ≥ 0;

(iii) S(tn)xn ⇀ S(t)x if tn → t and xn → x in X .

In the evolution equation, this kind of semigroup corresponds to a solution that only
satisfies weaker stability condition and, generally, it is neither continuous (i.e., norm-to-
norm) nor weakly continuous (i.e., weak-to-weak). But obviously, the continuous semi-
group and the weakly continuous semigroup are both norm-to-weak continuous semi-
groups. As is known to all, for some concrete problems, it is difficult to verify whether
the semigroup is continuous or weakly continuous in a stronger normed space. However,
it follows from the results described in what follows that the semigroup is norm-to-weak
continuous in a stronger normed space.

Lemma 2.2 ([5, 22, 26]) Let X and Y be two Banach spaces and X∗, Y ∗ be their respective
dual spaces, satisfying

X
i

↪→ Y and Y ∗ i∗
↪→ X∗,

where the injection i : X → Y is continuous and its adjoint i∗ : Y ∗ → X∗ is densely injective.
Suppose also that {S(t)}t≥0 is a semigroup on X and Y . Assume furthermore that {S(t)}t≥0 is
a continuous semigroup or a weak continuous semigroup on Y . Then {S(t)}t≥0 is a norm-to-
weak continuous semigroup on X if and only if {S(t)}t≥0 maps the compact subset of X ×R

+

into the bounded set of X.

Definition 2.3 ([2, 5]) A set A ⊂ X, which is invariant, closed in X, compact in Z, and
attracts bounded subsets of X in the topology of Z, is called an (X, Z)-global attractor.

Definition 2.4 ([2, 5]) Let {S(t)}t≥0 be a semigroup on a Banach space X. A set B0 ⊂ Z is
called (X, Z)-bounded absorbing set if, for any bounded subset B of X, there is T = T(B)
such that S(t)B ⊂ B0 provided that t ≥ T .

Definition 2.5 ([2]) Let {S(t)}t≥0 be a semigroup on a Banach space X. The semigroup
{S(t)}t≥0 is called (X, Z)-asymptotically compact if, for any bounded (in X) sequence
{xn}∞n=1 ⊂ X and tn ≥ 0, tn → ∞ as n → ∞, {S(tn)xn}∞n=1 has a convergent subsequence with
respect to the topology of Z.

Lemma 2.6 ([10]) Let X and Y be two Banach spaces with respective norms ‖ · ‖X and

‖ · ‖Y , with B ∈ B(X) ∩ B(Y ). Assume that {xn}∞n=1 ∈ B and xn
‖·‖X−→ x0, xn

‖·‖Y−→ y0, x0, y0 ∈ B.
Then

x0 = y0,

where B(X) denotes the collection of all bounded subsets of X.
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Definition 2.7 ([18, 24]) Let X be a Banach space and B be a bounded subset of X. We call
a function φ(·, ·), defined on X ×X, a contractive function if, for any sequence {xn}∞n=1 ⊂ B,
there is a subsequence {xnk }∞k=1 ⊂ {xn}∞n=1 satisfying

lim
k→∞

lim
l→∞

φ(xnk , xnl ) = 0. (2.1)

We denote the set of all contractive functions on B × B by E(B).
In the following theorem, we present a new method (or technique) to verify the asymp-

totic compactness of a semigroup generated by evolutionary equations, which will be used
in our later discussion.

Lemma 2.8 ([13, 18, 24]) Let X be a Banach space and B be a bounded subset of X, {S(t)}t≥0

is a semigroup with a bounded absorbing set B0 on X. Moreover, assume that, for any ε > 0,
there exist T = T(B; ε) and φT (·, ·) ∈ E(B) such that

∥∥S(T)x – S(T)y
∥∥

X ≤ ε + φT (x, y), ∀x, y ∈ B,

where φT depend on T . Then the semigroup {S(t)}t≥0 is asymptotically compact in X .

Theorem 2.9 Let X, Z be two Banach spaces satisfying

Z
i

↪→ X,

where the injection i : Z → X is continuous, and {S(t)}t≥0 be a continuous semigroup on X
and a semigroup on Z. Suppose that {S(t)}t≥0 has an (X, X)-global attractor. Then {S(t)}t≥0

has an (X, Z)-global attractor provided that the following conditions hold:
(i) {S(t)}t≥0 has an (X, Z)-bounded absorbing set B0;

(ii) {S(t)}t≥0 is (X, Z)-asymptotically compact.

Proof From the assumption that {S(t)}t≥0 has an (X, X)-global attractor, we know that
{S(t)}t≥0 has an (X, Z)-bounded absorbing set. Because the embedding Z ↪→ X is con-
tinuous but not necessarily compact, B0 is not only an (X, Z)-bounded absorbing set, but
also an (X, X)-bounded absorbing set. Let

A =
⋂
s≥0

⋃
t≥s

S(t)B0
Z

, (2.2)

here AZ is the closure of A in Z. Then, by the basic theory of dynamical systems (see [2,
17, 19]), it follows that A is a compact subset of Z and, for any bounded B ⊂ X,

lim
t→∞ distZ

(
S(t)B,A

)
= 0.

It is obvious that {S(t)}t≥0 is a norm-to-weak continuous semigroup on Z. What remains
is that we just need to prove that A is an invariant set of {S(t)}t≥0 in Z, that is, for any
t ≥ 0,

S(t)A = A .
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By the assumption that {S(t)}t≥0 possesses an (X, X)-global attractor B, hence B is an
invariant set of {S(t)}t≥0 in X. Now we prove that A = B.

From Lemma 2.2, {S(t)}t≥0 is a norm-to-weak continuous semigroup on Z and possesses
a bounded absorbing set B0. First, it is so easy to prove B ⊂ A . In fact, combining assump-
tion (i) with definition (2.2) of A , and A is an attracting set of {S(t)}t≥0 in X. And yet B is
the minimal attracting set, it follows that B ⊂ A . On the other hand, from (2.2), we have
that, for any x0 ∈ A , there exist {xn}∞n=1 ⊂ B0 and {tn}∞n=1 ⊂ R

+ which satisfies tn → ∞ as
n → ∞ such that

∥∥S(tn)xn – x0
∥∥

Z → 0 as n → ∞. (2.3)

The semigroup {S(t)}t≥0 has an (X, X)-global attractor B, consequently {S(tn)xn}∞n=1 is pre-
compact in X, then there exist a subsequence {S(tnk )xnk }∞k=1 and y0 ∈ B such that

∥∥S(tnk )xnk – y0
∥∥

X → 0.

By Lemma 2.6, x0 = y0, which implies that x0 ∈ B. Noticing that x0 is arbitrary, it imme-
diately follows that A ⊂ B. The proof is complete. �

Remark 2.10 By Lemma 2.6, we have that the (X, X)-global attractor coincides with the
(X, Y )-global attractor.

Lemma 2.11 ([17, 19]) Let X ⊂⊂ H ⊂ Y be Banach spaces with X reflexive. Suppose that
un is a sequence that is uniformly bounded in L2(0, T ; X) and dun/dt is uniformly bounded
in Lp(0, T ; Y ) for some p > 1. Then there is a subsequence of un that converges strongly in
L2(0, T ; H).

According to Theorem 2.9, the key to proving the existence of (L2,Lp)-global attractors
is to verify that semigroup {S(t)}t≥0 is (L2,Lp)-asymptotically compact. Next, our main
purpose is to establish a criterion to verify the asymptotic compactness of semigroups in
these bi-spaces.

Lemma 2.12 ([26]) Let B ⊂ L2(Ω) ∩ Lp(Ω) (p ≥ 2) be any bounded subset of L2(Ω) and
Lp(Ω). Then, for any ε > 0, B has a finite ε-net in Lp(Ω) if there exists a positive constant
M = M(ε), which depends on ε, such that

(1) B has a finite (3M)(2–p)/2(ε/2)p/2-net in L2(Ω);
(2) (

∫
Ω(|u|≥M) |u|p)1/p < 2–(2p+2)/pε for any u ∈ B.

Lemma 2.13 ([26]) Let {S(t)}t≥0 be a semigroup on Lp(Ω) (p ≥ 1), and suppose that
{S(t)}t≥0 has a bounded (L2(Ω), Lp(Ω))-absorbing set in Lp(Ω). Then, for any ε > 0 and
any bounded subset B ⊂ Lp(Ω), there exist positive constants T = T(B, ε) and M = M(ε)
such that

m
(
Ω

(∣∣S(t)u0
∣∣ ≥ M

)) ≤ ε for any u0 ∈ B, t ≥ T .

Theorem 2.14 Let {S(t)}t≥0 be a continuous semigroup on L2 and a semigroup on Lp,
where 2 ≤ p < ∞. Suppose that {S(t)}t≥0 is (L2,L2)-asymptotically compact, then {S(t)}t≥0

has an (L2,Lp)-global attractor provided that the following conditions hold:
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(1) {S(t)}t≥0 has an (L2,Lp)-bounded absorbing set B0(⊂Lp);
(2) for any ε > 0 and bounded (with respect to ‖ · ‖L2 ) subset B, there exist positive

constants M = M(ε, B) and T = T(B, ε) such that
∫

Ω(|Π1S(t)z0|≥M)

∣∣Π1S(t)z0
∣∣p < ε for any z0 ∈ B, t ≥ T ,

where Π1 is the projector from X × Y to X .

Proof By Lemma 2.9, we only need to verify that {S(t)}t≥0 is (L2,Lp)-asymptotically com-
pact. Combining this embedding Lp(Ω) ↪→ L2(Ω) is continuous with the definitions of L2

and Lp, we have that the semigroup {S(t)}t≥0 has an (L2,L2)-bounded absorbing set B2.
Denote Bp = B0 ∩ B2, then it is sufficient to prove that:

For any tn > 0, xn ∈ Bp, tn → ∞ (as n → ∞), {S(tn)xn}∞n=1 is precompact in Lp, which is
equivalent to proving that for any ε > 0, {Π1S(tn)xn}∞n=1 has a finite ε-net in Lp(Ω). It is that
the semigroup {S(t)}t≥0 has an (L2,L2)-global attractor A0 and for any tn > 0, xn ∈ Bp, tn →
∞ (as n → ∞), {Π2S(tn)xn}∞n=1 is precompact in L2

μ(R, V ) (Π2 is the projector from X × Y
to Y ). Furthermore, Lp = Lp(Ω) × L2

μ(R, V ), so we only need to verify that {Π1S(tn)xn}∞n=1
is precompact in Lp(Ω).

In fact, from the assumption that {S(t)}t≥0 has an (L2,L2)-global attractor A0, we know
that there exists T1, which only depends on ε and M, such that {Π1S(tn)xn|tn ≥ T1} has
a finite (3M)(2–p)/2(ε/2)p/2-net in L2(Ω). Taking T0 = max{T , T1}, from Lemma 2.11, we
know that {Π1S(tn)xn|tn ≥ T0} has a finite ε-net in Lp(Ω). Since tn → ∞, we obtain that
{Π1S(tn)xn}∞n=1 has a finite ε-net in Lp(Ω), too. Then, from the arbitrariness of ε, we get
that {Π1S(tn)xn}∞n=1 is precompact in Lp(Ω). �

3 Global attractors in Lp

Throughout the paper, we will assume conditions (1.3)–(1.6), (1.11), and g ∈ L2(Ω). By
[10] (see also [9]), the following holds.

Lemma 3.1 For any T > 0 and every z0 ∈ L2, Eq. (1.13) with initial-boundary conditions
(1.14) admits a unique weak solution

u ∈ L∞(0, T ; H) ∩ L2(0, T ; V ) ∩ Lp(0, T ; Lp(Ω)
)
,

ηt ∈ L∞(
0, T ; L2

μ

(
R

+, V
))

(3.1)

such that

zt = Qz + G(z), z|t=0 = 0

in the weak sense.
Furthermore,

z ∈ C
(
[0, T],L2

)
,

and the mapping

z0 �→ z(t) ∈ C(L2,L2), ∀t ∈ [0, T].
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By Lemma 3.1, we can define a semigroup {S(t)}t≥0 in L2 as follows:

S(t) : R+ ×L2 →L2,

z0 → z(t) = S(t)z0,

and {S(t)}t≥0 is a strongly continuous semigroup on the phase space L2.
We now deal with the dissipative feature of the semigroup {S(t)}t≥0. Namely, we show

that the trajectories originating from any given bounded set B ⊂L2 eventually, uniformly
in time, into a bounded absorbing set B0 ⊂Lp. For further use, let us write down explicitly
the bounded absorbing set E0 ⊂L2 of the semigroup {S(t)}t≥0.

Lemma 3.2 For any R ≥ 0 given, there exist constants R0 > 0 and t0 = t0(R) such that,
whenever

‖z0‖L2 ≤ R,

it follows that

∥∥S(t)z0
∥∥
L2

≤R0, ∀t ≥ t0.

Consequently, the

E0 =
{

z ∈L2 : ‖z‖L2 ≤R0
}

is an (L2,L2)-bounded absorbing set for the semigroup {S(t)}t≥0, that is, for any bounded
set B ⊂L2, there is t0 = t0(B) such that S(t)B ⊂ E0 for every t ≥ t0.

Proof Multiplying the first equation of (1.13) by u and then integrating over Ω , we get

1
2

d
dt

|u|22 + ‖u‖2
0 +

∫ +∞

0
μ(s)

〈
–�ηt(s), u(t)

〉
ds +

〈
f (u), u

〉
= 〈g, u〉. (3.2)

Using (1.7) and transforming the integral term in (3.2), we have

∫ +∞

0
μ(s)

〈
–�ηt(s), u(t)

〉
ds =

1
2

d
dt

∥∥ηt∥∥2
μ,0 –

1
2

∫ +∞

0
μ′(s)

∥∥ηt(s)
∥∥2

0 ds. (3.3)

From (1.6), it follows that

–
1
2

∫ +∞

0
μ′(s)

∥∥ηt(s)
∥∥2

0 ds ≥ δ

2

∫ +∞

0
μ(s)

∥∥ηt(s)
∥∥2

0 ds =
δ

2
∥∥ηt∥∥2

μ,0. (3.4)

From hypothesis (1.2) and Hölder’s inequality, we obtain

〈
f (u), u

〉 ≥ α1|u|pp – β1|Ω| (3.5)

and

〈g, u〉 ≤ 1
2λ1

|g|22 +
λ1

2
|u|22. (3.6)
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Bringing (3.3)–(3.6) into (3.2) and combining with Poincaré’s inequality, we have

d
dt

(|u|22 +
∥∥ηt∥∥2

μ,0

)
+ λ1|u|22 + δ

∥∥ηt∥∥2
μ,0 + 2α1|u|pp ≤ 1

λ1
|g|22 + 2β1|Ω|, (3.7)

where |Ω| is the Lebesgue measure of Ω . Taking

γ1 = min{λ1, δ},

then

d
dt

(|u|22 +
∥∥ηt∥∥2

μ,0

)
+ γ1

(|u|22 +
∥∥ηt∥∥2

μ,0

) ≤ 1
λ1

|g|22 + 2β1|Ω|.

Applying Gronwall’s lemma, we obtain

∣∣u(t)
∣∣2
2 +

∥∥ηt(s)
∥∥2

μ,0 ≤ (∣∣u0(x)
∣∣2
2 +

∥∥η0(s)
∥∥2

μ,0

)
e–γ1t +

1
γ1

(
1
λ1

|g|22 + 2β1|Ω|
)

.

Therefore

∥∥z(t)
∥∥2
L2

≤ ‖z0‖2
L2 e–γ1t +

1
γ1

(
1
λ1

|g|22 + 2β1|Ω|
)

. (3.8)

Making R2
0 = 2

γ1
( 1
λ1

|g|22 + 2β1|Ω|), when t ≥ t0 = 1
γ1

ln γ1λ1R2

|g|22+2λ1β1|Ω| , we obtain

∥∥z(t)
∥∥
L2

≤R0.

�

Lemma 3.3 There exists a constant R1 > 0 for given any R ≥ 0 such that, whenever
‖z0‖L2 ≤ R, the corresponding solution z(t) = (u(t),ηt) fulfills

∫ t+1

t

∥∥z(s)
∥∥2
Lp

ds =
∫ t+1

t

(∣∣u(s)
∣∣p
p +

∥∥ηs∥∥2
μ,0

)
ds ≤R1

and

∫ t+1

t

∥∥z(s)
∥∥2
M1

ds =
∫ t+1

t

(∥∥u(s)
∥∥2

0 +
∥∥ηs∥∥2

μ,0

)
ds ≤R1

for all t ≥ t0 hold.

Proof From (3.2)–(3.6), we obtain

d
dt

(|u|22 +
∥∥ηt∥∥2

μ,0

)
+ ‖u‖2

0 + δ
∥∥ηt∥∥2

μ,0 + 2α1|u|pp ≤ 1
λ1

|g|22 + 2β1|Ω|. (3.9)

We integrate (3.9) about t from t to t + 1 and use Lemma 3.2, then we have

∫ t+1

t

∥∥u(s)
∥∥2

0 ds + δ

∫ t+1

t

∥∥ηs∥∥2
μ,0 ds + 2α1

∫ t+1

t

∣∣u(s)
∣∣p
p ds
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≤ 1
λ1

|g|22 + 2β1|Ω| +
∣∣u(t)

∣∣2
2 +

∥∥ηt(s)
∥∥2

μ,0

≤ 1
λ1

|g|22 + 2β1|Ω| +
∥∥z(t)

∥∥2
L2

. (3.10)

If we make R1 = 1
min{1,δ,2α1} ( 1

λ1
|g|22 + 2β1|Ω| + R2

0), then when t ≥ t0, we obtain

∫ t+1

t

∥∥z(s)
∥∥2
Lp

ds =
∫ t+1

t

(∣∣u(s)
∣∣p
p +

∥∥ηs∥∥2
μ,0

)
ds ≤R1

and

∫ t+1

t

∥∥z(s)
∥∥2
M1

ds =
∫ t+1

t

(∥∥u(s)
∥∥2

0 +
∥∥ηs∥∥2

μ,0

)
ds ≤R1. �

Corollary 3.4 Given any R ≥ 0, there exist constants K = K(R) > 0 such that, whenever
‖z0‖M0 ≤ R, the corresponding solution z(t) = (u(t),ηt) fulfills

∫ t+1

t

(∣∣u(s)
∣∣p
p +

∥∥u(s)
∥∥2

0 +
∥∥ηs∥∥2

μ,0

)
ds ≤K

for all t ≥ 0 holds.

Proof By (3.8), we find the uniform estimate

∥∥z(t)
∥∥2
L2

≤ ‖z0‖2
L2 +

1
γ1

(
1
λ1

|g|22 + 2β1|Ω|
)

, ∀t ≥ 0.

The thesis then follows from (3.10). �

Lemma 3.5 The semigroup {S(t)}t≥0 possesses an (L2,Lp)-bounded absorbing set, that is,
there are positive constants ρ0, Cρ0 such that, for any bounded subset B ⊂L2 and given any
R ≥ 0, there exists t1 (= t1(R)) such that, whenever

‖z0‖L2 ≤ R,

it follows that

∥∥S(t)z0
∥∥2
Lp

≤ ρ0,
∥∥S(t)z0

∥∥2
M1

≤ ρ0,

and

∫ t+1

t

∣∣ut(s)
∣∣2
2 ds ≤ Cρ0

hold for any t ≥ t1.

Proof Multiplying the first equation of (1.13) by ut and then integrating over Ω , we get

|ut|22 +
d
dt

(
‖u‖2

0 +
〈
ηt(s), u

〉
μ,0 +

∫
Ω

F(u) –
∫

Ω

gu
)

=
∫ +∞

0
μ(s)

〈∇ηt
t (s),∇u

〉
ds. (3.11)
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Combining with (1.8) and (1.10), we have

∫ +∞

0
μ(s)

〈∇ηt
t (s),∇u

〉
ds

=
∫ +∞

0
μ(s)〈∇u,∇u〉ds –

∫ +∞

0
μ(s)

〈∇ηt
s(s),∇u

〉
ds

≤ 5m0

4
∥∥u(t)

∥∥2
0 +

∫ +∞

0
μ(s)

∥∥ηt
s(s)

∥∥2
0 ds, (3.12)

∫ +∞

0
μ(s)

∥∥ηt
s(s)

∥∥2
0 ds

=
∫ +∞

0
μ(s)

∥∥u(t – s)
∥∥2

0 ds

=
∫ t

0
μ(t – s)

∥∥u(s)
∥∥2

0 ds +
∫ +∞

0
μ(t + s)

∥∥u(–s)
∥∥2

0 ds

≤ e–δ(t–t0)e–δt0

∫ t0

0
e–δs∥∥u(s)

∥∥2
0 ds + e–δt

∫ t

t0

eδs∥∥u(s)
∥∥2

0 ds + e–δt�

≤ Ce–δt(eδt0K + �)
+ CR1, (3.13)

where � from (1.11). By (3.12), we get

d
dt

(
‖u‖2

0 +
〈
ηt(s), u

〉
μ,0 +

∫
Ω

F(u) –
∫

Ω

gu
)

≤ 5m0

4
∥∥z(t)

∥∥2
M1

+ Ce–δt(eδt0K + �)
+ CR1. (3.14)

Setting

E(t) = ‖u‖2
0 +

〈
ηt(s), u

〉
μ,0 +

∫
Ω

F(u) –
∫

Ω

gu,

then from (1.4) we get

E(t) ≤ 2‖u‖2
0 +

m0

2
∥∥ηt∥∥2

μ,0 + α̃2|u|pp + β̃2|Ω| +
1

2λ1
|g|22

≤ C
(
1 +

∥∥z(t)
∥∥2
M1

+
∥∥z(t)

∥∥2
Lp

)
(3.15)

and

E(t) ≥ 1
2
‖u‖2

0 – m0
∥∥ηt∥∥2

μ,0 + α̃1|u|pp – β̃1|Ω| –
1
λ1

|g|22

≥ C
(∥∥z(t)

∥∥2
M1

+
∥∥z(t)

∥∥2
Lp

)
– C

(
1 +

∥∥z(t)
∥∥2
L2

)
. (3.16)

Integrating (3.14) about t from s(s ≥ t) to t + 1, we obtain

E(t + 1) ≤ C
∫ t+1

t

∥∥z(s)
∥∥2
M1

ds +
C
δ

e–δs(eδt0K + �)
+ CR1 + E(s). (3.17)
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Integrating (3.17) about s from t to t + 1, we get

E(t + 1) ≤ C
∫ t+1

t

∥∥z(s)
∥∥2
M1

ds +
C
δ2 e–δt(eδt0K + �)

+ CR1 +
∫ t+1

t
E(s) ds. (3.18)

Combining with (3.15) and (3.16), it follows that

∥∥z(t + 1)
∥∥2
M1

+
∥∥z(t + 1)

∥∥2
Lp

≤ C
∫ t+1

t

(∥∥z(s)
∥∥2
M1

+
∥∥z(s)

∥∥2
Lp

)
ds + C

(
1 +

∥∥z(t + 1)
∥∥2
Lp

)

+
C
δ2 e–δt(eδt0K + �)

+ CR1. (3.19)

By Lemma 3.2 and Lemma 3.3, there is a positive constant ρ0 such that

∥∥z(t)
∥∥2
M1

+
∣∣u(t)

∣∣p
p ≤ ρ0 (3.20)

for all t ≥ t1 = t0 + 1
δ

ln( eδt0K+�
δ2R1

) holds.
By (3.11) and (3.12), we have

∫ t+1

t

∣∣ut(s)
∣∣2
2 ds + E(t + 1) ≤ C0

∫ t+1

t

∥∥z(s)
∥∥2
M1

ds + E(t). (3.21)

Associating with (3.15), (3.16), and (3.20), we obtain that there exists a positive constant
Cρ0 such that

∫ t+1

t

∣∣ut(s)
∣∣2
2 ds ≤ Cρ0 (3.22)

for all t ≥ t1 holds. �

Remark 3.6 By Lemma 3.5, we can obtain that the semigroup {S(t)}t≥0 corresponding to
Eq. (1.13) possesses an (L2,Lp)-bounded absorbing set B0:

B0 =
{(

u,ηt) ∈ H1
0 (Ω) ∩ Lp(Ω) × L2

μ

(
R

+, H1
0 (Ω)

)
: ‖u‖2

0 +
∥∥ηt∥∥2

μ,0 + |u|pp ≤ ρ0
}

. (3.23)

It is obvious that B0 is also an (L2,M1)-bounded absorbing set of the semigroup {S(t)}t≥0.

Lemma 3.7 There exist constants K1,K2 > 0, for given any z0 ∈ B0 (from 3.23), the corre-
sponding solution z(t) = (u(t),ηt) fulfills

∣∣ut(t)
∣∣2
2 ≤K1 (3.24)

and

∫ t+1

t

∥∥ut(s)
∥∥2

0 ds ≤K2 (3.25)

for all t > 0 hold.
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Proof Differentiating about t for Eq. (1.13), and using (1.8), (1.10), we obtain

⎧⎨
⎩

utt – �ut –
∫ +∞

0 μ(s)�ηt
t(s) ds + f ′(u)ut = 0,

ut = ηt
tt + ηt

ts.
(3.26)

Multiplying the first equation of (3.26) by ut and then integrating over Ω , it follows that

d
dt

(|ut|22 +
∥∥ηt

t
∥∥2

μ,0

)
+ ‖ut‖2

0 + δ
∥∥ηt

t
∥∥2

μ,0 ≤ 2l|ut|22. (3.27)

Now, we investigate the estimate of ‖ηt
t‖2

μ,0:

∥∥ηt
t
∥∥2

μ,0 =
∫ ∞

0
μ(s)

∥∥u(t) – u(t – s)
∥∥2

0 ds

≤ 2m0
∥∥u(t)

∥∥2
0 + 2

∫ ∞

0
μ(s)

∥∥u(t – s)
∥∥2

0 ds.

And
∫ ∞

0
μ(s)

∥∥u(t – s)
∥∥2

0 ds =
∫ ∞

–t
μ(t + s)

∥∥u(–s)
∥∥2

0 ds

=
∫ 0

–t
μ(t + s)

∥∥u(–s)
∥∥2

0 ds +
∫ ∞

0
μ(t + s)

∥∥u(–s)
∥∥2

0 ds

=
∫ t

0
μ(t – s)

∥∥u(s)
∥∥2

0 ds +
∫ ∞

0
μ(t + s)

∥∥u(–s)
∥∥2

0 ds

≤ 1
δ
ρ0 + e–δt�.

Hence, for any t ≥ 0, we get

∥∥ηt
t
∥∥2

μ,0 ≤ Cρ0 + 2e–δt� (3.28)

and

ηt
t ∈ L2

μ

(
R, H1

0 (Ω)
)
.

Integrating (3.27) about t from s to t (0 < s ≤ t ≤ 1), we obtain

∣∣ut(t)
∣∣2
2 +

∥∥ηt
t
∥∥2

μ,0 ≤ 2l
∫ 1

0

∣∣ut(s)
∣∣2
2 ds +

∣∣ut(s)
∣∣2
2 +

∥∥ηs
t
∥∥2

μ,0. (3.29)

Then integrating (3.29) about s from 0 to 1, for any 0 < t ≤ 1, it follows that

∣∣ut(t)
∣∣2
2 ≤ (2l + 1)

∫ 1

0

∣∣ut(s)
∣∣2
2 ds + Cρ0 + 2�. (3.30)

By Lemma 3.5, for all 0 < t ≤ 1, we get

∣∣ut(t)
∣∣2
2 ≤ (2l + 1)Cρ0 + Cρ0 + 2�. (3.31)
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Let s ∈ (0, 1], using Gronwall’s lemma to (3.27) and combining with (3.30), for any t ≥ s,
we have

∣∣ut(t)
∣∣2
2 +

∥∥ηt
t
∥∥2

μ,0 ≤ (∣∣ut(s)
∣∣2
2 +

∥∥ηs
t
∥∥2

μ,0

)
e–δ(t–s) + (2l + δ)e–δt

∫ t

0
eδs∣∣ut(s)

∣∣2
2 ds

≤ (2l + δ)Cρ0 + Cρ0 + 2� +
(2l + δ)e
1 – e–δ

. (3.32)

Setting

K1 = (2l + 1)Cρ0 + Cρ0 + 2� +
(2l + δ)e
1 – e–δ

,

then for any t > 0, it follows that

∣∣ut(t)
∣∣2
2 ≤K1.

For any t > 0, we integrate (3.27) about t on [t, t + 1], then

∫ t+1

t

∥∥ut(s)
∥∥2

0 ds ≤ 2l
∫ t+1

t

∣∣ut(s)
∣∣2
2 ds +

∣∣ut(t)
∣∣2
2 +

∥∥ηt
t
∥∥2

μ,0.

Using Lemma 3.5 and (3.32) and letting K2 = 2lCρ0 + K1, we obtain

∫ t+1

t

∥∥ut(s)
∥∥2

0 ds ≤K2.

In order to prove the existence of an (L2,Lp)-global attractor for {S(t)}t≥0, and for further
purposes, we first have to verify that the semigroup {S(t)}t≥0 is asymptotically compact on
L2. �

Lemma 3.8 The semigroup {S(t)}t≥0 associated with problem (1.13) with initial and
boundary values (1.14) is (L2,L2)-asymptotically compact.

Proof Let z1(t) = (u1(t),ηt
1), z2(t) = (u2,ηt

2) be two solutions of (1.13) corresponding to the
initial data z1

0 = (u1
0,η0

1), z2
0 = (u2

0,η0
2) respectively. Set z(t) = (ω(t), θ t) = (u1(t) – u2(t),ηt

1 –
ηt

2), then z(t) satisfies the following equation:

ωt – �ω –
∫ +∞

0
μ(s)�θ t(s) ds + f

(
u1) – f

(
u2) = 0, (3.33)

with initial-boundary conditions

⎧⎨
⎩

ω(x, t)|∂Ω = 0, θ t(x, s)|∂Ω×R+ = 0,

ω(x, 0) = u1
0 – u2

0, θ0(x, s) = η0
1 – η0

2.
(3.34)

Multiplying (3.33) by ω and then integrating in Ω , we get

1
2

d
dt

(|ω|22 +
∥∥θ t∥∥2

μ,0

)
+ ‖ω‖2

0 +
δ

2
∥∥θ t∥∥2

μ,0 ≤ l|ω|22. (3.35)
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Making γ = min{2λ1, δ}, by Gronwall’s lemma, we obtain

∣∣ω(T)
∣∣2
2 +

∥∥θT∥∥2
μ,0 ≤ (∣∣ω(0)

∣∣2
2 +

∥∥θ0∥∥2
μ,0

)
e–γ T + 2l

∫ T

0

∣∣ω(s)
∣∣2
2 ds.

For any ε > 0, let T = 1
γ

ln
|ω(0)|22+‖θ0‖2

μ,0
ε2 , then we get

∥∥S(T)z1 – S(T)z2∥∥
L2

≤ ε + φT
(
z1, z2),

where

φT
(
z1, z2) =

(
2l

∫ T

t1

∣∣u1(s) – u2(s)
∣∣2
2 ds

)1/2

.

By Lemma 3.5, using Lemma 2.11, then φT is a contractive function on B0. �

Corollary 3.9 The semigroup {S(t)}t≥0 possesses an (L2,L2)-global attractor A0.

Lemma 3.10 The semigroup {S(t)}t≥0 associated with problem (1.13) with initial and
boundary values (1.14) is (L2,Lp)-asymptotically compact.

Proof Applying once more Theorem 2.14, Lemma 3.1, and Lemma 3.2, we only prove that,
for any ε > 0 and bounded (with respect to ‖ · ‖L2 ) subset B, there exist positive constants
M = M(ε, B) and T = T(B, ε) such that

∫
Ω(|u|≥M)

|u|p < ε for any z0 ∈ B, t ≥ T ,

where u = u(t) = Π1z(t).
From Lemma 3.3 and Remark 3.6, there exist positive constants M1 = M1(ε, B) and T0 =

T0(B, ε) such that

m
(
Ω

(|u| ≥ M1
)) ≤ ε

and

∫
Ω(|u|≥M1)

|g|2 ≤ ε,

where m(e) denote the Lebesgue measure of e ⊂ Ω and (Ω(|u| ≥ M1)) = {x ∈ Ω : |u(x)| ≥
M1}.

Let Ω1 = Ω(|u| ≥ M1)) and denote

(u – M1)+ =

⎧⎨
⎩

u – M1 as u ≥ M1,

0 as u < M1.
(u + M1)– =

⎧⎨
⎩

u + M1 as u ≤ –M1,

0 as u > –M1.
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Multiplying the first equation of (1.13) by (u – M1)+ and integrating over Ω , we have

1
2

d
dt

(∣∣(u – M1)+
∣∣2
2 +

∫ ∞

0
μ(s)

∫
Ω1

∣∣∇ηt(s)
∣∣2 ds

)
+

∫
Ω1

|∇u|2

+
δ

2

∫ ∞

0
μ(s)

∫
Ω1

∣∣∇ηt(s)
∣∣2 ds,

∫
Ω1

f (u)(u – M1)+ =
∫

Ω1

g(u – M1)+.

(3.36)

For M1 large enough, we get

f (u)(u – M1)+ ≥ 0.

By Hölder’s inequality and Cauchy’s inequality, we know that

1
2

d
dt

(∣∣(u – M1)+
∣∣2
2 +

∫ ∞

0
μ(s)

∫
Ω1

∣∣∇ηt(s)
∣∣2 ds

)

+ C
(∫

Ω1

∣∣(u – M1)+
∣∣2 +

∫ ∞

0
μ(s)

∫
Ω1

∣∣∇ηt(s)
∣∣2 ds

)
≤ Cε.

Thus there exists T1 > 0, for any t ≥ T1, we get

∣∣(u – M)+
∣∣2
2 +

∫ ∞

0
μ(s)

∫
Ω1

∣∣∇ηt(s)
∣∣2 ds ≤ Cε. (3.37)

Combining with (3.37), integrating (3.36) from t to t + 1, yields

∫ t+1

t

(∫
Ω1

|∇u|2 +
∫ ∞

0
μ(s)

∫
Ω1

∣∣∇ηt(s)
∣∣2 ds +

∫
Ω1

f (u)(u – M1)+

)
≤ Cε. (3.38)

Hence, for any t ≥ T1,

∫ t+1

t

(∫
Ω2

|∇u|2 +
∫ ∞

0
μ(s)

∫
Ω2

∣∣∇ηt(s)
∣∣2 ds +

∫
Ω2

f (u)u
)

≤ Cε, (3.39)

where Ω2 = Ω(u ≥ 2M1)).
Furthermore, we multiply the first equation of (1.13) by (u – 2M1)+t and integrating over

Ω , then we get

d
dt

(
1
2

∫
Ω2

|∇u|22 +
∫

Ω2

F(u)
)

≤ ‖ut‖0

(∫ ∞

0
μ(s)

∫
Ω2

∣∣∇ηt(s)
∣∣2 ds

)1/2

+ Cε

≤ C
(‖ut‖0 + 1

)
ε.

Hence, we have

∫
Ω2

F(u) ≤
∫ t+1

t

(
1
2

∫
Ω2

∣∣∇u(s)
∣∣2
2 +

∫
Ω2

F
(
u(s)

))
ds

+ C
((∫ t+1

t

∥∥ut(s)
∥∥

0 ds
)1/2

+ 1
)

ε. (3.40)
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From (1.2), (1.4), (3.39), and Lemma 3.7, we obtain that

∫
Ω(u≥2M1)

|u|p ≤ Cε.

Repeating the steps above, just replacing (u – M1)+, (u – 2M1)+ with (u + M1)–, (u + 2M1)–

respectively, we deduce that

∫
Ω(u≤–2M1)

|u|p ≤ Cε.

Let T = max{T0, T1} and M = 2M1, then we have that

∫
Ω(|u|≥M)

|u|p ≤ Cε

for any t ≥ T holds. �

It follows that {S(t)}t≥0 is a norm-to-weak continuous semigroup on Lp with a bounded
absorbing set B0 and (L2,Lp)-asymptotically compact. Then, obviously, by the standard
method for dynamical systems, see for example [2, 5, 20], we know that A is invariant,
compact in Lp, and attracts every bounded subset of L2 with respect to the Lp-norm.
Furthermore, by Remark 2.10, Lemma 3.8, and Lemma 3.10,

A0 = A .
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