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*Correspondence:
litongx2007@163.com
4LinDa Institute of Shandong
Provincial Key Laboratory of
Network Based Intelligent
Computing, Linyi University, Linyi,
P.R. China
5School of Information Science and
Engineering, Linyi University, Linyi,
P.R. China
Full list of author information is
available at the end of the article

Abstract
This paper discusses the synchronization problem of N-coupled fractional-order
chaotic systems with ring connection via bidirectional coupling. On the basis of the
direct design method, we design the appropriate controllers to transform the
fractional-order error dynamical system into a nonlinear system with antisymmetric
structure. By choosing appropriate fractional-order Lyapunov functions and
employing the fractional-order Lyapunov-based stability theory, several sufficient
conditions are obtained to ensure the asymptotical stabilization of the
fractional-order error system at the origin. The proposed method is universal, simple,
and theoretically rigorous. Finally, some numerical examples are presented to
illustrate the validity of theoretical results.
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1 Introduction
In recent years, more and more attention has been diverted towards the study of fractional-
order chaotic systems due to their potential applications in the fields of secure commu-
nication, encryption, signal and control processing [1–5]. Various fractional-order dy-
namical systems, such as the fractional-order Lorenz system [6], the fractional-order Lü
system [7], the fractional-order financial system [8], the fractional-order permanent mag-
net synchronous motor (PMSM) system [9], the fractional-order Rabinovich system [10],
the fractional-order microscopic chemical system [11], the fractional-order hyperchaotic
PWC system [12], have chaotic or hyperchaotic behavior. Meanwhile, several different
types of synchronization for fractional-order chaotic systems have been observed and de-
veloped in the previous works. For instance, complete synchronization [13], phase syn-
chronization [14], impulsive synchronization [15], and lag projective synchronization [16],
just to enumerate a few examples.

Coupled chaotic systems, as a special class of nonlinear systems, have been extensively
studied in theoretical physics and other fields of natural sciences and engineering. Mul-
tiple chaotic systems can be coupled in a ring which makes them correlative. Synchro-
nization of coupled chaotic systems with ring connection extends the traditional mode of
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synchronization from one-to-one into one-to-many. Then this synchronization is realized
at lower cost and has better flexibility and practicability. In the meantime, this method pro-
vides the possibility to realize simultaneous multiparty communications. Therefore, many
researchers have paid attention to investigate synchronization of coupled chaotic systems
with ring connection. For instance, in [17], it was shown that chaos synchronization of
three coupled oscillators with ring connection was accomplished. Yu and Zhang [18] re-
alized global synchronization of three coupled chaotic systems with ring connection. The
adaptive synchronization method for coupled systems was proposed for multi-Lorenz sys-
tems family in [19]. Based on special antisymmetric structure, Chen et al. [20] studied
synchronization of N-coupled integer-order chaotic systems via unidirectional coupling.
With respect to other recent representative works on this topic, we refer the reader to
[21–25] and the references cited therein.

Most of the above-mentioned works mainly focused on the coupled integer-order
chaotic systems, not involving coupled fractional-order chaotic systems. Compared with
the integer-order chaotic systems, the fractional-order chaotic systems can display much
richer dynamical behaviors and therefore they are considered as the powerful tools in
secure communication for their capability of improving the security of chaotic communi-
cation systems. As a result, it is meaningful and challenging to explore various synchro-
nization schemes of coupled fractional-order chaotic systems with ring connection. As
is well-known, N fractional-order chaotic systems with ring connection can be coupled
in the unidirectional and bidirectional ways, which are two typical coupling cases. Zhou
and Li [26] presented the theory for synchronization problems in an ω-symmetrically cou-
pled fractional differential system. Synchronization of N-coupled fractional-order chaotic
systems with unidirectional coupling and bidirectional coupling was studied in [27, 28].
Ouannas et al. [29] investigated Q-S synchronization in coupled chaotic incommensurate
fractional-order systems. As shown in [30], synchronization of unidirectional N-coupled
fractional-order chaotic systems can be derived. However, there are two problems to be
addressed: one is shall we design the general controllers to achieve synchronization of the
N-coupled fractional-order chaotic systems with ring connection via bidirectional cou-
pling; the other is how to transform the fractional-order error system into a special an-
tisymmetric structure. As far as we know, there is little work with consideration of these
two problems.

On the basis of the above discussion, this paper is concerned with synchronization of
bidirectional N-coupled fractional-order chaotic systems with ring connection. By virtue
of the direct method, the general controllers are designed to transform the fractional-order
error system into a nonlinear system with special antisymmetric structure and achieve
synchronization via bidirectional coupling, which extends the existing results proposed
in [27]. Noticeably, fractional-order Lyapunov functions are constructed to analyze the
stability of fractional-order error dynamical systems, which is different from the synchro-
nization schemes proposed in the previous literature.

The remainder of this paper is organized as follows. In the next section, some prelim-
inaries are presented. Section 3 designs the general controllers to achieve synchroniza-
tion of N-coupled fractional-order chaotic system via bidirectional coupling. Section 4
provides numerical examples to exhibit the feasibility and effectiveness of the proposed
control technique. Finally, conclusions are drawn in Sect. 5.
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2 Preliminaries
Fractional calculus is a generalization of integration and differentiation to arbitrary non-
integer orders. Several existing definitions of fractional derivatives are given in [31], where
the Caputo definition is used in engineering applications extensively. We firstly introduce
the following Caputo definition.

Definition 1 (see [31]) For a function f , the Caputo fractional derivative of fractional-
order α is defined as follows:

Dαf (t) =
1

Γ (n – α)

∫ t

t0

f (n)(τ )
(t – τ )α–n+1 dτ , t > t0,

where m – 1 < α < m, m = [α] + 1, [α] denotes the integer part of α, Γ stands for gamma
function, and Dα is generally called α-order Caputo differential operator.

The main advantage of Caputo definition is that Caputo derivative of a constant is equal
to zero. Throughout, the fractional-order chaotic systems will be described by utilizing
Caputo definition with lower limit of integral t0 = 0 and the order 0 < α < 1.

From Definition 1, it is clear that the Caputo fractional derivative satisfies the linearity
property

Dα
(
λf (t) + μg(t)

)
= λDαf (t) + μDαg(t),

where λ and μ are real constants.
The property for Caputo fractional derivative of a general quadratic function is stated

as follows.

Lemma 1 (see [32]) Assume that α ∈ (0, 1], x(t) = (x1(t), x2(t), . . . , xn(t)) ∈ R
n and xi(t)

(i = 1, 2, . . . , n) are continuous and derivable functions. Then

Dα
(
xT (t)Px(t)

) ≤ (
Dαx(t)

)T Px(t) + xT (t)PDαx(t)

for any time instant t > 0, where P ∈R
n×n is a positive definite matrix.

There are some stability results for various classes of fractional-order systems [33, 34].
Next, we recall the following useful results of the Lyapunov-based stability theory.

Definition 2 (see [33]) A continuous function γ : [0, t) → [0,∞) is said to be the class-K
function if it is strictly increasing and γ (0) = 0.

Lemma 2 (see [33]) Suppose that x(t) = 0 is the equilibrium point of the fractional-order
system Dαx(t) = f (x, t), x ∈R

n, where 0 < α < 1. If there exist a Lyapunov function V (t, x(t))
and three class-K functions γi (i = 1, 2, 3) satisfying

γ1
(‖x‖) ≤ V

(
t, x(t)

) ≤ γ2
(‖x‖) and DαV

(
t, x(t)

) ≤ –γ3
(‖x‖),

then x(t) = 0 is asymptotically stable.
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3 Synchronization scheme
Consider a general form of N fractional-order chaotic systems which can be expressed as

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

DαX1 = A1X1 + G1(X1),
DαX2 = A2X2 + G2(X2),
...
DαXN = AN XN + GN (XN ),

(1)

where X1, X2, . . . , XN ∈ R
n (N > 2) are the state vectors of the chaotic systems; A1, A2, . . . ,

AN ∈ R
n×n are constant matrices (Ai �= Aj, i �= j); Gi(Xi) (i = 1, 2, . . . , N ) are the continuous

nonlinear functions (Gi �= Gj, i �= j). Then, the structure for ring connection between N
systems via bidirectional coupling is displayed in Fig. 1. Therefore, a bidirectional cou-
pling scheme among N fractional-order chaotic systems (1) with ring connection can be
expressed as follows:

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

DαX1 = A1X1 + G1(X1) + Q1(X2 + XN – 2X1),
DαX2 = A2X2 + G2(X2) + Q2(X1 + X3 – 2X2),
DαX3 = A3X3 + G3(X3) + Q3(X2 + X4 – 2X3),
...
DαXN = AN XN + GN (XN ) + QN (XN–1 + X1 – 2XN ),

(2)

where Qi = diag(qi1, qi2, . . . , qin) are n-dimensional diagonal matrices and qij ≥ 0 are the
ideal gains which represent the coupled parameters.

Suppose that the first system is chosen as the aim system, and add the controller to the
remaining systems. Thus, model (2) takes the form

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

DαX1 = A1X1 + G1(X1) + Q1(X2 + XN – 2X1),
DαX2 = A2X2 + G2(X2) + Q2(X1 + X3 – 2X2) + U1,
DαX3 = A3X3 + G3(X3) + Q3(X2 + X4 – 2X3) + U2,
...
DαXN = AN XN + GN (XN ) + QN (XN–1 + X1 – 2XN ) + UN–1.

(3)

Figure 1 The coupled mode of N systems via bidirectional coupling
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Define the synchronization error vectors as ei = Xi+1 – Xi ∈R
n (i = 1, 2, . . . , N – 1). Then

we have the error system

e =

⎛
⎜⎜⎜⎜⎝

e1

e2
...

eN–1

⎞
⎟⎟⎟⎟⎠ .

Taking into account system (3), we can obtain the error dynamical system as follows:

Dαe =

(
Σ1 Σ2

Σ3 Σ4

)
⎛
⎜⎜⎜⎜⎝

e1

e2
...

eN–1

⎞
⎟⎟⎟⎟⎠

+

⎛
⎜⎜⎜⎜⎝

(A2 – A1)X1 + G2(X2) – G1(X1) + U1

(A3 – A2)X2 + G3(X3) – G2(X2) + U2 – U1
...

(AN – AN–1)XN–1 + GN (XN ) – GN–1(XN–1) + UN–1 – UN–2

⎞
⎟⎟⎟⎟⎠ , (4)

where

Σ1 =

⎛
⎜⎜⎜⎜⎝

A2 – 2Q1 – Q2 Q2 – Q1 –Q1 . . . –Q1 –Q1

Q2 A3 – Q3 – Q2 Q3 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . QN–2 AN–1 – QN–1 – QN–2

⎞
⎟⎟⎟⎟⎠ ,

Σ2 = [ –Q1 0 0 . . . 0 QN–1 ]T ,

Σ3 = [ –QN –QN –QN . . . –QN QN–1 – QN ],

Σ4 = AN – 2QN – QN–1.

The objective of this paper is to find the suitable and effective controllers Ui

(i = 1, 2, . . . , N – 1) such that the error dynamical system (4) is not only transformed into a
nonlinear system with antisymmetric structure but also asymptotically stable at the ori-
gin. That is, we can achieve synchronization of bidirectional N-coupled fractional-order
chaotic systems with ring connection based on antisymmetric structure.

In [35–37], the authors proposed a direct design method to achieve chaos synchroniza-
tion. Two advantages of this method are to present an easy procedure for choosing proper
controllers in chaos synchronization and construct simple controllers easily to implement.
Therefore, in this paper, this method is used to realize our objective.

First, the controllers Ui are chosen as

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

U1 = V1 – (A2 – A1)X1 – G2(X2) + G1(X1),
U2 = V2 – (A3 – A2)X2 – G3(X3) + G2(X2) + U1,
...
UN–1 = VN–1 – (AN – AN–1)XN–1 – GN (XN ) + GN–1(XN–1) + UN–2,

(5)
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where
⎛
⎜⎜⎜⎜⎝

V1

V2
...

VN–1

⎞
⎟⎟⎟⎟⎠ = Θ

⎛
⎜⎜⎜⎜⎝

e1

e2
...

eN–1

⎞
⎟⎟⎟⎟⎠ (6)

and Θ is a coefficient matrix. Then, the error dynamical system (4) can be represented as

Dαe(t) = Φ(t)e(t), (7)

where

Φ(t) =

(
Σ1 Σ2

Σ3 Σ4

)
+ Θ .

Clearly, there are many possible choices for Θ to guarantee that the error dynamical sys-
tem (7) is asymptotically stable at the origin. Without loss of generality, Θ is defined by a
state dependent coefficient matrix. As a result, the sufficient stability conditions of system
(7) are obtained by transforming it into a stable system with antisymmetric structure. The
main result is shown in the following.

Theorem 1 Synchronization of bidirectional N-coupled fractional-order system (3) can
be achieved by utilizing the control laws in equation (5), if the state dependent coefficient
matrix Φ(t) = Φ1(t) + Φ2 satisfies the hypotheses

ΦT
1 (t) = –Φ1(t) and Φ2 = diag(–ϕ1, –ϕ2, . . . , –ϕN–1), (8)

where ϕi = diag(ϕi1,ϕi2, . . . ,ϕin) (i = 1, 2, . . . , N – 1) and ϕij > 0 (j = 1, 2, . . . , n).

Proof Consider a positive definite Lyapunov candidate function as

V (e, t) =
1
2

eT (t)e(t).

Calculating the Caputo derivative of V (e, t), we derive from Lemma 1 and system (7) that

DαV (e, t) ≤ 1
2
((

Dαe(t)
)T e(t) + eT (t)Dαe(t)

)

=
1
2

eT (t)
(
ΦT (t) + Φ(t)

)
e(t).

Substituting (8) into the latter inequality, one can conclude that

DαV (e, t) ≤ 1
2

eT (t)
(
ΦT

2 + Φ2
)
e(t) = eT (t)Φ2e(t)

=
(
eT

1 (t), eT
2 (t), . . . , eT

N–1(t)
)
⎛
⎜⎜⎜⎜⎝

–ϕ1 0 0 . . . 0 0
0 –ϕ2 0 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . 0 –ϕN–1

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

e1(t)
e2(t)

...
eN–1(t)

⎞
⎟⎟⎟⎟⎠
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= –eT
1 (t)ϕ1e1(t) – eT

2 (t)ϕ2e2(t) – · · · – eT
N–1(t)ϕN–1eN–1(t)

≤ –ϕmin
(
eT

1 (t)e1(t) + eT
2 (t)e2(t) + · · · + eT

N–1(t)eN–1(t)
)

= –ϕmin

∥∥e(t)
∥∥2,

where ϕmin = min1≤i≤N ,1≤j≤n{ϕij}. An application of Lemma 2 yields that the closed-loop
system (7) is globally asymptotically stable. Therefore, synchronization of bidirectional N-
coupled fractional-order chaotic system (3) is accomplished. This completes the proof. �

As a consequence of Theorem 1, we can obtain the following corollary.

Corollary 1 If the structures of general fractional-order chaotic systems are identical, i.e.,
Ai = Aj = A and Gi(·) = Gj(·) = G(·), then the controllers Ui can be designed as

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

U1 = V1 – G(X2) + G(X1),
U2 = V2 – G(X3) + G(X2) + U1,
...
UN–1 = VN–1 – G(XN ) + G(XN–1) + UN–2,

where Vi (i = 1, 2, . . . , N – 1) are defined as in (6) and Θ is a coefficient matrix. Similarly to
the aforementioned discussion, we can achieve synchronization of bidirectional N-coupled
identical fractional-order chaotic systems with ring connection based on antisymmetric
structure.

Remark 1 The fractional-order error dynamical system (4) is transformed into system
(7) by virtue of the control laws Ui. Furthermore, system (7) can be transformed into a
stable system by choosing the appropriate coefficient matrix Θ which ensures that Φ(t)
is an antisymmetric structure. Therefore, selecting of the coefficient matrices plays an
important role in achieving synchronization of bidirectional N-coupled fractional-order
chaotic systems with ring connection.

4 Numerical simulations
To illustrate the effectiveness of the proposed synchronization scheme, two groups of ex-
amples are considered and their numerical simulations are performed. Two cases includ-
ing 3-coupled identical and nonidentical fractional-order chaotic systems are investigated,
respectively.

4.1 Synchronization of 3-coupled identical fractional-order chaotic systems
In this case, we consider synchronization of 3-coupled fractional-order Lü systems via
bidirectional coupling. Lü system connects Lorenz system and Chen system and repre-
sents the transition from one to the other. In 2006, Lu studied the chaotic dynamics of
fractional-order Lü system and found that the lowest order for this system to have chaos
is 0.3; see [7] for more details. The bidirectional 3-coupled fractional-order Lü systems
with designed controllers are introduced in the form as

⎧⎪⎨
⎪⎩

Dαx11 = a(x12 – x11) + q11(x21 + x31 – 2x11),
Dαx12 = bx12 – x11x13 + q12(x22 + x32 – 2x12),
Dαx13 = x11x12 – cx13 + q13(x23 + x33 – 2x13),
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⎧⎪⎨
⎪⎩

Dαx21 = a(x22 – x21) + q21(x11 + x31 – 2x21) + u11,
Dαx22 = bx22 – x21x23 + q22(x12 + x32 – 2x22) + u12,
Dαx23 = x21x22 – cx23 + q23(x13 + x33 – 2x23) + u13,

and

⎧⎪⎨
⎪⎩

Dαx31 = a(x32 – x31) + q31(x21 + x11 – 2x31) + u21,
Dαx32 = bx32 – x31x33 + q32(x22 + x12 – 2x32) + u22,
Dαx33 = x21x22 – cx23 + q23(x23 + x13 – 2x33) + u23,

where

A1 = A2 = A3 = A =

⎛
⎜⎝

–a a 0
0 b 0
0 0 –c

⎞
⎟⎠ , Gi(Xi) =

⎛
⎜⎝

0
–xi1xi3

xi1xi2

⎞
⎟⎠ (i = 1, 2, 3),

Q1 = diag(q11, q12, q13), Q2 = diag(q21, q22, q23), Q3 = diag(q31, q32, q33) are the coupled ma-
trices, U1 = (u11, u12, u13)T and U2 = (u21, u22, u23)T are the control inputs.

Next, we consider the synchronization error vectors ei = Xi+1 – Xi (i = 1, 2) and obtain
the error dynamical system as follows:

Dαe =

(
Dαe1

Dαe2

)

=

(
A – 2Q1 – Q2 Q2 – Q1

Q2 – Q3 A – 2Q3 – Q2

)(
e1

e2

)
+

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

u11

–x21x23 + x11x13 + u12

x21x22 – x11x12 + u13

u21 – u11

–x31x33 + x21x23 + u22 – u12

x31x32 – x21x22 + u23 – u13

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

where

A – 2Q1 – Q2 =

⎛
⎜⎝

–a – 2q11 – q21 a 0
0 b – 2q12 – q22 0
0 0 –c – 2q13 – q23

⎞
⎟⎠ ,

A – 2Q3 – Q2 =

⎛
⎜⎝

–a – 2q31 – q21 a 0
0 b – 2q32 – q22 0
0 0 –c – 2q33 – q23

⎞
⎟⎠ ,

e1 =

⎛
⎜⎝

e11

e12

e13

⎞
⎟⎠ , and e2 =

⎛
⎜⎝

e21

e22

e23

⎞
⎟⎠ .

Choosing the coefficient matrix

Θ =

(
Θ1

Θ2

)
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as follows:

Θ1 =

⎛
⎜⎝

0 0 0 0 0 0
–a 0 0 0 0 0
0 0 0 0 0 0

⎞
⎟⎠ ,

Θ2 =

⎛
⎜⎝

q11 – 2q21 + q31 0 0 0 0 0
0 q12 – 2q22 + q32 0 –a 0 0
0 0 q13 – 2q23 + q33 0 0 0

⎞
⎟⎠ ,

we can design the controllers U1 and U2 as

U1 =

⎛
⎜⎝

u11

u12

u13

⎞
⎟⎠ =

⎛
⎜⎝

0
–ae11 + x21x23 – x11x13

–x21x22 + x11x12

⎞
⎟⎠ ,

U2 =

⎛
⎜⎝

u21

u22

u23

⎞
⎟⎠ =

⎛
⎜⎝

(q11 – 2q21 + q31)e11

(q12 – 2q22 + q32)e12 – a(e11 + e21) + x31x33 – x11x13

(q13 – 2q23 + q33)e13 – x31x32 + x11x12

⎞
⎟⎠ .

Then, we obtain the error system as Dαe(t) = (Φ1(t) + Φ2)e(t), where Φ2 =
diag(–a – 2q11 – q21, b – 2q12 – q22, –c – 2q13 – q23, –a – 2q31 – q21, b – 2q32 – q22,
–c – 2q33 – q23) and

Φ1(t) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 a 0 q21 – q11 0 0
–a 0 0 0 q22 – q12 0
0 0 0 0 0 q23 – q13

q11 – q21 0 0 0 a 0
0 q12 – q22 0 –a 0 0
0 0 q13 – q23 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Assume that conditions

–a – 2q11 – q21 < 0, b – 2q12 – q22 < 0, –c – 2q13 – q23 < 0,

–a – 2q31 – q21 < 0, b – 2q32 – q22 < 0, –c – 2q33 – q23 < 0

are satisfied. Thus, according to Corollary 1, the error system is asymptotically stable with
the controllers U1 and U2. That is, synchronization of 3-coupled fractional-order Lü sys-
tems via bidirectional coupling is accomplished.

The Adams–Bashforth–Moulton predictor-corrector scheme [38] is used to obtain
the simulation results illustrated with the initial condition X1(0) = (1, 2, 3)T , X2(0) =
(30, 9, –10)T , X3(0) = (4, 30, 2)T , and α = 0.96. The fractional-order Lü system with
(a, b, c) = (35, 28, 3) can generate chaotic attractor; see Fig. 2. Further, selecting q11 = q13 =
q21 = q23 = q33 = 2, q12 = q22 = 23, q31 = 5, and q32 = 26, we obtain simulation results as
displayed in Figs. 3 and 4. The state variables of the fractional-order Lü system with de-
signed controllers are demonstrated in Fig. 3. Figure 4 illustrates that the errors of syn-
chronization converge asymptotically to zero in a quite short period, i.e., synchronization
of bidirectional 3-coupled fractional-order Lü systems can be realized.
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Figure 2 Chaotic attractors of the fractional-order Lü system

Figure 3 The state trajectories xi1, xi2, and xi3 (i = 1, 2, 3) of the fractional-order Lü system
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Figure 4 The error dynamics of synchronization among three fractional-order Lü systems

4.2 Synchronization of 3-coupled nonidentical fractional-order chaotic systems
In the following, we consider synchronization of 3-coupled nonidentical fractional-order
chaotic systems, which are the fractional-order Lorenz system [6], the fractional-order
financial system [8], and the fractional-order PMSM system [9]. They are expressed as

⎧⎪⎨
⎪⎩

Dαx11 = a1(x12 – x11) + q11(x21 + x31 – 2x11),
Dαx12 = a2x11 – x12 – x11x13 + q12(x22 + x32 – 2x12),
Dαx13 = x11x12 – a3x13 + q13(x23 + x33 – 2x13),

(9)

⎧⎪⎨
⎪⎩

Dαx21 = x23 + (x22 – b1)x21 + q21(x11 + x31 – 2x21) + u11,
Dαx22 = 1 – b2x22 – x2

21 + q22(x12 + x32 – 2x22) + u12,
Dαx23 = –x21 – b3x23 + q23(x13 + x33 – 2x23) + u13,

(10)

and

⎧⎪⎨
⎪⎩

Dαx31 = –x31 + x32x33 + q31(x21 + x11 – 2x31) + u21,
Dαx32 = –x32 – x31x33 + c1x33 + q32(x22 + x12 – 2x32) + u22,
Dαx33 = c2(x32 – x33) + q33(x23 + x13 – 2x33) + u23,

(11)

where

A1 =

⎛
⎜⎝

–a1 a1 0
a2 –1 0
0 0 –a3

⎞
⎟⎠ , A2 =

⎛
⎜⎝

–b1 0 1
0 –b2 0

–1 0 –b3

⎞
⎟⎠ ,

A3 =

⎛
⎜⎝

–1 0 0
0 –1 c1

0 c2 –c2

⎞
⎟⎠ ,

G1(X1) =

⎛
⎜⎝

0
–x11x13

x11x12

⎞
⎟⎠ , G2(X2) =

⎛
⎜⎝

x21x22

1 – x2
21

0

⎞
⎟⎠ , G3(X3) =

⎛
⎜⎝

x32x33

–x31x33

0

⎞
⎟⎠ ,

Q1 = diag(q11, q12, q13), Q2 = diag(q21, q22, q23), Q3 = diag(q31, q32, q33) are the coupled ma-
trices, U1 = (u11, u12, u13)T and U2 = (u21, u22, u23)T are the control inputs. Let α = 0.99,
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Figure 5 Chaotic attractors of systems (9)–(11)

(a1, a2, a3) = (10, 28, 8/3), (b1, b2, b3) = (3, 0.1, 1), and (c1, c2) = (50, 4). In the absence of the
controllers, fractional-order systems (9)–(11) without the coupling terms behave chaoti-
cally as shown in Fig. 5; see [6, 8, 9] for more details.

The synchronization error can be presented as ei = Xi+1 – Xi (i = 1, 2). Then, in view of
systems (9)–(11), the error dynamical system reduces to

Dαe =

(
Σ1 Σ2

Σ3 Σ4

)(
e1

e2

)
+

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

(a1 – b1)x11 – a1x12 + x13 + x21x22 + u11

–a2x11 + (1 – b2)x12 + 1 – x2
21 + x11x13 + u12

–x11 + (a3 – b3)x13 – x11x12 + u13

(b1 – 1)x21 – x23 + x32x33 – x21x22 + u21 – u11

(b2 – 1)x22 + c1x23 – x31x33 – 1 + x2
21 + u22 – u12

x21 + c2x22 + (b3 – c2)x23 + u23 – u13

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

where

Σ1 = A2 – 2Q1 – Q2 =

⎛
⎜⎝

–b1 – 2q11 – q21 0 1
0 –b2 – 2q12 – q22 0

–1 0 –b3 – 2q13 – q23

⎞
⎟⎠ ,

Σ2 = Q2 – Q1 =

⎛
⎜⎝

q21 – q11 0 0
0 q22 – q12 0
0 0 q23 – q13

⎞
⎟⎠ ,

Σ3 = Q2 – Q3 =

⎛
⎜⎝

q21 – q31 0 0
0 q22 – q32 0
0 0 q23 – q33

⎞
⎟⎠ ,
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Σ4 = A3 – 2Q3 – Q2 =

⎛
⎜⎝

–1 – 2q31 – q21 0 0
0 –1 – 2q32 – q22 c1

0 c2 –c2 – 2q33 – q23

⎞
⎟⎠ .

Choosing the coefficient matrix

Θ =

(
Θ1

Θ2

)

as follows:

Θ1 =

⎛
⎜⎝

0 0 0 q31 – q21 0 0
0 0 0 0 q32 – q22 0
0 0 0 0 0 q33 – q23

⎞
⎟⎠ ,

Θ2 =

⎛
⎜⎝

q11 – q21 0 0 0 0 0
0 q12 – q22 0 0 0 –c1 – c2

0 0 q13 – q23 0 0 0

⎞
⎟⎠ ,

we can design the controllers in the form

⎧⎪⎨
⎪⎩

u11 = (q31 – q21)e21 – (a1 – b1)x11 + a1x12 – x13 – x21x22,
u12 = (q32 – q22)e22 + a2x11 – (1 – b2)x12 – 1 + x2

21 – x11x13,
u13 = (q33 – q23)e23 + x11 – (a3 – b3)x13 + x11x12,

and
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

u21 = (q11 – q21)e11 + (q31 – q21)e21 – (b1 – 1)x21

+ x23 – x32x33 – (a1 – b1)x11 + a1x12 – x13,
u22 = (q12 – q22)e12 + (q32 – q22)e22 – (c1 + c2)e23 – (b2 – 1)x22

– c1x23 + a2x11 – (1 – b2)x12 + x31x33 – x11x13,
u23 = (q13 – q23)e13 + (q33 – q23)e23 – x21

– c2x22 – (b3 – c2)x23 + x11 – (a3 – b3)x13 + x11x12.

Then, we have the error system as Dαe(t) = (Φ1(t) + Φ2)e(t), where Φ2 =
diag(–b1 – 2q11 – q21, –b2 – 2q12 – q22, –b3 – 2q13 – q23, –1 – 2q31 – q21, –1 – 2q32 – q22,
–c2 – 2q33 – q23) and

Φ1(t) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 1 q31 – q11 0 0
0 0 0 0 q32 – q12 0

–1 0 0 0 0 q33 – q13

q11 – q31 0 0 0 0 0
0 q12 – q32 0 0 0 –c2

0 0 q13 – q33 0 c2 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

If conditions

–b1 – 2q11 – q21 < 0, –b2 – 2q12 – q22 < 0, –b3 – 2q13 – q23 < 0,

–1 – 2q31 – q21 < 0, –1 – 2q32 – q22 < 0, –c2 – 2q33 – q23 < 0
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are satisfied, then the error system is asymptotically stable under the designed controllers
by means of Theorem 1. Hence, synchronization of systems (9)–(11) is realized.

The simulation results are illustrated with the initial condition X1(0) = (1, 4, 5)T , X2(0) =
(2, 3, 2)T , X3(0) = (6, 2, 4)T , and α = 0.99. Furthermore, selecting q11 = q12 = q13 = 2, q21 =
q22 = q23 = 5, q11 = q12 = q13 = q31 = q32 = q33 = 8, we obtain simulation results as displayed
in Figs. 6 and 7. Figure 6 shows the state variables of the 3-coupled fractional-order systems
(9)–(11). From Fig. 7, it is clear that the errors of synchronization converge asymptotically
to zero in a quite short period. As expected, synchronization of bidirectional 3-coupled
nonidentical fractional-order chaotic systems can be realized.

Figure 6 The state trajectories xi1, xi2, and xi3 (i = 1, 2, 3) of 3-coupled fractional-order chaotic systems (9)–(11)

Figure 7 The error dynamics of synchronization among 3-coupled fractional-order chaotic systems (9)–(11)
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5 Conclusions
In this paper, we introduce, analyze, and validate synchronization of N-coupled fractional-
order chaotic systems with ring connection by utilizing the bidirectional coupling. By
virtue of the direct design method, the proper controllers are designed to transform
the fractional-order error dynamical system into a nonlinear system with antisymmetric
structure. Thus, on the basis of quadratic Lyapunov functions and the Lyapunov stability
theory of fractional-order systems, we obtain several sufficient conditions which ensure
the occurrence of synchronization among N-coupled fractional-order chaotic systems.
Additionally, the synchronization scheme is applicable to all fractional-order chaotic sys-
tems, including those that can exhibit hyperchaotic behavior. Furthermore, the proposed
results pave the way for new directions in the study of various kinds of chaos synchroniza-
tion among N-coupled fractional-order systems with ring connection. For example, con-
sidering the unknown parameters, external disturbances, and the effect of noise on such
synchronization schemes would be interesting and valuable directions for future work.
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