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Abstract
This paper is concerned with the traveling wavefronts of a 2D two-component lattice
dynamical system. This problem arises in the modeling of a species with mobile and
stationary subpopulations in an environment in which the habitat is two-dimensional
and divided into countable niches. The existence and uniqueness of the traveling
wavefronts of this system have been studied in (Zhao and Wu in Nonlinear Anal., Real
World Appl. 12: 1178–1191, 2011). However, the stability of the traveling wavefronts
remains unsolved. In this paper, we show that all noncritical traveling wavefronts with
given direction of propagation and wave speed are exponentially stable in time. In
particular, we obtain the exponential convergence rate.
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1 Introduction
In this paper, we consider the following two-dimensional (2D) lattice differential system:

⎧
⎨

⎩

dui,j(t)
dt = (�2u)i,j + f (ui,j(t)) – γ1ui,j(t) + γ2vi,j(t),

dvi,j(t)
dt = γ1ui,j(t) – γ2vi,j(t),

(1.1)

where ui,j(t) ∈R, vi,j(t) ∈ R, i, j ∈ Z, t > 0, and

(�2u)i,j := d[ui+1,j + ui–1,j + ui,j+1 + ui,j–1 – 4ui,j].

The system models a species with mobile and stationary subpopulations in an environ-
ment in which the habitat is two-dimensional and divided into countable niches (see [4]).
Such behavior is typical for invertebrates living in small ponds in arid climates, which dry
up and reappear subject to rainfall (Hadeler and Lewis [4]). Here ui,j(t) and vi,j(t) rep-
resent the densities of mobile and stationary subpopulations at a point (i, j) and time t,
respectively, d > 0 is the diffusion coefficient of the mobile subpopulation, and f is the
reproduction function. The rates of transfer between two states are assumed to be γ1 > 0
and γ2 > 0.
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In fact, system (1.1) is a spatially discrete version of the following continuous model with
a quiescent stage (see Hadeler and Lewis [4]):

⎧
⎨

⎩

∂tu(x, t) = d�u(x, t) + f (u(x, t)) – γ1u(x, t) + γ2v(x, t),

∂tv(x, t) = γ1u(x, t) – γ2v(x, t).
(1.2)

However, in some cases, a lattice differential model is more suitable than the continuous
one. For example, the ponds, the living environment of frogs, which are scattered in the
grassland, cannot be regarded as a continuous environment. Actually, lattice dynamical
systems have been extensively used to model biological and epidemic problems, and some
new phenomenon has been observed in discrete models, such as occurrence of “propaga-
tion failure” or “pinning”; we refer to the survey paper [3] and book [14].

The traveling wave and related problems of systems (1.1) and (1.2) have been widely
studied. Zhang and Zhao [20] established the existence of spreading speed of (1.2) and
showed that it coincides with the minimal wave speed for traveling wavefronts. Zhang
and Li [21] further considered the monotonicity and uniqueness of the traveling wave
solutions of (1.2). Recently, Zhao and Wu [22] studied the existence, asymptotic behavior,
monotonicity, and uniqueness of traveling wavefronts of the 2D discrete model (1.1). The
effects of the direction of propagation on the minimal wave speed c∗(θ ) is also investigated.
We found that: (i) c∗(θ ) is a periodic function with period π

2 and has the symmetry in
θ = π

4 ; (ii) the 1D front (i.e., θ = 0, π
2 ) is the fastest, and the diagonal front (i.e., θ = π

4 ) is the
slowest; (iii) c∗(θ ) is monotonically decreasing and increasing in θ ∈ [0, π

4 ] and θ ∈ [ π
4 , π

2 ],
respectively. However, the stability of the traveling wavefronts for systems (1.1) and (1.2)
remains unsolved. This constitutes the purpose of this paper.

In the past decades, there are many techniques developed to deal with the stability of the
traveling waves (see [1, 2, 5, 6, 9–13, 16, 17, 19]), such as the spectral analysis method ([1,
19]), the weighted-energy method ([12]), the sub- and supersolutions combining squeez-
ing technique ([2, 17]), and the combination of the comparison principle and the weighted-
energy method ([9, 11]). More recently, Ouyang and Ou [13] used a new method to prove
the asymptotic stability of traveling waves of a nonlocal reaction–diffusion equation in pe-
riodic media. In this paper, we extend this method to systems (1.1) and (1.2). We focus on
the stability of the traveling wavefronts for 2D discrete system (1.1), since the same issue
for the continuous model (1.2) can be treated similarly. More precisely, by establishing a
comparison theorem for a related initial-boundary value problem (see Lemma 3.1) and
giving a variational characterization of the minimal wave speed (see Lemma 2.4) we show
that any traveling wavefront of (1.1) with given direction of propagation θ ∈ [0, 2π ] and
wave speed c > c∗(θ ) is exponentially stable in time (see Theorem 3.2). In particular, we
obtain the exponential convergence rate.

Throughout this paper, we make the following assumptions on the function f :
(A1) f ∈ C2[0, 1], f (0) = f (1) = 0, f ′(0) > 0, f ′(1) < 0, and f (u) > 0 for all u ∈ (0, 1).
(A2) f ′(u) ≤ f ′(0) for all u ∈ [0, 1].

From (A1) we see that (1.1) has two equilibria 0 := (0, 0) and K := (1, K), where K := γ1/γ2.
We are interested in traveling wave solutions that connect the two equilibria 0 and K.
A solution wi,j(t) = (ui,j(t), vi,j(t)) of (1.1) is called a traveling wave solution of (1.1) with
speed c and direction θ if there exist constants θ ∈R and c > 0 and a differentiable function
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W = (U , V ) : R→R
2 such that

(
ui,j(t), vi,j(t)

)
=

(
U(i cos θ + j sin θ + ct), V (i cos θ + j sin θ + ct)

)
, ∀i, j ∈ Z, t ∈R.

Moreover, if W : R→R
2 is monotone, then we say that W is a traveling wavefront.

The rest of this paper is organized as follows. In Sect. 2, we first recall a result on the
existence of the minimal wave speed c∗(θ ). Then we give a variational characterization of
c∗(θ ). Section 3 is devoted to the stability of noncritical traveling wavefronts.

2 Characterization of minimal wave speed
In this section, we first recall some results on the existence of the minimal wave speed
c∗(θ ). Then we give a variational characterization of c∗(θ ), which will be used in proving
our stability result.

For c ≥ 0 and λ ∈ C with λ 	= – γ2
c , we define the characteristic function as follows:


(c,λ) = cλ – d
[
eλ cos θ + e–λ cos θ + eλ sin θ + e–λ sin θ – 4

]
– f ′(0) + γ1 –

γ1γ2

cλ + γ2
.

We have the following results on the existence of the minimal wave speed.

Lemma 2.1 ([22, Lemma 2.5]) For any fixed θ ∈ R, there exists a positive number c∗(θ )
such that

(i) if c ≥ c∗(θ ), then 
(c,λ) = 0 has two roots λ1(c), λ2(c) with 0 < λ1(c) ≤ λ2(c);
(ii) if c = c∗(θ ), then λ1(c∗) = λ2(c∗) := λ∗(θ ), and if c > c∗(θ ), then λ1(c) < λ∗(θ ) < λ2(c),

and 
(c, ·) < 0 in R \ (λ1(c),λ2(c)), 
(c, ·) > 0 in (λ1(c),λ2(c)).

Lemma 2.2 ([22, Theorem 2.7]) Let θ ∈ R. Then:
(i) for each c ≥ c∗(θ ), (1.1) has a traveling wavefront W (ξ ), ξ = i cos θ + j sin θ + ct, with

direction of propagation θ and wave speed c;
(ii) for any 0 < c < c∗(θ ), (1.1) has no traveling wave solutions.

Now, we give a variational characterization of c∗(θ ). Substituting

(
ui,j(t), vi,j(t)

)
= eλ(i cos θ+j sin θ )(u(t), v(t)

)
, λ ∈R,

into the linearized system of (1.1) at (0, 0), we obtain

⎧
⎨

⎩

u′(t) = d[eλ cos θ + e–λ cos θ + eλ sin θ + e–λ sin θ – 4]u(t) + [f ′(0) – γ1]u(t) + γ2v(t),

v′(t) = γ1u(t) – γ2v(t).

Clearly, the eigenvalue problem of this system has the following from:

⎧
⎨

⎩

M(λ)ν1 = d[eλ cos θ + e–λ cos θ + eλ sin θ + e–λ sin θ – 4]ν1 + [f ′(0) – γ1]ν1 + γ2ν2,

M(λ)ν2 = γ1ν1 – γ2ν2.
(2.1)

From [15, Theorem 5.5.1], we see that problem (2.1) has a principal eigenvalue M(λ) with
a strictly positive eigenfunction ν(λ) = (ν1(λ),ν2(λ)).
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Lemma 2.3 Let Φ(λ) = M(λ)/λ. Then:
(i) limλ→0+ Φ(λ) → ∞ and limλ→∞ Φ(λ) = ∞.

(ii) Φ(λ) is decreasing near 0, and Φ ′(λ) changes the sign at most once on (0,∞).
(iii) There exists λ∗ = λ∗(θ ) ∈ (0,∞) such that c∗(θ ) := Φ(λ∗) = infλ>0 Φ(λ).

Proof It is clear that M(λ) is the spectral radius of a matrix and

M(λ) =
H(λ)+

√
H2(λ) + 4{d[eλ cos θ + e–λ cos θ + eλ sin θ + e–λ sin θ – 4] + f ′(0)}γ2

2

≥ √
f ′(0)γ2,

where

H(λ) = d
[
eλ cos θ + e–λ cos θ + eλ sin θ + e–λ sin θ – 4

]
+ f ′(0) – γ1 – γ2.

Hence limλ→0+ Φ(λ) → ∞. Moreover, by the first equation of (2.1) we get

Φ(λ) ≥ d[eλ cos θ + e–λ cos θ + eλ sin θ + e–λ sin θ – 4]
λ

+
f ′(0) – γ1

λ
.

Since cos2 θ + sin2 θ = 1, it is clear that limλ→∞ Φ(λ) = ∞. Then the lemma directly follows
from Liang and Zhao [7, Lemma 3.8]. �

The following result says that c∗(θ ) equals the minimal wave speed c∗(θ ).

Lemma 2.4 For any given θ ∈R, (c∗(θ ),λ∗(θ )) = (c∗(θ ),λ∗(θ )).

Proof For convenience, we denote (c∗(θ ),λ∗(θ )) and (c∗(θ ),λ∗(θ )) by (c∗,λ∗) and (c∗,λ∗),
respectively. By Lemma 2.1 we see that (c∗,λ∗) is a unique solution of the system


(c,λ) = 0 and
∂

∂λ

(c,λ) = 0. (2.2)

From Lemma 2.3 we have Φ(λ∗) = M(λ∗)/λ∗ = c∗ and Φ ′(λ∗) = 0. Hence

M
(
λ∗) = c∗λ∗ and M′(λ∗) =

M(λ∗)
λ∗ = c∗.

Letting ν1 = 1, it then follows from (2.1) that ν2 = γ1/(c∗λ∗ + γ2) and

c∗λ∗ = M
(
λ∗)

= d
[
eλ∗ cos θ + e–λ∗ cos θ + eλ∗ sin θ + e–λ∗ sin θ – 4

]
+

[
f ′(0) – γ1

]
+

γ1γ2

c∗λ∗ + γ2
,

that is, 
(c∗,λ∗) = 0. Moreover, from (2.1) we obtain

M(λ) = d
[
eλ cos θ + e–λ cos θ + eλ sin θ + e–λ sin θ – 4

]
+

[
f ′(0) – γ1

]
+

γ1γ2

M(λ) + γ2
.
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Differentiating with respect to λ this equality, we get

c∗ = M′(λ∗)

= d
[
cos θeλ∗ cos θ – cos θe–λ∗ cos θ + sin θeλ∗ sin θ – sin θe–λ∗ sin θ

]
–

γ1γ2M′(λ∗)
[M(λ∗) + γ2]2

= d
[
cos θeλ∗ cos θ – cos θe–λ∗ cos θ + sin θeλ∗ sin θ – sin θe–λ∗ sin θ

]
–

γ1γ2c∗

[c∗λ∗ + γ2]2 ,

which implies that ∂
∂λ


(c∗,λ)|λ=λ∗ = 0. Hence (c∗,λ∗) is also a solution of system (2.2). By
the uniqueness of solutions of (2.2) we deduce that (c∗,λ∗) = (c∗,λ∗). This completes the
proof. �

By Lemmas 2.3–2.4, for each c > c∗(θ ), cλ1(c) = M(λ1(c)), and cλ > M(λ) for all λ ∈
(λ1(c),λ∗). Let ν(λ1) = (ν1(λ1),ν2(λ1)) be the eigenvector associated with M(λ1(c)).

3 Stability of traveling wavefronts
In this section, we consider the stability of the noncritical traveling wavefronts of (1.1) with
given wave direction and speed. We always assume that Φ(ξ ) = (φ(ξ ),ψ(ξ )), ξ = i cos θ +
j sin θ + ct, is a traveling wavefront of (1.1) with speed c > c∗(θ ) and direction θ ∈ [0, 2π ]
connecting 0 and K. Without loss of generality, we extend f satisfying (A1) and (A2) to
f̂ : [0,∞) →R by

f̂j(u) :=

⎧
⎨

⎩

fj(u), u ∈ [0, 1],

f ′
j (1)(u – 1), u ∈ [1, +∞).

For convenience, we still denote f̂ by f in the rest of this section.
We first prove the following comparison theorem for a related initial-boundary problem

of (1.1), which will play an important role in proving our main result. Given any X0 ∈
R∪ {–∞}, define the domain ΩX0 and its boundary ∂ΩX0 as follows:

ΩX0 :=
{

(i, j, t) ∈ Z
2 ×R+|i cos θ + j sin θ + ct > X0, t > 0

}

and

∂ΩX0 :=
{

(i, j, t) ∈ Z
2 ×R+|i cos θ + j sin θ + ct > X0,

t = 0 or i cos θ + j sin θ + ct = X0, t ≥ 0
}

.

Lemma 3.1 Given any β ∈R, assume that W ±
i,j (t) = (u±

i,j(t), v±
i,j(t)) : Z2 ×R+ →R

2 are two
functions satisfying

(i) W +
i,j(t) ≥ 0 and W –

i,j(t) ≤ K for all (i, j, t) ∈ Z
2 ×R

+;
(ii) W +

i,j(t) ≥ W –
i,j(t) for all (i, j, t) ∈ (Z2 ×R+) \ ΩX0 ;

(iii) For (i, j, t) ∈ ΩX0 , we have

⎧
⎨

⎩

du+
i,j(t)
dt ≥ (�2u+)i,j + βu+

i,j(t) + γ2v+
i,j(t),

dv+
i,j(t)
dt ≥ γ1u+

i,j(t) – γ2v+
i,j(t),
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and
⎧
⎨

⎩

du–
i,j(t)
dt ≤ (�2u–)i,j + βu–

i,j(t) + γ2v–
i,j(t),

dv–
i,j(t)
dt ≤ γ1u–

i,j(t) – γ2v–
i,j(t).

Then W +
i,j(t) ≥ W –

i,j(t) for all (i, j, t) ∈ Z
2 ×R

+.

Proof Take

Wi,j(t) =
(
W (1)

i,j (t), W (2)
i,j (t)

)
:= W +

i,j(t) – W –
i,j(t), ∀(i, j) ∈ Z

2, t ≥ 0.

By our assumptions we see that Wi,j(t) is bounded from below by –K and Wi,j(t) ≥ 0 for
all (i, j, t) ∈ (Z2 ×R+) \ ΩX0 . Define the function

W̄ (t) = min
l=1,2

inf
(i,j,t)∈ΩX0

W (l)
i,j (t) for t ≥ 0.

It is clear that W̄ (0) ≥ 0 and W̄ (t) is a continuous function on [0,∞).
Fix δ > max{β + γ2,γ1}. Note that

lim inf
t→∞ W̄ (t)e–δt ≥ – lim inf

t→∞ min{1, K}e–δt = 0.

We claim that W̄ (t) ≥ 0 for all t ≥ 0. If this claim is not true, then there exists t0 > 0 such
that W̄ (t0) < 0 and

W̄ (t0)e–δt0 = min
t∈[0,t0]

W̄ (t)e–δt < W̄ (s)e–δs, ∀s ∈ [0, t0). (3.1)

It is easy to see that there exist l0 ∈ {1, 2} and a sequence {(ik , jk)}+∞
k=1 ⊆ Z

2 such that

W (l0)
ik ,jk (t0) < 0, ∀k ≥ 1, and lim

k→+∞
W (l0)

ik ,jk (t0) = W̄ (t0).

Let {tk}+∞
k=1 be a sequence in (0, t0] such that

W (l0)
ik ,jk (tk)e–δtk = min

t∈[0,t0]
W (l0)

ik ,jk (t)e–δt < 0. (3.2)

Since W (l0)
i,j (t) ≥ 0 for any (i, j, t) ∈ (Z2 ×R+) \ ΩX0 , we must have (ik , jk , tk) ∈ ΩX0 . It then

follows from (3.1) that limk→+∞ tk = t0. By the definition of W̄ (t) we have

W̄ (tk) ≤ W (l0)
ik ,jk (tk) ≤ W (l0)

ik ,jk (t0)e–δ(t0–tk ),

which implies that limk→+∞ W (l0)
ik ,jk (tk) = W̄ (t0) < 0 by taking k → +∞.

We distinguish two cases.
Case 1. l0 = 1. By the definition of W̄ (t) and the fact W (l0)

i,j (t) ≥ 0 for any (i, j, t) ∈ (Z2 ×
R+) \ ΩX0 , for each k ≥ 1, we obtain

(
�2W (1))

ik ,jk
(tk) = d

[
W (1)

ik +1,jk (tk) + W (1)
ik –1,jk (tk) + W (1)

ik ,jk +1(tk) + W (1)
ik ,jk –1(tk) – 4W (1)

ik ,jk (tk)
]

≥ 4d min
{

0, W̄ (tk)
}

– 4dW (1)
ik ,jk (tk).
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Then by (3.2) we have

0 ≥ eδtk
d
dt

(
W (1)

ik ,jk (t)e–δt)
∣
∣
∣
∣
t=t–

k

=
d
dt

W (1)
ik ,jk (tk) – δW (1)

ik ,jk (tk)

≥ (
�2W (1))

ik ,jk
(tk) + (β – δ)W (1)

ik ,jk (tk) + γ2W (2)
ik ,jk (tk)

≥ 4d min
{

0, W̄ (tk)
}

+ (β – δ – 4d)W (1)
ik ,jk (tk) + γ2W̄ (tk).

Note that W̄ (t0) < 0 and δ > β + γ2. Sending k → ∞, we get 0 ≥ W̄ (t0)[β + γ2 – δ] > 0, a
contradiction.

Case 2. l0 = 2. Similarly, we have

0 ≥ d
dt

W (2)
ik ,jk (tk) – δW (2)

ik ,jk (tk) ≥ γ1W̄ (tk) + (–γ2 – δ)W (2)
ik ,jk (tk).

Letting k → ∞, we get 0 ≥ W̄ (t0)[γ1 – γ2 – δ] > 0, a contradiction.
These contradictions show that W̄ (t) ≥ 0 for all t ≥ 0, and hence W +

i,j(t) ≥ W –
i,j(t) for all

(i, j, t) ∈ Z
2 ×R

+. This completes the proof. �

Let λK be the principle eigenvalue of the matrix

(
f ′(1) – γ1 γ2

γ1 –γ2

)

,

and let � = (�1,�2) � (0, 0) be the associated eigenvector. Thus

⎧
⎨

⎩

λK�1 = (f ′(1) – γ1)�1 + γ2�2,

λK�2 = γ1�1 – γ2�2.
(3.3)

Since f ′(1) < 0, it is easy to see that λK < 0. In fact, suppose on the contrary that λK ≥ 0.
Then λK�2 = γ1�1 – γ2�2 ≥ 0, and hence

λK�1 =
(
f ′(1) – γ1

)
�1 + γ2�2 ≤ f ′(1),

which yields that f ′(1) ≥ λK ≥ 0. This contradicts the assumption that f ′(1) < 0.
Take μ̄ ∈ (0, –λK ) and ε ∈ (0, min{μ̄,λ∗(c) – λ1(c)}). Since f ∈ C1([0,∞)) and f ′(u) = f ′(1)

for all u ≥ 1, there exists δ0 ∈ (0, 1) such that

f ′(u) < f ′(1) + ε for any u ≥ 1 – δ0. (3.4)

Noting that φ(+∞) = 1, we can choose M0 > 0 sufficiently large such that

φ(ξ ) ∈ [1 – δ0, 1) for all ξ ≥ M0. (3.5)
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We now define the weighted function

ωε(i, j) :=

⎧
⎨

⎩

e–λε (i cos θ+j sin θ–M0), i cos θ + j sin θ ≤ M0,

1, i cos θ + j sin θ > M0,
(3.6)

where λε := λ1(c) + ε. Note that cλε > M(λε). Take w0 = {w0
i,j}(i,j)∈Z2 = {(U0

i,j, V 0
i,j)}(i,j)∈Z2 . We

now state the main result.

Theorem 3.2 Assume that 0 ≤ w0
i,j ≤ K and ‖w0

i,j – Φ(i cos θ + j sin θ )‖ωε(i, j) is bounded
on Z

2. Then there exists μ0 > 0 such that the unique solution wi,j(t; w0) = (ui,j(t; w0),
vi,j(t; w0)) of (1.1) satisfies 0 ≤ wi,j(t; w0) ≤ K for (i, j) ∈ Z

2, t ≥ 0, and for some C > 0,

sup
(i,j)∈Z2

∥
∥wi,j

(
t; w0) – Φ(i cos θ + j sin θ + ct)

∥
∥ ≤ Ce–μ0t , ∀t ≥ 0. (3.7)

Proof Take W ±,0
i,j = (U±,0

i,j , V ±,0
i,j ), where

U+,0
i,j := max

{
u0

i,j,φ(i cos θ + j sin θ )
}

,

V +,0
i,j := max

{
v0

i,j,ψ(i cos θ + j sin θ )
}

, (i, j) ∈ Z
2,

U–,0
i,j := min

{
u0

i,j,φ(i cos θ + j sin θ )
}

,

V –,0
i,j := min

{
v0

i,j,ψ(i cos θ + j sin θ )
}

, (i, j) ∈ Z
2.

Let W ±
i,j (t) = (U±

i,j (t), V ±
i,j (t)) be the unique solution of (1.1) with the initial value W ±,0 =

{W ±,0
i,j }(i,j)∈Z2 . By comparison theorem we obtain

0 ≤ W –
i,j(t) ≤ wi,j

(
t; w0), Φ(i cos θ + j sin θ + ct) ≤ W +

i,j(t) ≤ K, (i, j) ∈ Z
2, t > 0,

which implies that

∥
∥wi,j

(
t; w0) – Φ(i cos θ + j sin θ + ct)

∥
∥

≤ max
{∥
∥W +

i,j(t) – Φ(i cos θ + j sin θ + ct)
∥
∥,

∥
∥W –

i,j(t) – Φ(i cos θ + j sin θ + ct)
∥
∥
}

for any (i, j) ∈ Z
2, t > 0. Thus, to prove the theorem, it suffices to prove the convergence of

W ±
i,j (t) to Φ(i cos θ + j sin θ + ct). We only prove that W +

i,j(t) converges to Φ(i cos θ + j sin θ +
ct) in time, since the other case can be treated similarly.

Denote

Zi,j(t) =
(
Z(1)

i,j (t), Z(2)
i,j (t)

)
:= W +

i,j(t) – Φ(i cos θ + j sin θ + ct), (i, j) ∈ Z
2, t > 0.

It is clear that, for all (i, j) ∈ Z
2 and t > 0,

Zi,j(t) ≥ 0,

0 ≤ Z(1)
i,j (0) ≤ ∣

∣u0
i,j – φ(i cos θ + j sin θ )

∣
∣,

0 ≤ Z(2)
i,j (0) ≤ ∣

∣v0
i,j – ψ(i cos θ + j sin θ )

∣
∣.

Hence ‖Zi,j(0)‖wε(i, j) is bounded on Z
2.
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We divide the remainder of the proof into two steps.
Step 1. We show that there exists C1 > 0 such that

Zi,j(t) ≤ C1ν(λε)e–(cλε–M(λε ))t , ∀(i, j, t) ∈ (
Z

2 ×R
+)\ΩM0 . (3.8)

By the assumption f ′(u) ≤ f ′(0), u ∈ [0, 1], direction computation shows that

dZ(1)
i,j (t)
dt

= d
[
Z(1)

i+1,j + Z(1)
i–1,j + Z(1)

i,j+1 + Z(1)
i,j–1 – 4Z(1)

i,j
]

– γ1Z(1)
i,j (t) + γ2Z(2)

i,j (t)

+ f
(
U+

i,j(t)
)

– f
(
φ(i cos θ + j sin θ + ct)

)

≤ d
[
Z(1)

i+1,j + Z(1)
i–1,j + Z(1)

i,j+1 + Z(1)
i,j–1 – 4Z(1)

i,j
]

+
(
f ′(0) – γ1

)
Z(1)

i,j (t) + γ2Zi,j(t)

and

dZ(2)
i,j (t)
dt

= γ1Z(1)
i,j (t) – γ2Z(2)

i,j (t).

Let ν(λε) = (ν1(λε),ν2(λε)) � 0 be the eigenvector of (2.1) corresponding to M(λε). By
the boundedness of ‖Zi,j(0)‖wε(i, j) on Z

2 we can choose a sufficiently large C1 > 0 such
that

Zi,j(0) ≤ C1ν(λε)eλε (i cos θ+j sin θ–M0), i, j ∈ Z.

Define the function Zi,j(t) = (Z(1)
i,j (t), Z(2)

i,j (t)) as follows:

Zi,j(t) = C1ν(λε)eλε (i cos θ+j sin θ–M0)+M(λε )t , i, j ∈ Z, t ≥ 0.

Using (2.1), we can easily verify that

dZ(1)
i,j (t)
dt

= C1M(λε)ν1(λε)eλε (i cos θ+j sin θ–M0)+M(λε )t

= C1eλε (i cos θ+j sin θ–M0)+M(λε )t

× {
d
[
eλε cos θ + e–λε cos θ + eλε sin θ + e–λε sin θ – 4

]
ν1(λε)

+
[
f ′(0) – γ1

]
ν1(λε) + γ2ν2(λε)

}

= d
[
Z(1)

i+1,j + Z(1)
i–1,j + Z(1)

i,j+1 + Z(1)
i,j–1 – 4Z(1)

i,j
]

+
(
f ′(0) – γ1

)
Z(1)

i,j (t) + γ2Z(2)
i,j (t)

for i, j ∈ Z, t > 0. Similarly, we have

dZ(2)
i,j (t)
dt

= γ1Z(1)
i,j (t) – γ2Z(2)

i,j (t), i, j ∈ Z, t > 0.

Applying Lemma 3.1 with X0 = –∞ and β = f ′(0) – γ1, we get

Zi,j(t) ≤ Zi,j(t), ∀i, j ∈ Z, t > 0.
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Then, for any i, j ∈ Z, t ≥ 0 with i cos θ + j sin θ + ct ≤ M0, we have

Zi,j(t) ≤ C1ν(λε)eλε (i cos θ+j sin θ–M0)+M(λε )t

= C1ν(λε)eλε (i cos θ+j sin θ+ct–M0)e–(cλε–M(λε ))t ≤ C1ν(λε)e–(cλε–M(λε ))t .

This proves (3.8).
Step 2. Let μ0 = min{cλε – M(λε), –λK – ε} > 0. We prove that there exists L2 > 0 such

that

Zi,j(t) ≤ L2�e–μ0t , ∀i, j ∈ Z, t ≥ 0. (3.9)

Note that Φ(i cos θ + j sin θ +ct) ≤ W +
i,j(t) ≤ K for all i, j ∈ Z and t ≥ 0 and φ(ξ ) ∈ [1–δ0, 1)

for all ξ ≥ M0. Thus it follows from (3.4) that for any (i, j, t) ∈ ΩM0 ,

dZ(1)
i,j (t)
dt

≤ d
[
Z(1)

i+1,j + Z(1)
i–1,j + Z(1)

i,j+1 + Z(1)
i,j–1 – 4Z(1)

i,j
]

+
(
f ′(1) – γ1 + ε

)
Z(1)

i,j (t) + γ2Z(2)
i,j (t)

and

dZ(2)
i,j (t)
dt

= γ1Z(1)
i,j (t) – γ2Z(2)

i,j (t).

We can choose L2 > 0 such that L2� ≥ max{C1ν(λε), K}. Define

Ẑi,j(t) =
(
Ẑ(1)

i,j (t), Ẑ(2)
i,j (t)

)
:= L2�e–μ0t , ∀i, j ∈ Z, t ≥ 0.

It is clear that Ẑi,j(0) ≥ K ≥ Zi,j(0). Since μ0 ≤ cλε – M(λε), from (3.8) we see that Zi,j(t) ≤
Ẑi,j(t) for all (i, j, t) ∈ (Z2 ×R

+)\ΩM0 .
Due to μ0 ≤ –λK – ε ≤ –λK , we get

dẐ(1)
i,j (t)
dt

= –μ0Ẑ(1)
i,j (t) ≥ (λK + ε)Ẑ(1)

i,j (t)

= f ′(1)Ẑ(1)
i,j (t) – γ1Ẑ(1)

i,j (t) + γ2Ẑ(2)
i,j (t) + εẐ(1)

i,j (t)

≥ d
[
Z(1)

i+1,j + Z(1)
i–1,j + Z(1)

i,j+1 + Z(1)
i,j–1 – 4Z(1)

i,j
]

+
(
f ′(1) – γ1 + ε

)
Ẑ(1)

i,j (t) + γ2Ẑ(2)
i,j (t)

and

dẐ(2)
i,j (t)
dt

= –μ0Ẑ(2)
i,j (t) ≥ λK Ẑ(2)

i,j (t) = γ1Ẑ(1)
i,j (t) – γ2Ẑ(2)

i,j (t).

Using Lemma 3.1 with X0 = M0 and β = f ′(1) – γ1 + ε, we deduce that Zi,j(t) ≤ Ẑi,j(t) for all
i, j ∈ Z and t ≥ 0, that is, (3.9) holds. Letting M̃ := L2‖�‖, we conclude that

∥
∥Zi,j(t)

∥
∥ =

∥
∥W +

i,j(t) – Φ(i cos θ + j sin θ + ct)
∥
∥ ≤ M̃e–μ0t .

This completes the proof. �
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4 Discussions
In the previous sections, we have studied the stability of the traveling wave solutions of
the two-dimensional lattice differential system (1.1). Since (1.1) is a monotone system, our
method is mainly based on the comparison principle. We would like to mention that in
the recent years, there are some results on the stability of the traveling wave solutions for
nonmonotone diffusion systems by using the weighted energy method; see, for example,
Wu, Zhao, and Liu [18] and Lin et al. [8].

On the other hand, by taking into account the effect of time delay, it is natural to consider
the following delayed lattice differential system:

⎧
⎨

⎩

dui,j(t)
dt = (�2u)i,j + f (ui,j(t), ui,j(t – τ )) – γ1ui,j(t) + γ2vi,j(t),

dvi,j(t)
dt = γ1ui,j(t) – γ2vi,j(t).

(4.1)

For this delayed system, if the function f (u, v) is not monotone with respect to v, then the
comparison principle cannot be applied to consider the stability of traveling waves. An
interesting problem is to study the stability of the traveling waves for such nonmonotone
lattice differential systems such as (4.1).
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