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Abstract
In this paper, the investigation of the asymptotic stability of Riemann–Liouville
fractional neutral systems with variable delays has been presented. The advantage of
the Lyapunov functional was used to achieve the desired results. The stability criteria
obtained for zero solution of the system were formulated as linear matrix inequalities
(LMIs) which can be easily solved. The advantage of the considered method is that
the integer-order derivatives of the Lyapunov functionals can be directly calculated.
Finally, three numerical examples have been evaluated to illustrate that the proposed
method is flexible and efficient in terms of computation and to demonstrate the
feasibility of established assumptions by MATLAB-Simulink.
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1 Introduction
Fractional calculus and fractional differential systems have been of considerable interest
for the past few decades. It has been proved that fractional-order calculus is more ade-
quate and general to describe real world problems than the integer calculus. Therefore,
not only mathematicians have currently had a robust interest in the fractional calculus. At
the same time, it is seen that fractional systems without or with time-varying delays often
occur in many scientific areas such as engineering techniques fields, physics, polymer rhe-
ology, regular variation in thermodynamics, biophysics, blood flow phenomena, capacitor
theory, electrical circuits, signal processing, biology, control theory, etc. (see [1–28] and
the references therein). There are some studies in the literature including recent develop-
ments in the field of the fractional calculus as well as its applications such as the model of
spring pendulum in fractional sense [2, 4, 11].

On the other hand, the interest in stability analysis of various fractional neutral differ-
ential systems has been growing rapidly due to their successful applications in widespread
fields of science and engineering [19, 22]. In this direction, the stability issue for considered
systems is one of the important problems in case of theoretical and practical applications.
It is clear that the analysis on the stability of fractional-order systems has a more complex
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structure than that of classical differential equations due to the fractional derivatives that
are nonlocal and have weakly singular kernels [5, 14].

It is also known that fractional neutral systems have a more general class than those of
the delayed type. The stability of neutral systems proves to be a more complex question
because the system includes the derivative of the retarded state. When the related liter-
ature is searched, especially in the past few years, increased attention has been devoted
to the problem of delay dependent or independent stability via different approaches for
fractional neutral systems. But until now, only a few studies have been published for in-
vestigation of the stability of fractional neutral systems. However, there are many studies
on the stability of neutral systems in differential equations/systems (see [29–33] and the
references therein). It is seen that the stability method in most of the studies related to the
stability of the systems in the control theory is based on LMI and the classical Lyapunov
stability theory such as in [9, 13–20, 25, 34–38]. In this study, the technique of the proof
involves some basic inequalities, LMIs, and Lyapunov functional method.

Motivated by the above discussions, in this paper we deal with the asymptotic stability of
Riemann–Liouville fractional neutral systems. Compared to integer-order neutral systems
with variable delays, the research on the stability of fractional-order neutral systems is still
at the stage of exploiting and developing. The main purpose and contribution of this study
are listed as follows:

(i) In general, there are a few practical algebraic criteria on stability of fractional-order
delayed systems in the current literature. The main reason for this fact is that it is
very difficult to calculate the fractional-order derivatives of Lyapunov functionals
[14, 16, 19, 28]. The advantage of our method is that the integer-order derivatives of
the Lyapunov functionals can be directly calculated. Therefore, we do not need to
calculate fractional-order derivative of the Lyapunov functional. The obtained
stability criteria are defined as LMIs, which are also convenient and feasible to test
the asymptotic stability of the addressed fractional neutral systems;

(ii) The considered system includes state variable delays, fractional-order derivatives of
the states, and variable delays in fractional-order derivatives of states. We have
taken into account the effect of these components on the stability of a neutral
system simultaneously. The presented results contribute to the Riemann–Liouville
fractional-order neutral systems. Also, we give three examples with numerical
simulations to illustrate the effectiveness of theoretical results;

(iii) Compared to the existing results concerning integer-order neutral systems [30–33]
and fractional-order neutral systems [13, 16, 20] with variable delays, the results of
this paper are more general and less conservative. We think that this study will
contribute to the related literature, and it may be useful for researchers working on
the qualitative behavior of solutions.

The rest of this paper is organized as follows: The problem formulation and some needed
assumptions are presented in Sect. 2. The main results of the study, that is, sufficient con-
ditions for asymptotic stability and some assumptions throughout the study and synthesis
of the system under consideration, are included in Sect. 3. In Sect. 4, three numerical ex-
amples with simulations are shown to illustrate the effectiveness of the solution of the
proposed fractional equation system, and the article is finalized with Sect. 5.

Throughout this work, the following notations will be used. �n denotes the n-
dimensional Euclidean space; �n×n is the set of all n × n real matrices; ‖ · ‖ denotes
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the Euclidean norm for vectors; let C = C([–h, 0], Rn) be the space of piecewise contin-
uous differentiable functions from [–h, 0] to Rn; AT means the transpose of the matrix
A; B is symmetric if B = BT ; H is positive definite (or negative definite) if 〈Hx, x〉 > 0 (or
〈Hx, x〉 < 0) for all x �= 0; ‖D‖ denotes the spectral norm of matrix D; λmin(A) and λmax(A)
denote the minimal and maximal eigenvalue of the matrix A, respectively.

2 Problem description
In this study, we consider the following fractional neutral system with variable delays:

t0 Dq
t x(t) – Ct0 Dq

t x
(
t – h(t)

)
= A0x(t) + A1x

(
t – h(t)

)
+ B

∫ t

t–h(t)
x(s) ds, t ≥ 0, (2.1)

with the initial conditions

t0 D–(1–q)
t x(t) = ϑ(t), t ∈ [–h, 0],

where 0 < q < 1, t0 Dq
t x(·) shows a q order Riemann–Liouville fractional derivative of x(·),

x(t) ∈ �n is the state vector, A0, A1, B, C ∈ �n×n are known constant matrixes, and h(t) is a
variable delay function.

For h(t) variable delay, we assume that there are two different cases as follows:
Case I. h(t) is a differentiable function satisfying, for all t ≥ 0,

0 ≤ h(t) ≤ h and ḣ(t) ≤ δ < 1. (2.2)

Case II. h(t) is not differentiable or the upper bound of the derivative of h(t) is unknown,
and h(t) holds for all t ≥ 0,

0 ≤ h(t) ≤ h, (2.3)

where h and δ are nonnegative constants.
Before evaluating the main result, some basic definitions of fractional analysis and im-

portant lemmas are needed as given below.

Definition 2.1 ([23]) The Riemann–Liouville fractional integral is described as

t0 D–q
t x(t) =

1
Γ (q)

∫ t

t0

(t – s)q–1x(s) ds (q > 0).

Definition 2.2 ([23]) The Riemann–Liouville fractional derivative is described as

t0 Dq
t x(t) =

1
Γ (n – q)

dn

dtn

∫ t

t0

x(s)
(t – s)q+1–n ds (n – 1 ≤ q < n),

where Γ denotes the gamma function.

Lemma 2.1 ([12]) If p > q > 0, then the formula

t0 Dq
t
(

t0 D–p
t x(t)

)
= t0 Dq–p

t x(t)
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holds for “sufficiently good” functions x(t). In particular, this relation holds if x(t) is inte-
grable.

Lemma 2.2 ([9]) Let x(t) ∈ �n be a vector of differentiable function for ∀t ≥ t0. Then the
following relationship holds:

1
2 t0 Dq

t
(
xT (t)Mx(t)

) ≤ xT (t)Mt0 Dq
t x(t), 0 < q < 1,

where M ∈ �n×n is a constant, square, symmetric, and positive semi-definite matrix.

Lemma 2.3 ([33]) For all symmetric positive definite matrix S ∈ Dn×n, scalar γ > 0, and
vector function g : [0,γ ] → Rn, such that the integrations in the following inequality are
well defined, we have

γ

∫ γ

0
gT (s)Sg(s) ds ≥

[∫ γ

0
g(s) ds

]T

S
[∫ γ

0
g(s) ds

]
.

3 Main results
In order to simplify the treatment of the problem, the operator L : C([–h, 0], Rn) → Rn is
defined to be L : L(xt) = x(t) – Cx(t – h(t)).

The stability of the operator L is described as follows.

Definition 3.1 ([10]) The operator L is said to be stable if the zero solution of the homo-
geneous difference equation L(xt) = 0, t ≥ 0, is uniformly asymptotically stable.

Lemma 3.1 ([10]) The operator L is stable if ‖C‖ < 1.

In the following Theorems 3.1–3.3, we give our main results for the fractional neutral
system (2.1).

Theorem 3.1 Under Case I, the zero solution of system (2.1) with (2.2) is asymptotically
stable if ‖C‖ < 1, and there exist symmetric positive definite matrices P, Q, R, S, and U such
that the following LMI holds:

Ω =

⎡

⎢⎢⎢
⎣

Ω11 Ω12 Ω13 Ω14

ΩT
12 Ω22 Ω23 Ω24

ΩT
13 ΩT

23 Ω33 Ω34

ΩT
14 ΩT

24 ΩT
34 Ω44

⎤

⎥⎥⎥
⎦

< 0, (3.1)

where

Ω11 = PA0 + AT
0 P + Q + h2S + AT

0
(
R + h2U

)
A0, Ω12 = PA1 + AT

0
(
R + h2U

)
A1,

Ω13 = PB + AT
0
(
R + h2U

)
B, Ω14 = PC + AT

0
(
R + h2U

)
C,

Ω22 = AT
1
(
R + h2U

)
A1 – (1 – δ)Q, Ω23 = AT

1
(
R + h2U

)
B,

Ω24 = AT
1
(
R + h2U

)
C, Ω33 = –S + BT(

R + h2U
)
B, Ω34 = BT(

R + h2U
)
C,

Ω44 = CT(
R + h2U

)
C – (1 – δ)R.
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Proof Let us consider the following Lyapunov functional for fractional neutral system
(2.1):

V (t) =
3∑

k=1

Vk(t), t ≥ 0, (3.2)

where

V1(t) = t0 Dq–1
t

(
xT (t)Px(t)

)
,

V2(t) =
∫ t

t–h(t)
xT (s)Qx(s) ds +

∫ 0

–h(t)

(
t0 Dq

t x(t + s)
)T R

(
t0 Dq

t x(t + s)
)

ds,

V3(t) = h
∫ 0

–h

∫ t

t+β

xT (s)Sx(s) ds dβ + h
∫ 0

–h

∫ t

t+β

(
t0 Dq

s x(s)
)T U

(
t0 Dq

s x(s)
)

ds dβ .

From Definitions 2.1 and 2.2, we know that V1(t), V2(t), and V3(t) are positive definite
functionals. It follows from (2.2) and Lemmas 2.1 and 2.2 that we get the time derivative
V (t) along the trajectories of fractional system (2.1) as follows:

V̇ (t) =
3∑

k=1

V̇k(t),

where

V̇1(t) = t0 Dq
t
(
xT (t)Px(t)

)

≤ 2xT (t)Pt0 Dq
t
(
x(t)

)

= 2xT (t)P
[

A0x(t) + A1x
(
t – h(t)

)
+ B

∫ t

t–h(t)
x(s) ds + Ct0 Dq

t x
(
t – h(t)

)
]

= xT (t)
(
PA0 + AT

0 P
)
x(t) + 2xT (t)PA1x

(
t – h(t)

)
+ 2xT (t)PB

∫ t

t–h(t)
x(s) ds

+ 2xT (t)PCt0 Dq
t x

(
t – h(t)

)
, (3.3)

V̇2(t) = xT (t)Qx(t) –
(
1 – ḣ(t)

)
xT(

t – h(t)
)
Qx

(
t – h(t)

)
+

(
t0 Dq

t x(t)
)T R

(
t0 Dq

t x(t)
)

–
(
1 – ḣ(t)

)(
t0 Dq

t x
(
t – h(t)

))T R
(

t0 Dq
t x

(
t – h(t)

))

≤ xT (t)Qx(t) – (1 – δ)xT(
t – h(t)

)
Qx

(
t – h(t)

)
+

(
t0 Dq

t x(t)
)T R

(
t0 Dq

t x(t)
)

– (1 – δ)
(

t0 Dq
t x

(
t – h(t)

))T R
(

t0 Dq
t x

(
t – h(t)

))
, (3.4)

V̇3(t) = h2xT (t)Sx(t) – h
∫ t

t–h
xT (s)Sx(s) ds + h2(

t0 Dq
t x(t)

)T U
(

t0 Dq
t x(t)

)

– h
∫ t

t–h

(
t0 Dq

s x(s)
)T U

(
t0 Dq

s x(s)
)

ds

≤ h2xT (t)Sx(t) – h
∫ t

t–h
xT (s)Sx(s) ds + h2(

t0 Dq
t x(t)

)T U
(

t0 Dq
t x(t)

)
. (3.5)
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Obviously, for any scalars ∈ [t – h, t], and by Lemma 2.3, we have

–h
∫ t

t–h
xT (s)Sx(s) ds ≤ –h

∫ t

t–h(t)
xT (s)Sx(s) ds

≤ –
(∫ t

t–h(t)
x(s) ds

)T

S
(∫ t

t–h(t)
x(s) ds

)
. (3.6)

Taking into account (3.4) and (3.5), we get

(
t0 Dq

t x(t)
)T R

(
t0 Dq

t x(t)
)

+ h2(
t0 Dq

t x(t)
)T U

(
t0 Dq

t x(t)
)

=
[

A0x(t) + A1x
(
t – h(t)

)
+ B

∫ t

t–h(t)
x(s) ds + Ct0 Dq

t x
(
t – h(t)

)]T(
R + h2U

)

×
[

A0x(t) + A1x
(
t – h(t)

)
+ B

∫ t

t–h(t)
x(s) ds + Ct0 Dq

t x
(
t – h(t)

)]

= xT (t)AT
0
(
R + h2U

)
A0x(t) + xT (t)AT

0
(
R + h2U

)
A1x

(
t – h(t)

)

+ xT (t)AT
0
(
R + h2U

)
B

∫ t

t–h(t)
x(s) ds + xT (t)AT

0
(
R + h2U

)
Ct0 Dq

t x
(
t – h(t)

)

+ xT(
t – h(t)

)
AT

1
(
R + h2U

)
A0x(t) + xT(

t – h(t)
)
AT

1
(
R + h2U

)
A1x

(
t – h(t)

)

+ xT(
t – h(t)

)
AT

1
(
R + h2U

)
B

∫ t

t–h(t)
x(s) ds

+ xT(
t – h(t)

)
AT

1
(
R + h2U

)
Ct0 Dq

t x
(
t – h(t)

)

+
(∫ t

t–h(t)
x(s) ds

)T

BT(
R + h2U

)
A0x(t)

+
(∫ t

t–h(t)
x(s) ds

)T

BT(
R + h2U

)
A1x

(
t – h(t)

)

+
(∫ t

t–h(t)
x(s) ds

)T

BT(
R + h2U

)
B

∫ t

t–h(t)
x(s) ds

+
(∫ t

t–h(t)
x(s) ds

)T

BT(
R + h2U

)
Ct0 Dq

t x
(
t – h(t)

)

+
(

t0 Dq
t x

(
t – h(t)

))T CT(
R + h2U

)
A0x(t)

+
(

t0 Dq
t x

(
t – h(t)

))T CT(
R + h2U

)
A1x

(
t – h(t)

)

+
(

t0 Dq
t x

(
t – h(t)

))T CT(
R + h2U

)
B

∫ t

t–h(t)
x(s) ds

+
(

t0 Dq
t x

(
t – h(t)

))T CT(
R + h2U

)
Ct0 Dq

t x
(
t – h(t)

)
. (3.7)

From (3.3)–(3.7), we obtain

V̇ (t) ≤ ηT (t)Ωη(t),



Altun Advances in Difference Equations        (2019) 2019:437 Page 7 of 13

where

ηT =
[

xT (t) xT (t – h(t)) (
∫ t

t–h(t) x(s) ds)T (t0 Dq
t x(t – h(t)))T ]

and Ω is defined in (3.1). If Ω < 0, V̇ (t) is negative definite for η(t) �= 0. This implies that
the system fractional (2.1) is asymptotically stable. Thus, the proof is complete. �

Remark 3.1 A new criterion on delay-independent stability will be obtained if we choose
a different Lyapunov functional.

Theorem 3.2 Under Case I, the zero solution of system (2.1) with (2.2) is asymptotically
stable if ‖C‖ < 1, and there exist symmetric positive definite matrices P, Q, S, and U such
that the following LMI holds:

Σ =

[
PA0 + AT

0 P + Q + h2S + h2AT
0 UA0 PA1 – AT

0 PC + h2AT
0 UA1 PB + h2AT

0 UB
AT

1 P – CT PA0 + h2AT
1 UA0 h2AT

1 UA1 – 2CT PA1 – (1 – δ)Q h2AT
1 UB – CT PB

BT P + h2BT UA0 h2BT UA1 – BT PC h2BT UB – S

]

< 0. (3.8)

Proof Let us consider the following Lyapunov functional for fractional neutral system
(2.1):

W (t) = t0 Dq–1
t

((
L(xt)

)T P
(
L(xt)

))
+

∫ t

t–h(t)
xT (s)Qx(s) ds + h

∫ 0

–h

∫ t

t+β

xT (s)Sx(s) ds dβ

+ h
∫ 0

–h

∫ t

t+β

(t0 Dq
s
(
L(xs)

)T U
(

t0 Dq
s
(
L(xs)

))
ds dβ . (3.9)

It follows from (2.2) and Lemmas 2.1 and 2.2 that we get the time derivative W (t) along
the trajectories of system (2.1) as follows:

Ẇ (t) ≤ 2
(
x(t) – Cx

(
t – h(t)

))T P
[

A0x(t) + A1x
(
t – h(t)

)
+ B

∫ t

t–h(t)
x(s) ds

]

+ xT (t)Qx(t) –
(
1 – ḣ(t)

)
xT(

t – h(t)
)
Qx

(
t – h(t)

)

+ h2xT (t)Sx(t) – h
∫ t

t–h
xT (s)Sx(s) ds

+ h2(
t0 Dq

t
(
x(t) – Cx

(
t – h(t)

)))T U
(

t0 Dq
t
(
x(t) – Cx

(
t – h(t)

)))

– h
∫ t

t–h

(
t0 Dq

s
(
x(s) – Cx

(
s – h(s)

)))T U
(

t0 Dq
t
(
x(s) – Cx

(
s – h(s)

)))
ds

≤ xT (t)
(
PA0 + AT

0 P
)
x(t) + 2xT (t)PA1x

(
t – h(t)

)
+ 2xT (t)PB

∫ t

t–h(t)
x(s) ds

– 2xT(
t – h(t)

)
CT PA0x(t) – 2xT(

t – h(t)
)
CT PA1x

(
t – h(t)

)

– 2xT(
t – h(t)

)
CT PB

∫ t

t–h(t)
x(s) ds + xT (t)Qx(t)

– (1 – δ)xT(
t – h(t)

)
Qx

(
t – h(t)

)
+ h2xT (t)Sx(t) – h

∫ t

t–h
xT (s)Sx(s) ds
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+ h2xT (t)AT
0 UA0x(t) + h2xT (t)AT

0 UA1x
(
t – h(t)

)

+ h2xT (t)AT
0 UB

∫ t

t–h(t)
x(s) ds + h2xT(

t – h(t)
)
AT

1 UA0x(t)

+ h2xT(
t – h(t)

)
AT

1 UA1x
(
t – h(t)

)
+ h2xT(

t – h(t)
)
AT

1 UB
∫ t

t–h(t)
x(s) ds

+ h2
(∫ t

t–h(t)
x(s) ds

)T

BT UA0x(t) + h2
(∫ t

t–h(t)
x(s) ds

)T

BT UA1x
(
t – h(t)

)

+ h2
(∫ t

t–h(t)
x(s) ds

)T

BT UB
∫ t

t–h(t)
x(s) ds. (3.10)

Obviously, for any scalar s ∈ [t – h, t], and by Lemma 2.3, we have

–h
∫ t

t–h
xT (s)Sx(s) ds ≤ –h

∫ t

t–h(t)
xT (s)Sx(s) ds

≤ –
(∫ t

t–h(t)
x(s) ds

)T

S
(∫ t

t–h(t)
x(s) ds

)
. (3.11)

From (3.10) and (3.11), we obtain

Ẇ (t) ≤ ξT (t)Σξ (t),

where

ξT =
[

xT (t) xT (t – h(t)) (
∫ t

t–h(t) x(s) ds)T ]

and Σ is defined in (3.8). If Σ < 0, Ẇ (t) is negative definite for ξ (t) �= 0. This implies that
system (2.1) is asymptotically stable. Thus, the proof is complete. �

Theorem 3.3 Under Case II, the zero solution of system (2.1) with (2.3) is asymptotically
stable if ‖C‖ < 1, and there exist symmetric positive definite matrices P, S, and U such that
the following LMI holds:

Ξ =

⎡

⎢
⎣

PA0 + AT
0 P + h2S + h2AT

0 UA0 PA1 – AT
0 PC + h2AT

0 UA1 PB + h2AT
0 UB

AT
1 P – CT PA0 + h2AT

1 UA0 h2AT
1 UA1 – 2CT PA1 h2AT

1 UB – CT PB
BT P + h2BT UA0 h2BT UA1 – BT PC h2BT UB – S

⎤

⎥
⎦

< 0. (3.12)

Proof In Case II, a Lyapunov functional can be chosen as (3.9) with Q = 0. Similar to the
above analysis, one can get that Ẇ (t) < 0 holds if Ξ < 0. Thus, the proof of Theorem 3.3 is
complete. �

4 Numerical examples and simulation results
To illustrate the effectiveness and applicability of the proposed method, the following three
numerical examples are presented.
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Example 4.1 As a special case of system (2.1), consider the following fractional neutral
system with variable delay:

t0 Dq
t
(
x(t) – Cx

(
t – h(t)

))
= A0x(t) + A1x

(
t – h(t)

)
+ B

∫ t

t–h(t)
x(s) ds, t ≥ 0, (4.1)

where q ∈ (0, 1), x(t) = [x1(t), x2(t)]T ,

A0 =

[
–4 3
0 –2

]

, A1 =

[
0.3 0.2
0 0.2

]

,

B =

[
0.03 0

0 0.01

]

, C =

[
0.12 0

0 0.18

]

,

and

0.2 ≤ h(t) = 0.2 + 0.3 sin2(t) ≤ 0.5. (4.2)

Let us choose

P =

[
8 0
0 7

]

, Q =

[
4 0
0 4

]

, R =

[
1.5 0.5
0.5 1.5

]

,

S =

[
0.12 0

0 0.1

]

, U =

[
1.2 0.1
0.1 1.2

]

.

Under the above assumptions, all eigenvalues of the LMI described by (3.1) are
λmax(Ω) ≤ –0.0969 by using MATLAB-Simulink.

As a result, condition (3.1) holds, which implies that the zero solution of system (4.1)
with (4.2) is asymptotically stable according to Theorem 3.1.

Example 4.2 As a special case of system (2.1), consider the following fractional neutral
system with variable delay:

t0 Dq
t
(
x(t) – Cx

(
t – h(t)

))
= A0x(t) + A1x

(
t – h(t)

)
+ B

∫ t

t–h(t)
x(s) ds, t ≥ 0, (4.3)

where q ∈ (0, 1), x(t) = [x1(t), x2(t)]T ,

A0 =

[
–6 0
2 –1

]

, A1 =

[
1 0.3

0.2 0

]

,

B =

[
0.02 0

0 0.1

]

, C =

[
0.14 0

0 0.16

]

,

and

0.4 ≤ τ1(t) = 0.4 + 0.2 sin2(t) ≤ 0.6. (4.4)
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Let us choose

P =

[
7 0
0 5

]

, Q =

[
4 1
1 2

]

, S =

[
2.4 0.3
0.3 2.4

]

, U =

[
1 0.2

0.2 1

]

.

Under the above assumptions, all eigenvalues of the LMI described by (3.8) are
λmax(Σ) ≤ –1.0417 by using MATLAB-Simulink.

As a result, condition (3.8) holds, which implies that the zero solution of system (4.3)
with (4.4) is asymptotically stable according to Theorem 3.2.

Example 4.3 As a special case of system (2.1), consider the following fractional neutral
system with variable delay:

t0 Dq
t
(
x(t) – Cx

(
t – h(t)

))
= A0x(t) + A1x

(
t – h(t)

)
+ B

∫ t

t–h(t)
x(s) ds, t ≥ 0, (4.5)

where q ∈ (0, 1), x(t) = [x1(t), x2(t)]T ,

A0 =

[
–10 –0.2
–0.6 –1

]

, A1 =

[
1.4 0.4
0.8 0.2

]

,

B =

[
0.9 0
0 0.1

]

, C =

[
0.12 0

0 0.2

]

,

and
{

r(t) = 0.1 + 0.2 sin2(t) ≤ 0.3, if t ∈ I =
⋃

k≥0[2kπ , (2k + 1)π ],
r(t) = 0, t ∈ �+/I.

(4.6)

Let us choose

P =

[
5.8 0
0 1

]

, S =

[
1.4 0.5
0.5 1.2

]

, U =

[
1 0.3

0.3 0.5

]

.

Under the above assumptions, all eigenvalues of the LMI described by (3.12) are
λmax(Ξ ) ≤ –0.0352 by using MATLAB-Simulink.

As a result, condition (3.12) holds, which implies that the zero solution of system (4.5)
with (4.6) is asymptotically stable according to Theorem 3.3.

When the theoretical solutions of the above examples (Examples 4.1, 4.2, and 4.3) are
examined, it is seen that the zero solution of the considered systems in the examples is
stable after a certain time interval under different initial conditions. These are confirmed
by the related simulation results (Figs. 1, 2, 3).

When the results of this study are compared with the results of similar studies in the
literature, time delay was taken constant in the examples given in the studies which were
published before [13 and 16]. The theoretical results in these studies were not supported
by simulation studies. However, this proposed study is more general, and the time delay
depends on the variable and the theoretical results are supported by simulations.
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Figure 1 The simulation of Example 4.1 for (4.2)

Figure 2 The simulation of Example 4.2 for (4.4)

Figure 3 The simulation of Example 4.3 for (4.6)

5 Conclusions
In this paper, asymptotic stability of Riemann–Liouville fractional neutral systems with
variable delays has been investigated and some new sufficient conditions have been pro-
posed. The obtained results are described by constructing appropriate Lyapunov func-
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tional and formulating in the form of LMIs, which are convenient and feasible to test the
stability. The proposed met hod avoids computing Riemann–Liouville fractional-order
derivatives of the Lyapunov functionals. When compared with the stability criteria in the
related literature, our criteria are simple and suitable for application. Three numerical ex-
amples are given with their simulations (Fig. 1, Fig. 2, and Fig. 3) to demonstrate the effec-
tiveness of the stability criteria of the considered system. It is observed that the numerical
examples and simulation results verify the efficiency and accuracy of the theoretical results
of this paper. The results of this study can be solved numerically by some recent method-
ologies such as those discussed in [39] and [40]. Consequently, the obtained results in this
study extend and generalize the existing ones in the literature.
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