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Abstract
In this paper, Levinson type inequalities are studied for the class of higher order
convex functions by using Abel–Gontscharoff interpolation. Cebyšev, Grüss, and
Ostrowski-type new bounds are also found for the functionals involving data points
of two types.
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1 Introduction and preliminaries
The theory of convex functions has encountered a fast advancement. This can be at-
tributed to a few causes: firstly, applications of convex functions are directly involved in
modern analysis; secondly, many important inequalities are the results of applications of
convex functions, and convex functions are closely related to inequalities (see [1]).

Divided differences are seen to be uncommonly valuable when we are managing limits
having assorted diverse of smoothness. In [1, p. 14], the definition of divided difference is
given as follows:

mth-order divided difference:
Let a function f : [ζ1, ζ2] →R. The mth-order divided difference of a function f at

x0, . . . , xm ∈ [ζ1, ζ2] is defined recursively by

[xi; f ] = f (xi), i = 0, . . . , m,

[x0, . . . , xm; f ] =
[x1, . . . , xm; f ] – [x0, . . . , xm–1; f ]

xm – x0
.

(1)

It is easy to see that (1) is equivalent to

[x0, . . . , xm; f ] =
m∑

i=0

f (xi)
q′(xi)

, where q(x) =
m∏

j=0

(x – xj).

The following definition of a real-valued convex function is characterized by
mth-order divided difference (see [1, p. 15]).
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Higher order convex function:
A function f : [ζ1, ζ2] →R is said to be m-convex (m ≥ 0) if and only if, for all

decisions of (m + 1) distinct points x0, . . . , xm ∈ [ζ1, ζ2], [x0, . . . , xm; f ] ≥ 0 holds. If this
inequality is reversed, then f is said to be m-concave.
Criteria for m-convex functions:

In [1, p. 16], the criterion to examine the m-convexity of a function f is given as
follows.

Theorem 1 If f (m) exists, then f is m-convex if and only if f (m) ≥ 0.

In [2] (see also [3, p. 32, Theorem 1]), Ky Fan’s inequality is generalized by Levinson for
3-convex functions as follows.

Theorem 2 Let f : I = (0, 2α) →R with f (3)(t) ≥ 0. Let xk ∈ (0,α) and pk > 0. Then

1
Pn

n∑

i=1

pif (xi) – f

(
1

Pn

n∑

i=1

pixi

)
≤ 1

Pn

n∑

i=1

pif (2α – xi) – f

(
1

Pn

n∑

i=1

pi(2α – xi)

)
. (2)

Functional form of (2) is defined as follows:

J1
(
f (·)) =

1
Pn

n∑

i=1

pif (2a – xi) – f

(
1

Pn

n∑

i=1

pi(2a – xi)

)
–

1
Pn

n∑

i=1

pif (xi)

+ f

(
1

Pn

n∑

i=1

pixi

)
. (3)

Working with the divided differences, assumptions of differentiability on f can be weak-
ened. In [4], Popoviciu noted that (2) is valid on (0, 2a) for 3-convex functions, while in [5]
(see also [3, p. 32, Theorem 2]) Bullen gave a different proof of Popoviciu’s result and also
the converse of (2).

Theorem 3
(a) Let f : I = [ζ1, ζ2] →R be a 3-convex function and xn, yn ∈ [ζ1, ζ2] for n = 1, 2, . . . , k

such that

max{x1, . . . , xk} ≤ min{y1, . . . , yk}, x1 + y1 = · · · = xk + yk (4)

and pn > 0, then

1
Pn

n∑

i=1

pif (xi) – f

(
1

Pn

n∑

i=1

pixi

)
≤ 1

Pn

n∑

i=1

pif (yi) – f

(
1

Pn

n∑

i=1

piyi

)
. (5)

(b) If f is continuous and pn > 0, (5) holds for all xk , yk satisfying (4), then f is 3-convex.
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Functional form of (5) is defined as follows:

J2
(
f (·)) =

1
Pn

n∑

i=1

pif (yi) – f

(
1

Pn

n∑

i=1

piyi

)
–

1
Pn

n∑

i=1

pif (xi)

+ f

(
1

Pn

n∑

i=1

pixi

)
. (6)

Remark 1 It is essential to take note of the fact that under the suppositions of Theorem 2
and Theorem 3, if the function f is 3-convex, then Ji(f (·)) ≥ 0 for i = 1, 2 and Ji(f (·)) = 0
for f (x) = x or f (x) = x2 or f is a constant function.

In [6] (see also [3, p. 32, Theorem 4]), Pečarić weakened assumption (4) and proved that
inequality (5) still holds, i.e., the following result holds.

Theorem 4 Let f : I = [ζ1, ζ2] → R be a 3-convex function, pi > 0, and let xi, yi ∈ [ζ1, ζ2]
such that xi + yi = 2c̆ for i = 1, . . . , n, xi + xn–i+1 ≤ 2c̆, and pixi+pn–i+1xn–i+1

pi+pn–i+1
≤ c̆. Then (5) holds.

In [7], Mercer made a notable work by replacing the condition of symmetric distribution
of points xi and yi with symmetric variances of points xi and yi, the second condition is a
weaker condition.

Theorem 5 Let f be a 3-convex function on [ζ1, ζ2], pi be positive such that
∑n

i=1 pi = 1.
Also let xi, yi satisfy max{x1, . . . , xi} ≤ min{y1, . . . , yi} and

n∑

i=1

pi

(
xi –

n∑

i=1

pixi

)2

=
n∑

i=1

pi

(
yi –

n∑

i=1

piyi

)2

, (7)

then (5) holds.

In [8], Adeel et al. generalized Levinson’s inequality for 3-convex function by using two
Green functions. In [9], Pečarić et al. gave a probabilistic version of Levinson’s inequal-
ity (2) under Mercer’s assumption of equal variances (but for a different number of data
points) for the family of 3-convex functions at a point. They showed that this is the largest
family of continuous functions for which inequality (2) holds. An operator version of prob-
abilistic Levinson’s inequality is discussed in [10] (see also [11]).

On the other hand, the error function eF (t) can be represented in terms of the Green
functions GF ,m(t, s) for the boundary value problem

z(m)(t) = 0,
z(i)(a1) = 0, 0 ≤ i ≤ p,
z(i)(a2) = 0, p + 1 ≤ i ≤ m – 1:

eF (t) =
∫ ζ2

ζ1

GF ,m(t, s)f (m)(s) ds, t ∈ [ζ1, ζ2],

where

GF ,m(t, s) =
1

(m – 1)!

⎧
⎨

⎩

∑p
i=0

(m–1
i

)
(t – ζ1)i(ζ1 – s)m–i–1, ζ1 ≤ s ≤ t;

–
∑m–p

i=p+1
(m–1

i
)
(t – ζ1)i(ζ1 – s)m–i–1, t ≤ s ≤ ζ2.

(8)
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Further ζ1 ≤ t, s ≤ ζ2, the following inequalities hold:

(–1)m–p–1 ∂ iGF ,m(t, s)
∂si ≥ 0, 0 ≤ i ≤ p, (9)

(–1)m–p ∂ iGF ,m(t, s)
∂si ≥ 0, p + 1 ≤ i ≤ m – 1. (10)

The following result holds in [12].

Theorem 6 Let f ∈ Cm[a, b], and let PF be its ‘two-point right focal’ interpolating polyno-
mial. Then, for a ≤ ζ1 < ζ2 ≤ b and 0 ≤ p ≤ m – 2, the following holds:

f (t) = PF (t) + eF (t)

=
p∑

i=0

(t – ζ1)i

i!
f (i)(ζ1)

+
n–p–2∑

j=0

( j∑

i=0

(t – ζ1)p+1+i(ζ1 – ζ2)j–i

(p + 1 + i)!(j – i)!

)
f (p+1+j)(ζ2)

+
∫ ζ2

ζ1

GF ,m(t, s)f (m)(s) ds, (11)

where GF ,m is the Green function defined by (8).

In [13], Butt et al. generalized Popoviciu’s inequality via Abel–Gontscharoff interpolat-
ing polynomial for higher order convex functions. In the same year in [14], Tasadduq et al.
used Abel–Gontscharoff-type Green’s function for a two-point right focal to a generalized
refinement of Jensen’s inequality from convex functions to higher order convex functions.
The results in [13] and [14] are only for one type of data points. But Levinson-type in-
equalities studied for the class of 3-convex functions involve two types of data points. In
this paper Levinson-type inequalities are generalized via Abel–Gontscharoff interpolating
polynomial involving two types of data points.

2 Main results
Motivated by identity (6), we construct the following identities with the help of (8) and
(11).

2.1 Bullen-type inequalities for higher order convex functions
First we define the following functional:
F : Let (p1, . . . , pn1 ) ∈ R

n1 and (q1, . . . , qm1 ) ∈ R
m1 be such that

∑n1
i=1 pi = Pn1 ,

∑m1
i=1 qi =

Qm1 , and xi, yi, 1
Pn1

∑n1
i=1 pixi, 1

Qm1

∑m1
i=1 piyi ∈ I1. Then

J̆
(
f (·)) =

1
Qm1

m1∑

i=1

qif (yi) – f

(
1

Qm1

m1∑

i=1

qiyi

)
–

1
Pn1

n1∑

i=1

pif (xi)

+ f

(
1

Pn1

n1∑

i=1

pixi

)
. (12)
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Theorem 7 Assume F . Let f : I1 = [ζ1, ζ2] →R be a function such that f ∈ Cm[ζ1, ζ2] (m ≥
3) and GF ,m, J̆ (f (·)) are defined in (8) and (12) respectively. Then

J̆
(
f (·)) = J̆

(
PF (·)) +

∫ ζ2

ζ1

J̆
(
GF ,m(·, s)

)
f (m)(s) ds. (13)

Proof Using Abel–Gontscharoff identity (11) in (12), we have

J̆
(
f (·)) =

1
Qm1

m1∑

k=1

qk

[ p∑

i=0

(yk – ζ1)i

i!
f (i)(ζ1)

+
n–p–2∑

j=0

( j∑

i=0

(yk – ζ1)p+1+i(ζ1 – ζ2)j–i

(p + 1 + i)!(j – i)!

)
f (p+1+j)(ζ2)

+
∫ ζ2

ζ1

GF ,m(yk , s)f (m)(s) ds

]

–
p∑

i=0

( 1
Qm1

∑m1
k=1 qkyk – ζ1)i

i!
f (i)(ζ1)

–
n–p–2∑

j=0

( j∑

i=0

( 1
Qm1

∑m1
k=1 qkyk – ζ1)p+1+i(ζ1 – ζ2)j–i

(p + 1 + i)!(j – i)!

)
f (p+1+j)(ζ2)

–
∫ ζ2

ζ1

GF ,m

(
1

Qm1

m1∑

k=1

qkyk , s

)
f (m)(s) ds –

1
Pn1

n1∑

k=1

pk

[ p∑

i=0

(xk – ζ1)i

i!
f (i)(ζ1)

+
n–p–2∑

j=0

( j∑

i=0

(xk – ζ1)p+1+i(ζ1 – ζ2)j–i

(p + 1 + i)!(j – i)!

)
f (p+1+j)(ζ2) +

∫ ζ2

ζ1

GF ,m(xk , s)f (m)(s) ds

]

+
p∑

i=0

( 1
Pn1

∑n1
k=1 pkxk – ζ1)i

i!
f (i)(ζ1)

+
n–p–2∑

j=0

( j∑

i=0

( 1
Pn1

∑n1
k=1 pkxk – ζ1)p+1+i(ζ1 – ζ2)j–i

(p + 1 + i)!(j – i)!

)
f (p+1+j)(ζ2)

+
∫ ζ2

ζ1

GF ,m

(
1

Pn1

n1∑

k=1

pkxk , s

)
f (m)(s) ds.

Using the definition of J̆ (·), we have

J̆
(
f (·)) =

1
Qm1

m1∑

k=1

qk

[ p∑

i=3

(yk – ζ1)i

i!
f (i)(ζ1)

+
n–p–2∑

j=0

( j∑

i=3

(yk – ζ1)p+1+i(ζ1 – ζ2)j–i

(p + 1 + i)!(j – i)!

)
f (p+1+j)(ζ2)

]

–
p∑

i=3

( 1
Qm1

∑m1
k=1 qkyk – ζ1)i

i!
f (i)(ζ1)
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–
n–p–2∑

j=0

( j∑

i=3

( 1
Qm1

∑m1
k=1 qkyk – ζ1)p+1+i(ζ1 – ζ2)j–i

(p + 1 + i)!(j – i)!

)
f (p+1+j)(ζ2)

–
1

Pn1

n1∑

k=1

pk

[ p∑

i=3

(xk – ζ1)i

i!
f (i)(ζ1) +

n–p–2∑

j=0

( j∑

i=3

(xk – ζ1)p+1+i(ζ1 – ζ2)j–i

(p + 1 + i)!(j – i)!

)

× f (p+1+j)(ζ2)

]
+

p∑

i=3

( 1
Pn1

∑n1
k=1 pkxk – ζ1)i

i!
f (i)(ζ1)

+
n–p–2∑

j=0

( j∑

i=3

( 1
Pn1

∑n1
k=1 pkxk – ζ1)p+1+i(ζ1 – ζ2)j–i

(p + 1 + i)!(j – i)!

)
f (p+1+j)(ζ2)

+
∫ ζ2

ζ1

J̆
(
GF ,m(·, s)

)
f (m)(s) ds.

After some simple calculations,

J̆
(
f (·)) =

1
Qm1

m1∑

k=1

qk
(
PF (yk – ζ1)

)
– PF

(
1

Qm1

m1∑

k=1

qkyk – ζ1

)

–
1

Pn1

n1∑

k=1

pk
(
PF (xk – ζ1)

)
+ PF

(
1

Pn1

n1∑

k=1

pkxk – ζ1

)

+
∫ ζ2

ζ1

J̆
(
GF ,m(·, s)

)
f (m)(s) ds.

Again, we use the definition of J̆ (·) to get (13). �

In the next result we have generalizations of Bullen-type inequality for m-convex func-
tions.

Theorem 8 Assume the conditions of Theorem 7 with

J̆
(
GF ,m(·, s)

) ≥ 0, s ∈ [ζ1, ζ2]. (14)

If f is m-convex such that f (m–1) is absolutely continuous, then we have

J̆
(
f (·)) ≥ J̆

(
PF (·)). (15)

Proof Since f (m–1) is absolutely continuous on [ζ1, ζ2], therefore f (m) exists almost every-
where. By using Theorem 1, we have f (m)(s) ≥ 0 (m ≥ 3) a.e. on [ζ1, ζ2]. Hence we can apply
Theorem 7 to get (15). �

If we put m1 = n1 = n, pi = qi and use positive weights in (12), then J̆ (·) is converted to
the functional J2(·) defined in (6), also in this case, (13), (14), and (15) become

J2
(
f (·)) = J2

(
PF (·)) +

∫ ζ2

ζ1

J2
(
GF ,m(·, s)

)
f (m)(s) ds, (13a)
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where

J2
(
PF (·)) =

1
Pn

n∑

k=1

pk
(
PF (yk – ζ1)

)
– PF

(
1

Pn

n∑

k=1

pkyk – ζ1

)

–
1

Pn

n∑

k=1

pk
(
PF (xk – ζ1)

)
+ PF

(
1

Pn

n∑

k=1

pkxk – ζ1

)
,

J2
(
GF ,m(·, s)

)
=

1
Pn

n∑

k=1

pkGF ,m(yk , s) – GF ,m

(
1

Pn

n∑

k=1

pkyk , s

)

–
1

Pn

n∑

k=1

pkGF ,m(xk , s) + GF ,m

(
1

Pn

n∑

k=1

pkxk , s

)
,

J2
(
GF ,m(·, s)

) ≥ 0, s ∈ [ζ1, ζ2], (14a)

and

J2
(
f (·)) ≥ J2

(
PF (·)), (15a)

respectively.
In the next result, we give a generalization of Bullen-type inequality for n tuples.

Theorem 9 Let f ∈ Cm[ζ1, ζ2] (m ≥ 3), p = (p1, . . . , pn) be a positive n-tuple such that∑n
i=1 pi = Pn. Also let xi, yi ∈ I1 such that (4) is valid for i = 1, . . . , n. Then for the functional

J2(f (·)) defined in (6), we have the following:
(i) If n is even and p is odd or p is even and n is odd, then for every m-convex function f ,

(15a) holds.
(ii) Let inequality (15a) be satisfied. If PF (·) is 3-convex then (6) is valid.

Proof (i) By using (9), the following inequality

(–1)n–p–1 ∂3GF ,n(·, s)
∂s3 ≥ 0 (16)

holds, therefore it is easy to conclude that if (n = even, p = odd) or (p = even, n = odd),
then ∂3GF ,n(·,s)

∂s3 ≥ 0, or if (n = odd, p = odd) or (p = even, n = even), then ∂3GF ,n(·,s)
∂s3 ≤ 0. So,

for the cases (n = even, p = odd) or (p = even, n = odd), GF ,n(·, s) is 3-convex with respect
to the first variable, therefore by following Remark 1, inequality (14a) holds for n tuples.
Hence, by Theorem 8, inequality (15a) holds.

(ii) Since PF (·) is assumed to be 3-convex, therefore using the given conditions and by
following Remark 1, the nonnegativity of the R.H.S. of (15a) is immediate, and we have (6)
for n-tuples. �

Next we have a generalized form (for real weights) of Levinson-type inequality for 2n
points given in [6](see also [3]).
I : Let (p1, . . . , pn1 ) ∈ R

n1 , (q1, . . . , qm1 ) ∈ R
m1 be such that

∑n1
i=1 pi = Pn1 ,

∑m1
i=1 qi = Qm1 ,

1
Qm1

∑m1
i=1 qiyi, and 1

Pn1

∑n1
i=1 pixi ∈ I1. Also let x1, . . . , xn1 and y1, . . . , ym1 ∈ I1 such that

xi + yi = 2c̆, xi + xn–i+1 ≤ 2c̆ and pixi+pn–i+1xn–i+1
pi+pn–i+1

≤ c̆ for i = 1, . . . , n. Then (12) holds.
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Theorem 10 Assume I . Let f : I1 = [ζ1, ζ2] → R be such that f ∈ Cm[ζ1, ζ2] (m ≥ 3), GF ,m

and J̆ (f (·)) as defined in (8) and (12) respectively. Then identity (13) holds.

Proof Assume I in Theorem 7 with the given conditions to get the required result. �

Theorem 11 Assume I . Let f : I1 = [ζ1, ζ2] → R be such that f ∈ Cm[ζ1, ζ2] (m ≥ 3) and
f (m–1) is absolutely continuous. Also let GF ,m and J̆ (f (·)) be defined in (8) and (12) respec-
tively. If (14) is valid, then (15) is also valid.

Proof Proof is similar to Theorem 8. �

Theorem 12 Let f ∈ Cm[ζ1, ζ2] (m ≥ 3), p = (p1, . . . , pn) be a positive n-tuple such that∑n
i=1 pi = Pn. Also let xi, yi ∈ I1 such that xi + yi = 2c̆, xi + xn–i+1 ≤ 2c̆ and pixi+pn–i+1xn–i+1

pi+pn–i+1
≤ c̆

for i = 1, . . . , n. Then, for the functional J2(f (·)) defined in (6), we have the following:
(i) If n is even and p is odd or p is even and n is odd, then for every m-convex function f ,

(15a) holds.
(ii) Let inequality (15a) be satisfied. If PF (·) is 3-convex, then (6) is valid.

Proof In Theorem 9, replace condition (4) for xi and yi with the condition given in the
statement to get the required result. �

In [7], Mercer made a significant improvement by replacing condition (4) of symmetric
distribution with the weaker one that the variances of the two sequences are equal.

Corollary 1 Let f : I1 = [ζ1, ζ2] → R be such that f ∈ Cm[ζ1, ζ2] (m ≥ 3), xi, yi satisfy (7),
and max{x1, . . . , xn} ≤ min{y1, . . . , yn}. Also let (p1, . . . , pn) ∈R

n such that
∑n

i=1 pi = Pn. Then
(13a) holds.

2.2 Generalization of Levinson’s inequalities
Motivated by identity (3), we construct the following identities with the help of (8) and
(11).
H: Let f : I2 = [0, 2a] → R be a function, x1, . . . , xn1 ∈ (0, a), (p1, . . . , pn1 ) ∈ R

n1 , (q1, . . . ,
qm1 ) ∈ R

m1 be real numbers such that
∑n1

i=1 pi = Pn1 and
∑m

i=1 qi = Qm1 . Also let xi,
1

Qm1

∑m1
i=1 qi(2a – xi) and 1

Pn1

∑n1
i=1 pi ∈ I2. Then

J̃
(
f (·)) =

1
Qm1

m1∑

i=1

qif (2a – xi) – f

(
1

Qm1

m1∑

i=1

qi(2a – xi)

)
–

1
Pn

n1∑

i=1

pif (xi)

+ f

(
1

Pn1

n1∑

i=1

pixi

)
. (17)

Theorem 13 Assume H and let f ∈ Cm[0, 2a] (m ≥ 3). Also let GF ,m and J̃ (f (·)) be defined
in (8) and (17) respectively. Then we have

J̃
(
f (·)) = J̃

(
PF (·)) +

∫ ζ2

ζ1

J̃
(
GF ,m(·, s)

)
f (m)(s) ds, (18)

where 0 ≤ ζ1 < ζ2 ≤ 2a.
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Proof Replace F with H and yi with 2a – xi in Theorem 7, we get the required result. �

Theorem 14 Assume H. Let f ∈ Cm[0, 2a] (m ≥ 3) with f (m–1) be absolutely continuous.
Also let GF ,m and J̃ (f (·)) be defined in (8) and (17) respectively. If

J̃
(
GF ,m(·, s)

) ≥ 0, (19)

then

J̃
(
f (·)) ≥ J̃

(
PF (·)), (20)

where 0 ≤ ζ1 < ζ2 ≤ 2a.

Proof Replace F , J̆ (f (·)) and yi with H, J̃ (f (·)), 2a – xi respectively in Theorem 8 to get
the required result. �

If we put m1 = n1 = n, pi = qi and by using positive weights in (17), then J̃ (·) is converted
to the functional J1(·) defined in (3). Also in this case, (18), (19), and (20) become

J1
(
f (·)) = J1

(
PF (·)) +

∫ ζ2

ζ1

J1
(
GF ,m(·, s)

)
f (m)(s) ds, (18a)

where

J1
(
PF (·)) =

1
Pn

n∑

k=1

pk
(
PF (2a – xk – ζ1)

)
– PF

(
1

Pn

n∑

k=1

pk(2a – xk) – ζ1

)

–
1

Pn

n∑

k=1

pk
(
PF (xk – ζ1)

)
+ PF

(
1

Pn

n∑

k=1

pkxk – ζ1

)

and

J1
(
GF ,m(·, s)

)
=

1
Pn

n∑

k=1

pkGF ,m(2a – xk , s) – GF ,m

(
1

Pn

n∑

k=1

pk(2a – xk), s

)

–
1

Pn

n∑

k=1

pkGF ,m(xk , s) + GF ,m

(
1

Pn

n∑

k=1

pkxk , s

)
,

J1
(
GF ,m(·, s)

) ≥ 0, s ∈ [ζ1, ζ2], (19a)

J1
(
f (·)) ≥ J1

(
PF (·)), (20a)

respectively.

Theorem 15 Let f ∈ Cm[0, 2a] (m ≥ 3), p = (p1, . . . , pn) be a positive n-tuple such that
∑n

i=1 pi = Pn. Then, for the functional J1(f (·)) defined in (3) and for 0 ≤ ζ1 < ζ2 ≤ 2a, we
have the following:

(i) If n is even and p is odd or p is even and n is odd, then for every m-convex function f ,
(20a) holds.
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(ii) Let inequality (20a) be satisfied. If the PF (·) is 3-convex, the R.H.S of (20a) is
nonnegative and (3) is valid.

Proof Proof is similar to Theorem 9. �

3 New bounds for Levinson-type inequality
For two Lebesgue integrable functions f1, f2 : [ζ1, ζ2] → R, we consider the Čebyšev func-
tional

Θ(f1, f2) =
1

ζ2 – ζ2

∫ ζ2

ζ1

f1(t)f2(t) dt

–
1

ζ2 – ζ2

∫ ζ2

ζ1

f1(t) dt.
1

ζ2 – ζ2

∫ ζ2

ζ1

f2(t) dt, (21)

where the integrals are assumed to exist.
The following two results are given in [15].

Theorem 16 Let f1 : [ζ1, ζ2] → R be a Lebesgue integrable function and f2 : [ζ1, ζ2] → R

be an absolutely continuous function with (·, –ζ1)(·, –ζ2)[f ′
2]2 ∈ L[ζ1, ζ2]. Then we have the

inequality

∣∣Θ(f1, f2)
∣∣ ≤ 1√

2
[
Θ(f1, f1)

] 1
2 1√

ζ2 – ζ2

(∫ ζ2

ζ1

(x – ζ1)(ζ2 – x)
[
f ′
2(x)

]2 dx
) 1

2
. (22)

The constant 1√
2 is the best possible.

Theorem 17 Let f1 : [ζ1, ζ2] → R be absolutely continuous with f ′
1 ∈ L∞[ζ1, ζ2], and let

f2 : [ζ1, ζ2] →R be monotonic nondecreasing on [ζ1, ζ2]. Then we have the inequality

∣∣Θ(f1, f2)
∣∣ ≤ 1

2(ζ2 – ζ1)
∥∥f ′∥∥∞

∫ ζ2

ζ1

(x – ζ1)(ζ2 – x)
[
f ′
2(x)

]2 df2(x). (23)

The constant 1
2 is the best possible.

To generalize the results given in the previous section for two types of data points, we
will consider Theorem 16 and Theorem 17.

Theorem 18 Assume F . Let f ∈ Cm[ζ1, ζ2] (m ≥ 3) and f (m) be absolutely continuous with
(. – ζ1)(ζ2 – ·)[f (m+1)]2 ∈ L[ζ1, ζ2]. Also let GF ,m and J̆ (f (·)) as defined in (8) and (12) respec-
tively. Then we have

J̆
(
f (·)) = J̆

(
PF (·)) +

f (m–1)(ζ2) – f (m–1)(ζ1)
(ζ2 – ζ2)

×
∫ ζ2

ζ1

J̆
(
GF ,m(·, s)

)
f (m)(s) ds + Rm(ζ1, ζ2; f ), (24)
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and the remainder Rm(ζ1, ζ2; f ) satisfies the bound

∣∣Rm(ζ1, ζ2; f )
∣∣ ≤ (ζ2 – ζ2)√

2
[
Θ

(
J̆

(
GF ,m(·, s)

)
, J̆

(
GF ,m(·, s)

))] 1
2

× 1√
ζ2 – ζ1

(∫ ζ2

ζ1

(s – ζ1)(ζ2 – s)
[
f (m+1)(s)

]2 ds
) 1

2
. (25)

Proof Setting f1 	→ J̆ (GF ,m(·, s)) and f2 	→ f (m) in Theorem 16, we have

∣∣∣∣
1

ζ2 – ζ1

∫ ζ2

ζ1

J̆
(
GF ,m(·, s)

)
f (m)(s) ds –

1
ζ2 – ζ1

∫ ζ2

ζ1

J̆
(
GF ,m(·, s)

)
ds

× 1
ζ2 – ζ1

∫ ζ2

ζ1

f (m)(s) ds
∣∣∣∣

≤ 1√
2
[
Θ

(
J̆

(
GF ,m(·, s)

)
, J̆

(
GF ,m(·, s)

))] 1
2 1√

ζ2 – ζ2

(∫ ζ2

ζ1

(s – ζ1)(ζ2 – s)

× [
f (m+1)(s)

]2 ds
) 1

2
,

∣∣∣∣
1

ζ2 – ζ1

∫ ζ2

ζ1

J̆
(
GF ,m(·, s)

)
f (m)(s) ds –

f (m–1)(ζ2) – f (m–1)(ζ1)
(ζ2 – ζ2)2

∫ ζ2

ζ1

J̆
(
GF ,m(·, s)

)
ds

∣∣∣∣

≤ 1√
2
[
Θ

(
J̆

(
GF ,m(·, s)

)
, J̆

(
GF ,m(·, s)

))] 1
2 1√

ζ2 – ζ2

(∫ ζ2

ζ1

(s – ζ1)(ζ2 – s)

× [
f (m+1)(s)

]2 ds
) 1

2
.

Multiplying (ζ2 – ζ2) on both sides of the above inequality and using the estimation (25),
we get

∫ ζ2

ζ1

J̆
(
GF ,m(·, s)

)
f (m) ds =

f (m–1)(ζ2) – f (m–1)(ζ1)
(ζ2 – ζ1)

∫ ζ2

ζ1

J̆
(
GF ,m(·, s)

)
ds

+ Rm(ζ1, ζ2; f ).

Using identity (13), we get (24). �

The Grüss-type inequalities can be obtained by using Theorem 17.

Theorem 19 Assume F . Let f ∈ Cm[ζ1, ζ2] (m ≥ 3) with f (m) be absolutely continuous and
f (m–1) ≥ 0 a.e. on I1. Then identity (24) holds, where the remainder satisfies the estimation

∣∣Rm(ζ1, ζ2; f )
∣∣ ≤ (ζ2 – ζ2)

∥∥J̆
(
GF ,m(·, s)

)′∥∥∞

[
f (m–1)(ζ2) + f (m–1)(ζ1)

2

–
f (m–1)(ζ2) – f (m–1)(ζ1)

ζ2 – ζ2

]
. (26)



Adeel et al. Advances in Difference Equations        (2019) 2019:430 Page 12 of 13

Proof Setting f1 	→ J̆ (GF ,m(·, s)) and f2 	→ f (m) in Theorem 17, we get

∣∣∣∣
1

ζ2 – ζ2

∫ ζ2

ζ1

J̆
(
GF ,m(·, s)

)
)f (m)(s) ds –

1
ζ2 – ζ1

∫ ζ2

ζ1

J̆
(
GF ,m(·, s)

)
ds

× 1
ζ2 – ζ1

∫ ζ2

ζ1

f (m)(s) ds
∣∣∣∣

≤ 1
2
∥∥J̆

(
GF ,m(·, s)

)′∥∥∞
1

ζ2 – ζ1

∫ ζ2

ζ1

(s – ζ1)(ζ2 – s)
[
f (m+1)(s)

]2 ds. (27)

Since

∫ ζ2

ζ1

(s – ζ1)(ζ2 – s)
[
f (m+1)(s)

]2 ds =
∫ ζ2

ζ1

[2s – ζ1 – ζ2]f m(s) ds

= (ζ2 – ζ1)
[
f (m–1)(ζ2) + f (m–1)(ζ1)

]
– 2

(
f (m–1)(ζ2) – f (m–1)(ζ1)

)
, (28)

using (13), (27), and (28), we have (24) with (26). �

Theorem 20 Assume F . Let f ∈ Cm[ζ1, ζ2] (m ≥ 3) with f (m–1) be absolutely continuous.
Also let GF ,m and J̆ (f (·)) be as defined in (8) and (12) respectively. Moreover, assume that
(p, q) is a pair of conjugate exponents, that is, 1 ≤ p, q,≤ ∞, 1

p + 1
q = 1. Let |f (m)|p : [ζ1, ζ2] →

R be a Riemann integrable function. Then

∣∣J̆
(
f (·)) – J̆

(
PF (·))∣∣ ≤ ∥∥f (m)∥∥

p

(∫ ζ2

ζ1

∣∣J̆
(
GF ,m(·, s)

)
ds

∣∣q
) 1

q
.

Proof For the proof see Theorem 3.5 in [16]. �

Remark 2 Similar work can be done for Levinson’s inequality (2), (one type of data points)
for higher order-convex functions.

Remark 3 We can give related mean value theorems by using nonnegative functionals
(13) and (18), and we can construct the new families of m-exponentially convex functions
(m ≥ 3) and Cauchy means related to these functionals.
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9. Pečarić, J., Praljak, M., Witkowski, A.: Generalized Levinson’s inequality and exponential convexity. Opusc. Math. 35,

397–410 (2015)
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