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Abstract
This article is based on the study on the λ-statistical convergence with respect to the
logarithmic density and de la Vallee Poussin mean and generalizes some results of
logarithmic λ-statistical convergence and logarithmic (V ,λ)-summability theorems.
Hardy’s and Landau’s Tauberian theorems to the statistical convergence, which was
introduced by Fast long back in 1951, have been extended by J.A. Fridy and M.K. Khan
(Proc. Am. Math. Soc. 128:2347–2355, 2000) in recent years. In this article we try to
generalize some Tauberian conditions on logarithmic statistical convergence and
logarithmic (V ,λ)-statistical convergence, and we find some new results on it.

Keywords: Statistical convergence; λ-convergence; de la Vallee Poussin mean;
Logarithmic density

1 Introduction and preliminary concepts
In 1951, Fast [2] and Steinhaus [3] independently introduced the concept of statistical con-
vergence for sequences of real numbers, and since then this concept has been generalized
and investigated in different ways by different authors. Likewise summability theory and
convergence of sequences have also been studied actively in the area of pure mathemat-
ics for the last several decades. Extensive works on the topic are applicable in topology,
functional analysis, Fourier analysis, measure theory, applied mathematics, mathematical
modeling, computer science, analytic number theory, etc. One may refer to [4–9], etc.

Let A ⊆ N and An = {ψ ≤ n : ψ ∈ A}. We say that A has natural density, i.e., δ(A) =
limn

1
n |An|, if the limit exists, where |An| denotes the cardinality of An.

By the concept of statistical convergence, we mean a sequence x̃ = (xψ ) of real numbers
which statistically converges to � if for every ε > 0 the set Aε = {ψ ∈ N : |xψ – �| ≥ ε} has
natural density zero, i.e., for each ε > 0,

lim
n

1
n

∣
∣
{

ψ ≤ n : |xψ – �| ≥ ε
}∣
∣ = 0.

Let λ = (λn) be a non-decreasing sequence of positive numbers tending to ∞ such that

λn+1 ≤ λn + 1 (1)

and λ1 = 0.
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The generalized de la Vallee Poussin mean of a sequence x̃ = (xψ ) is defined by Tn(x) =
1
λn

∑

ψ∈In xψ , where In = [n – λn + 1, n].
Now, a sequence x̃ = (xψ ) is said to be (V ,λ)-summable to � if Tn(x) converges to �, i.e.,

lim
n

1
λn

∑

ψ∈In

|xψ – �| = 0.

Also a sequence x̃ = (xψ ) is said to be statistically λ-convergent to � if, for every ε > 0,

lim
n

1
n

∣
∣
{

ψ ≤ n :
∣
∣Tψ (x) – �

∣
∣ ≥ ε

}∣
∣ = 0.

By logarithmic density, we mean δlogn (E) = 1
logn

∑n
ψ=1

χE(ψ)
ψ

for E ∈ N, where logn =
∑n

ψ=1
1
ψ

≈ log n, n ∈ N [8].
A sequence x̃ = (xψ ) is logarithmic statistically convergent to � if

lim
n

1
logn

∣
∣
∣
∣

{

ψ ≤ n :
1
ψ

|xψ – �| ≥ ε

}∣
∣
∣
∣

= 0.

A sequence x̃ = (xψ ) is logarithmic (V ,λ)-statistically convergent to � if

lim
n

1
logλn

∣
∣
∣
∣

{

ψ ∈ In :
1
ψ

∣
∣Tψ (x) – �

∣
∣ ≥ ε

}∣
∣
∣
∣

= 0,

where logλn =
∑λn

ψ=1
1
ψ

≈ logλn (n = 1, 2, 3, . . .).

Let μn = 1
logλn

∑

ψ∈In
Tψ (x)

ψ
, where logλn =

∑λn
ψ=1

1
ψ

≈ logλn (n = 1, 2, 3, . . .). A sequence
x̃ = (xψ ) is logarithmic (V ,λ)-summable to � if (μn) is convergent to �, i.e.,
limn

1
logλn

∑

ψ∈In
|Tψ (x)–�|

ψ
= 0.

A sequence x̃ = (xψ ) is logarithmic (V ,λ)-statistically summable to � if (μn) is λ-
statistically convergent, i.e.,

lim
n

1
λn

∣
∣
{

ψ ∈ In : |μψ – �| ≥ ε
}∣
∣ = 0.

We define it as stlogλn
– limn Tn = �.

Moricz [10] studied the concept of Tauberian conditions for statistical convergence
followed from statistical summability (C, 1). Braha [11] extended these results using
Tauberian conditions for λ-statistical convergence, which was followed from statistical
summability (V ,λ). Braha [12] also explained the Tauberian theorems for the generalized
Norlund–Euler summability method. One may refer to [13–15].

In this paper, we study the Tauberian theorems for logarithmic (V ,λ)-statistical conver-
gence which is followed from de la Vallee Poussin mean. We also try to establish some
results involving the logarithmic density.

2 Main results
Theorem 2.1 Let λ be a real-valued sequence defined in (1). Then,

1. If x̃ = (xψ ) is logarithmic (V ,λ)-statistically summable to �, then it is logarithmic
(V ,λ)-statistically convergent to �, provided lim infn

1
λn

> 0.
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2. If x̃ = (xψ ) is bounded, then logarithmic (V ,λ)-statistical convergence implies
logarithmic (V ,λ)-statistical summability.

3. Ω(logn,λ) ∩ �∞ = Π (logn,λ), where Ω(logn,λ) is the collection of all logarithmic
(V ,λ)-statistical convergence sequences, �∞ is the collection of all bounded sequences,
and Π (logn,λ) is the collection of all logarithmic (V ,λ)-summable sequences.

Proof (1) Let τn = {ψ ∈ In : 1
logλn

∑

ψ∈In
1
ψ

|Tψ (x) – �| ≥ ε}.
Since x̃ = (xψ ) is logarithmic (V ,λ)-statistically summable to �, then τn is λ-statistically

convergent to �, i.e.,

lim
n

1
λn

∣
∣
∣
∣

{

ψ ∈ In :
1

logλn

∑

ψ∈In

1
ψ

∣
∣Tψ (x) – �

∣
∣ ≥ ε

}∣
∣
∣
∣

= 0.

Also we can write

1
logλn

∑

ψ∈In

1
ψ

∣
∣Tψ (x) – �

∣
∣ ≥ 1

logλn

∑

ψ∈In ,| Tψ (x)
ψ

–�|≥ε

1
ψ

∣
∣Tψ (x) – �

∣
∣

≥ 1
logλn

(∣
∣
∣
∣

{

ψ ∈ In :
1
ψ

∣
∣Tψ (x) – �

∣
∣ ≥ ε

}∣
∣
∣
∣
ε

)

,

which implies that

1
λn

{

ψ ∈ In :
1

logλn

∑

ψ∈In

1
ψ

∣
∣Tψ (x) – �

∣
∣ ≥ ε

}

≥ 1
λn

(|{ψ ∈ In : 1
ψ

|Tψ (x) – �| ≥ ε}|ε)
logλn

.

Since lim infn
1
λn

> 0 and x̃ = (xψ ) is logarithmic (V ,λ)-statistically summable to �, so
by taking n → ∞, we get x̃ = (xψ ) is logarithmic (V ,λ)-statistically convergent to �. This
completes the proof. �

Proof (2) Let x̃ = (xψ ) be bounded and logarithmic (V ,λ)-statistically convergent to �.
Then there exists M > 0 such that |xψ – �| ≤ M. Now, for any ε > 0,

1
logλn

∑

ψ∈In

1
ψ

∣
∣Tψ (x) – �

∣
∣ =

1
logλn

∑

ψ∈In ,ψ /∈B(n)

1
ψ

∣
∣Tψ (x) – �

∣
∣

+
1

logλn

∑

ψ∈In ,ψ∈B(n)

1
ψ

∣
∣Tψ (x) – �

∣
∣

= K1(n) + K2(n),

where B(n) = {ψ ∈ In : 1
ψ

|Tψ (x) – �| ≥ ε}
Now, if ψ /∈ B(n), then K1(n) < ε. For ψ ∈ B(n), we have

K2(n) ≤ (

sup
∣
∣Tψ (x) – �

∣
∣
)

.
(∣
∣B(n)

∣
∣/ logλn

) ≤ M
∣
∣B(n)

∣
∣/ logλn → 0

as n → ∞.
Since logarithmic density of B(n) is zero, hence we can say that x̃ = (xψ ) is logarithmic

(V ,λ)-statistically summable. This completes the proof. �
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Proof Proof of (3) follows from the proof of (1) and (2), so it is omitted here. �

3 Tauberian theorems
Theorem 3.1 Let (λn) be a sequence of real numbers and stlogλn

– limn inf λtn
λn

> 1 for all
t > 1, where tn denotes the integral parts of [t.n] for every n ∈N, and let (Tψ ) be a sequence
of real numbers such that stlogλn

– limn Tn = �. Then x̃ = (xψ ) is stlogλn
-convergent to � iff the

following conditions hold:

inf
t>1

lim
n

sup
1

logλn

∣
∣
∣
∣
∣

{

ψ ∈ In :
1

λtψ – λψ

tψ
∑

j=ψ+1

1
ψ

(xj – xψ ) ≤ –ε

}∣
∣
∣
∣
∣

= 0

and

inf
0<t<1

lim
n

sup
1

logλn

∣
∣
∣
∣
∣

{

ψ ∈ In :
1

λψ – λtψ

k
∑

j=tψ +1

1
ψ

(xψ – xj) ≤ –ε

}∣
∣
∣
∣
∣

= 0.

Remark Let us suppose that

stlogλn
– lim

n
xn = � and stlogλn

– lim
n

Tn = � (2)

are satisfied, then for every t > 1, the following relation is valid:

stlogλn
– lim

n
xn = � implies that lim

n

1
logλn

n
∑

ψ=1

1
ψ

|xψ – �| = 0

and

stlogλn
– lim

n
Tn = � implies that lim

n

1
logλn

n
∑

ψ=1

1
ψ

∣
∣Tψ (x) – �

∣
∣ = 0,

from which it follows that stλ – limn
1

log(λtψ –λψ )

∑tn
ψ=n+1

1
ψ

xψ = 0 holds for t > 1, i.e.,

lim
n

1
logλn

∣
∣
∣
∣
∣

{

ψ ≤ n :
1

λtψ – λψ

tn∑

ψ=1

|xψ |
ψ

≥ ε

}∣
∣
∣
∣
∣

= 0,

and for 0 < t < 1, we have stλ – limn
1

λψ –λtψ

∑n
ψ=tn+1

xψ

ψ
= 0, i.e.,

lim
n

1
logλn

∣
∣
∣
∣
∣

{

ψ ≤ n :
1

λψ – λtψ

n
∑

ψ=tn+1

|xψ |
ψ

≥ ε

}∣
∣
∣
∣
∣

= 0

holds.

Lemma 3.1 For the sequence of real numbers λ = (λn), (2) is equivalent to stλn –
limn inf λn

λtn
> 1 for all 0 < t < 1 [12].
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Lemma 3.2 If stlogλn
– limn xn = � and stlogλn

– limn Tn = � are satisfied, and let x̃ = (xψ )
be a sequence of complex numbers which is logarithmic (V ,λ)-statistically convergent to �,
then for any t > 1,

stlogλn
– lim

n
Ttn = �, i.e.,

1
logλn

∣
∣
∣
∣
∣

{

ψ ≤ n :
n

∑

ψ=1

1
ψ

|Ttψ – �| ≥ ε

}∣
∣
∣
∣
∣

= 0.

Proof Case I: Let us consider that t > 1, then from construction of the sequence λ = (λn)
we get

lim
n

(n – λn) = lim
n

(tn – λtn ), (3)

and for every ε > 0, we have

{

ψ ∈ Itn :
1
ψ

|Ttψ – �| ≥ ε

}

⊂
{

ψ ∈ In :
1
ψ

|Tψ – L| ≥ ε

}

∪
{

ψ ∈ In :
1

logλψ

ψ
∑

j=ψ–λψ +1

xj

j
�= 1

logλtψ

tψ
∑

j=tψ –λtψ +1

xj

j

}

.

Following Eq. (3), we can say that stlogλ
– lim Ttn = �.

Case II: Now suppose that 0 < t < 1. For the definition of tn = [t.n], for any natural num-
ber n, we can conclude that (Ttn ) does not appear more than [1+ t–1] times in the sequence
(Tn). In fact, if there exist integers ψ , m such that

n ≤ t.ψ < t(ψ + 1) < · · · < t(ψ + m – 1) < n + 1 ≤ t(ψ + m),

then

n + t(m – 1) ≤ t(ψ + m – 1) < n + 1 ⇒ m < 1 +
2
t

.

So, we have the following inequality:

1
logλtn

∣
∣
∣
∣

{

ψ ∈ Itn :
1
ψ

|Ttψ – �| ≥ ε

}∣
∣
∣
∣
≤

(

1 +
1
t

)
1

logλtn

∣
∣
∣
∣

{

ψ ∈ In :
1
ψ

|Tψ – �| ≥ ε

}∣
∣
∣
∣

≤ 2(1 + t)
1

logλn

∣
∣
∣
∣

{

ψ ∈ In :
1
ψ

|Tψ – �| ≥ ε

}∣
∣
∣
∣
,

which gives that stlogλn
– limn Ttn = �. �

Lemma 3.3 If stlogλn
– limn xn = � and stlogλn

– limn Tn = � are satisfied and x̃ = (xψ ) is
logarithmic (V ,λ)-statistically convergent to �, then we have

(i) lim
n

1
logλn

∣
∣
∣
∣
∣

{

ψ ≤ n :
1

λtn – λn

tn∑

ψ=n+1

|xψ – �|
ψ

≥ ε

}∣
∣
∣
∣
∣

= 0 for every t > 1 (4)
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and

(ii) lim
n

1
logλn

∣
∣
∣
∣
∣

{

ψ ≤ n :
1

λn – λtn

n
∑

ψ=tn+1

1
ψ

|xψ – �| ≥ ε

}∣
∣
∣
∣
∣

= 0 for any 0 < t < 1. (5)

Proof (i) Let us suppose that t > 1. We get

1
λtn – λn

tn∑

j=n+1

xj

j
= Tn +

λtn

λtn – λn
(Ttn – Tn)

+
1

λtn – λn

tn∑

j=n–λn+1

xj

j
–

1
λtn – λn

tn∑

j=tn–λtn +1

xj

j

⇒ 1
λtn – λn

tn∑

j=n+1

xj

j
= Tn +

λtn

λtn – λn
(Ttn – Tn)

+
1

λtn – λn

( tn∑

j=n–λn+1

xj

j
–

tn∑

j=tn–λtn +1

xj

j

)

. (6)

From the definition of the sequence (λn) and logarithmic density, we obtain

stlogλn
– lim

n
sup

tn∑

j=n–λn+1

xj = stlogλn
– lim

n
sup

tn∑

j=tn–λtn +1

xj. (7)

Let us suppose that stlogλn
– limn sup

∑tn
j=n–λn+1 xj = L, and for every ε > 0, we get

limn
1

logλn
|{ψ ∈ Itn : |∑tψ

j=tψ –λtψ +1
|xj–�|

j | ≥ ε}|
λtn

≤
limn

1
logλn

|{ψ ∈ In : |∑tψ
j=ψ–λψ +1

|xj–�|
j | ≥ ε}|

λn

+
limn

1
logλn

|{ψ ∈ In :
∑tψ

j=tψ –λtψ +1
xj
j �= ∑tψ

j=ψ–λψ +1
xj
j }|

λn
,

from which it follows that stlogλn
– limn sup

∑tn
j=tn–λtn +1 xj = L.

Also, since stλ – limn sup λtn
λtn –λn

< ∞ and stλ – limn sup 1
λtn –λn

< ∞, then we get

stlogλn
– lim

n

1
λtn – λn

tn∑

j=n+1

xj = �.

(ii) If 0 < t < 1, we have

1
λn – λtn

n
∑

j=tn+1

xj

j
= Tn +

λtn

λn – λtn
(Tn – Ttn ) +

1
λn – λtn

n
∑

j=n–λn+1

xj

j
–

1
λtn – λn

n
∑

j=tn–λtn +1

xj

j
.

This completes the proof. �
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Following the above procedure, we can get the proof of Theorem 3.1.

Proof of Theorem 3.1 Let us suppose that stlogλ
– limψ xψ = L and stlogλ

– limψ Tψ = �. For
every t > 1, we get (by Lemma 3.2)

inf
t>1

lim
n

sup
1

logλn

∣
∣
∣
∣
∣

{

ψ ∈ In :
1

λtψ – λψ

tψ
∑

j=ψ+1

1
ψ

(xj – xψ ) ≤ –ε

}∣
∣
∣
∣
∣

= 0.

Similarly, if 0 < t < 1, we obtain (by Lemma 3.2)

inf
0<t<1

lim
n

sup
1

logλn

∣
∣
∣
∣
∣

{

ψ ∈ In :
1

λψ – λtψ

ψ
∑

j=tψ +1

1
ψ

(xψ – xj) ≤ –ε

}∣
∣
∣
∣
∣

= 0.

Now assume that stlogλ
– limn Tn = � and

stlogλn
– lim

n
inf

λtn

λn
> 1 for all t > 1, (8)

inf
t>1

lim
n

sup
1

logλn

∣
∣
∣
∣
∣

{

ψ ∈ In :
1

λtψ – λψ

tψ
∑

j=ψ+1

1
ψ

(xj – xψ ) ≤ –ε

}∣
∣
∣
∣
∣

= 0, (9)

and

inf
0<t<1

lim
n

sup
1

logλn

∣
∣
∣
∣
∣

{

ψ ∈ In :
1

λψ – λtψ

ψ
∑

j=tψ +1

1
ψ

(xψ – xj) ≤ –ε

}∣
∣
∣
∣
∣

= 0 (10)

are satisfied. We have to prove that stlogλ
– limn xn = � or equivalently stlogλ

–
limn(Tn – xn) = 0.

Case I: If t > 1, let us suppose

xn – Tn = λtn
Ttn – Tn

λtn – λn
–

1
λtn – λn

tn∑

j=n+1

xj – xn

j
.

For any ε > 0, we obtain

{ψ ∈ In : xn – Tn ≥ ε}

⊂
{

ψ ∈ In :
λtn

λtn – λn
(Ttn – Tn) ≥ ε

2

}

∪
{

ψ ∈ In :
1

λtn – λn

tn∑

j=n+1

xj – xψ

j
≤ –ε

2

}

.

From the above relation (9), it follows that, for any arbitrary γ > 0, there exists t > 1 such
that

lim
n

sup
1

logλn

∣
∣
∣
∣
∣

{

ψ ∈ In :
1

λtψ – λψ

tψ
∑

j=ψ+1

1
xj – xψ

j ≤ –ε

}∣
∣
∣
∣
∣
≤ γ .
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Also following Lemma 3.2 and the relations stλ – limn sup λtn
λtn –λn

< ∞ and stλ –
limn sup 1

λtn –λn
< ∞, we get

lim
n

sup
1

logλn

∣
∣
∣
∣

{

ψ ∈ In :
∣
∣
∣
∣

λtn

λtn – λn
Ttn – Tn

∣
∣
∣
∣
≥ ε

2

}∣
∣
∣
∣

= 0.

Combining these relations, we have

lim
n

sup
1

logλn

∣
∣
∣
∣

{

ψ ∈ In :
∑

j

xn – Tn

j
≥ ε

}∣
∣
∣
∣
≤ γ .

Since γ is arbitrary, we conclude that, for every ε > 0,

lim
n

sup
1

logλn

∣
∣
∣
∣

{

ψ ∈ In :
∑

j

xn – Tn

j
≥ ε

}∣
∣
∣
∣

= 0.

Case II: If 0 < t < 1, let us suppose

xn – Tn = λtn
Ttn – Tn

λn – λtn
–

1
λn – λtn

n
∑

j=tn+1

xn – xj

j
.

For any ε > 0,

{ψ ∈ In : xn – Tn ≤ –ε}

⊂
{

ψ ∈ In :
λtn

λn – λtn
(Tn – Ttn ) ≤ –

ε

2

}

∪
{

ψ ∈ In :
1

λn – λtn

n
∑

j=tn+1

xψ – xj

j
≤ –

ε

2

}

.

Proceeding in the same way as above, we get the result as follows:

lim
n

1
logλn

∣
∣
∣
∣

{

ψ ∈ In :
∑

n

xn – Tn

n
≥ ε

}∣
∣
∣
∣

= 0.

This completes the proof of the theorem. �

Theorem 3.2 Let (λn) be a sequence of complex numbers which satisfies the following con-
dition:

stlogλn
– lim

n
inf

λtn

λn
> 1 for all t > 1,

and also consider that stlogλ
– lim Tψ = �. Then (xψ ) is stlogλ

-statistically convergent to the
same number � if and only if the following two conditions hold: for every ε > 0,

inf
t>1

lim
n

sup
1

logλn

∣
∣
∣
∣
∣

{

ψ ∈ In :
1

λtψ – λψ

tψ
∑

j=ψ+1

xj – xψ

j
≥ ε

}∣
∣
∣
∣
∣

= 0,



Kılıçman et al. Advances in Difference Equations        (2019) 2019:424 Page 9 of 9

and

inf
0<t<1

lim
n

sup
1

lλn

∣
∣
∣
∣
∣

{

ψ ∈ In :
1

λψ – λtψ

ψ
∑

j=tψ +1

xψ – xj

j
≥ ε

}∣
∣
∣
∣
∣

= 0.

Proof Proofs can be obtained by following Theorem 3.1. �

4 Conclusion
In this paper, the Tauberian conditions under the logarithmic statistical convergence fol-
lowing from (V ,λ)-summability are studied. The Tauberian conditions can be further ap-
plied in probabilistic normed linear spaces with f -density. They can also be studied in the
approximation theorem point of view in more extended forms.
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